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BACKGROUND

Due to the rapidly increasing availability of metabolomics data in prospective
studies, an update of the meta evidence on metabolomics and type 2 diabetes
risk is warranted.

PURPOSE

To conduct an updated systematic review and meta-analysis of plasma, serum,
and urine metabolite markers and incident type 2 diabetes.

DATA SOURCES
We searched PubMed and Embase until 6 March 2021.

STUDY SELECTION

We selected prospective observational studies where investigators used high-
throughput techniques to investigate the relationship between plasma, serum,
or urine metabolites and incident type 2 diabetes.

DATA EXTRACTION

Baseline metabolites per-SD risk estimates and 95% Cls for incident type 2 diabe-
tes were extracted from all eligible studies.

DATA SYNTHESIS

A total of 61 reports with 71,196 participants and 11,771 type 2 diabetes cases/
events were included in the updated review. Meta-analysis was performed for
412 metabolites, of which 123 were statistically significantly associated (false dis-
covery rate—corrected P < 0.05) with type 2 diabetes risk. Higher plasma and
serum levels of certain amino acids (branched-chain, aromatic, alanine, gluta-
mate, lysine, and methionine), carbohydrates and energy-related metabolites
(mannose, trehalose, and pyruvate), acylcarnitines (C4-DC, C4-OH, C5, C5-OH,
and C8:1), the majority of glycerolipids (di- and triacylglycerols), (lyso)phosphati-
dylethanolamines, and ceramides included in meta-analysis were associated
with higher risk of type 2 diabetes (hazard ratio 1.07-2.58). Higher levels of gly-
cine, glutamine, betaine, indolepropionate, and (lyso)phosphatidylcholines were
associated with lower type 2 diabetes risk (hazard ratio 0.69-0.90).

LIMITATIONS

Substantial heterogeneity (I* > 50%, t> > 0.1) was observed for some of the
metabolites.

CONCLUSIONS

Several plasma and serum metabolites, including amino acids, lipids, and carbohy-
drates, are associated with type 2 diabetes risk.
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Metabolomics is the comprehensive iden-
tification, using high-throughput techni-
ques, of small molecules, including amino
acids, carbohydrates, lipids, peptides, and
organic acids, among others (1). Sim-
ultaneous assessment of disease risk
associated with a broad spectrum of
metabolites can further highlight the
critical metabolic pathways in type 2
diabetes etiology.

In 2016, we published a systematic
review and meta-analysis of observa-
tional studies identifying metabolites
associated with prediabetes and type 2
diabetes (2). Evidence from 27 cross-
sectional studies and 19 prospective
cohort studies suggested that several
amino acids (branched-chain amino
acids [BCAAs], aromatic amino acids
[AAAs], glycine, and glutamine), carbo-
hydrates (glucose and fructose), and
lipid metabolites from various classes
(phospholipids, sphingomyelins [SMs],
and triglycerides) were associated with
type 2 diabetes risk. The meta-analysis
of prospective studies indicated that a
1-SD increase in circulating levels of
BCAAs (isoleucine, leucine, and valine)
and AAAs (tyrosine and phenylalanine)
was associated with a 26-36% higher
risk of incident type 2 diabetes. More-
over, inverse associations between gly-
cine and glutamine and type 2 diabetes
risk were observed.

At that time, many identifiable metab-
olites, especially lipid metabolites, were
unavailable for meta-analyses because
there were few studies with available
data (2). Since then, the number of pro-
spective metabolomics profiling studies
on type 2 diabetes risk has substantially
increased (3-8). Furthermore, the pro-
gress in the metabolomics field allo-
wed for annotation of previously unk-
nown signals to known metabolites. In
the majority of new studies, investigators
focused on plasma and serum metabolite
profiles and type 2 diabetes risk. How-
ever, in some studies urine metabolomics
was also investigated in the context of
type 2 diabetes risk (9,10).

The recent publications of state-of-
the-art metabolomics data in relation to
type 2 diabetes risk, including geographi-
cally and ethnically diverse prospective
cohorts, biospecimens (plasma, serum,
and urine), and distinct metabolomics
platforms, merit consideration in updat-
ing the prior evidence. Therefore, we
aimed to conduct an updated systematic

review and meta-analysis of prospective
studies where, using high-throughput
metabolomics, investigators evaluate the
association of single metabolite concen-
trations in plasma, serum, or urine with
subsequent risk of type 2 diabetes.

METHODS

This updated review is based on the pro-
tocol of its primary report (2), registered
in the International Prospective Register
of Systematic Reviews (PROSPERO) (iden-
tifier [ID] CRD42015023439). All changes
to the protocol are summarized in Supp-
lementary Table 1. We followed the
Cochrane Handbook for Systematic Re-
views of Interventions and guidelines
from the Meta-analysis Of Observa-
tional Studies in Epidemiology (MOOSE)
to report the methods and results of this
review (11).

Data Sources and Searches

We conducted a systematic search of
published literature in two electronic
databases, PubMed and Embase, to
identify studies published between 1
August 2015 (date of completion for
original report search) and 6 March 2021
(date of completion for the search for the
current update). The search was not
restricted by any database filter. Details of
search strategies used for both databases
are presented in Supplementary Table 2.
We further hand searched references
from retrieved articles to identify other
potentially eligible studies. The pri-
mary study search was completed by
one author (J.M.).

Study Selection

Titles and abstracts were independently
screened in duplicate by two authors
(J.M. and A.D.) for eligibility. Any disagree-
ments were resolved through a discussion
with a third author (M.G--F.). Full-text ver-
sions of articles identified at this step
were further read and assessed for eligi-
bility to be included. Studies were eligible
for inclusion if they met the following cri-
teria: 1) were prospective observational
studies in humans (cohort, case-cohort,
or nested case-control); 2) were con-
ducted in adults (aged =18 years); 3)
used high-throughput metabolomics tech-
niques (i.e., liquid or gas chromatography
coupled with mass spectrometry [MS] or
proton nuclear magnetic resonance [*H
NMR] spectroscopy); 4) assessed meta-
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bolites in plasma, serum, or urine sam-
ples; and 5) reported associations
between metabolite markers and risk of
incident type 2 diabetes. We excluded
cross-sectional and retrospective case-
control studies; studies conducted in
patients with type 1 or gestational diabe-
tes mellitus; studies conducted in chil-
dren, adolescents, and pregnant women;
and nonoriginal articles (reviews, com-
mentaries, editorials, or letters). More-
over, we excluded studies that did not
provide risk estimates between specific
metabolites and type 2 diabetes risk
(studies focused solely on multivariate
analyses, metabolite scores, or prediction
models). We evaluated potential overlap
between reports based on the same
study, and if present, we selected the one
with longer follow-up or more incident
type 2 diabetes cases. Two authors com-
pleted the study eligibility assessment
(J.M. and A.D.), with conflicts discussed
with a third author (M.G-F.).

Data Extraction and Quality
Assessment
From each study, we extracted the fol-
lowing information: first author, year of
publication, study location and name,
study design, number of included partic-
ipants, number of type 2 diabetes cases,
the average length of follow-up, metab-
olomics assessment details (platform pro-
vider/name), technique (MS/*H NMR),
targeting (targeted/non-targeted assay),
number and type of analyzed metabo-
lites/metabolic features, biological sam-
ple (biospecimen, fasting status), list of
metabolites, covariate adjustment set,
and multivariable-adjusted risk estimates
for type 2 diabetes (odds ratio [OR], risk
ratio [RR], or hazard ratio [HR]) with
95% CI. If the authors presented sev-
eral estimates, we selected the one
with adjustment for the highest num-
ber of covariates. When results were
provided with stratification by sex, we
pooled them with fixed-effects mod-
els. If the main results were pooled
analyses of several studies or external
validation, we extracted all parame-
ters separately from each underlying
study. We contacted the correspond-
ing author of studies with missing or
incomplete data (authors who pro-
vided additional data are listed in
Supplementary Table 3).

Metabolites were identified according
to their database ID or provided names.
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Where a metabolite could not be matched
to a specific compound (i.e., a mixture of
isomers), we have interpreted it as its
most common variant in humans. To avoid
simultaneous use of synonymous names
of different metabolites, we have anno-
tated names and IDs from the Human
Metabolome Database (HMDB) (https://
hmdb.ca/metabolites) or, if not found,
from the Chemical Entities of Biological
Interest (ChEBI) (https://www.ebi.ac.uk/
chebi/). Additionally, when possible, we
have assigned metabolites to the primary
pathway in which they are involved.

Consistent with our original system-
atic review and meta-analysis (2), we
assessed the methodological quality of
included studies independently and in
duplicate using a previously published
scoring tool (12), with evaluation of
study quality in six domains: study par-
ticipation, study attrition, exposure
measurement, outcome ascertainment,
confounding, and statistical analysis app-
ropriateness. Each domain is scored up to
1 point (maximum of 6 points), and the
summary score represents overall quality
(=3 points denotes low quality).

Data Synthesis and Analysis

Due to a limited number of metabolo-
mics studies using urine, we provided
only a qualitative summary of the find-
ings. We extracted the relevant informa-
tion, as detailed above, and described
and summarized the findings of these
reports in a qualitative manner. For plas-
ma and serum metabolites, findings were
summarized using meta-analysis. We
have performed a meta-analysis for
type 2 diabetes risk estimates of all
metabolites for which evidence from at
least two independent, eligible studies
was available. We made additional ass-
umptions for grouping and performing
meta-analysis for lipid metabolites due to
varying analytical resolution of the molec-
ular species on different metabolomics
platforms (Supplementary Table 4).

We pooled risk estimates for the asso-
ciation between specific metabolites and
risk of incident type 2 diabetes using ran-
dom-effects models. For the meta-analy-
ses, we interpreted ORs, RRs, and HRs as
relative risk. We fitted models using a
restricted maximum likelihood approach,
which is recommended over the tradi-
tional DerSimonian-Laird method (13).
We corrected P values for multiple testing

via false discovery rate (FDR) and consid-
ered FDR-corrected P < 0.05 to be statis-
tically significant.

Heterogeneity between studies was
assessed using T2 and /* statistics (14),
with an /? value of 50% indicating sub-
stantial heterogeneity. As no guideline
for interpretation of 72 exists in litera-
ture, we selected a cutoff point of 0.10
based on a previous empirical study (15).
To examine potential sources of heteroge-
neity, we stratified meta-analyses of =10
studies by biospecimen (plasma/serum),
study location (U.S./Europe/Asia), fasting
status (fasted/nonfasted), metabolomics
platform (MS-based/NMR), fasting glu-
cose adjustment (yes/no), and follow-up
length (=7/>7 vyears). Additionally, we
used meta-regressions to examine the
number of carbons and double bonds in
lipid metabolites as potential determi-
nants of the type 2 diabetes risk associa-
tion. According to Cochrane Handbook for
Systematic Reviews of Interventions rec-
ommendations, we evaluated the pres-
ence of publication bias through visual
inspection of funnel plots and Egger’s
linear regression test for comparisons
where =10 studies were available
(14). All analyses were conducted in R
(version 3.6.0; R Foundation for Statis-
tical Computing).

Data and Resource Availability
The data set supporting results of meta-
analyses presented in this study is avail-
able in Supplementary Material.

RESULTS

Literature Search Results

The study selection process is outlined in
Fig. 1. The database search revealed
4,595 records. Nineteen prospective stud-
ies from the primary version of this
review and two additional studies were
identified by hand search of references.
After deduplication of searches, 3,508
records were screened and 3,364 records
were removed based on title and abs-
tract, leaving 144 reports for full-text
examination. We excluded 83 reports for
reasons indicated in Supplementary Table
5. The present systematic review
finally included 61 reports (3-10,16—
68); 14 reports were already included
in the previous version of this review,
and 47 new reports have been added
to the current update.

Morze and Associates

Study Characteristics

We summarized the characteristics of
the included studies in Supplementary
Table 6. We identified 61 reports with
data from 44 original prospective obser-
vational studies with 71,196 participants,
of whom 11,771 developed type 2 diabe-
tes. Twenty-six of the included studies
were conducted in Europe, 10 in Asia,
and 8 in North America. The average fol-
low-up time ranged from 3.2 to 21.2
years (median 7.0 years). Most reports
(n = 60) were of high quality (median
quality score 5.0), and one of the
included studies was judged to be of low
quality (=3 points).

In most studies investigators used
MS coupled to different chromatography
techniques to generate the metabolomics
data (n = 37). In six studies an NMR plat-
form was used and in one study a combi-
nation of MS and NMR platforms.
Respectively, in 30 and 14 studies tar-
geted and nontargeted approaches were
used for metabolite measurements. Plas-
ma samples were used in 21 studies and
serum in 24 studies (two studies included
evaluation of metabolites in both biospe-
cimens). Urine samples were used in two
studies.

Studies on Plasma and Serum
Metabolites

Overall, we extracted the relative risk
estimates for 4,416 metabolites or met-
abolic features measured in plasma or
serum (n = 60 reports). We identified
and pooled estimates for 412 unique
metabolites from 37 metabolic path-
ways (Fig. 2).

Amino Acids

We performed a meta-analysis for 62
amino acids and amino acid derivatives
(Fig. 3 and Supplementary Table 7); 22
were associated with type 2 diabetes
risk (FDR-corrected P < 0.05). Higher
circulating levels of BCAAs, including iso-
leucine (RR for a 1-SD increase [RRy.sp)
1.54 [95% Cl 1.36-1.74], / = 88%, 7> =
0.058, n = 19 studies), leucine (RRysp
1.40 [1.29-1.52), * = 74%, 7> = 0.027,
n = 23), and valine (RRy.sp 1.40 [1.25—
1.57], # = 86%, T2 = 0.047, n = 19),
were associated (FDR-corrected P < 0.05)
with higher risk of type 2 diabetes. Also,
five BCAA-related metabolites (2-hydroxy-
3-methylbutyrate, 2-hydroxyisocaproate
3-hydroxy-2-ethylpropionate, 3-hydroxyi-
sobutyrate, and 3-hydrooxyvalerate) were
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Records identified through update of
database searching (from 1 August 2015
up to 6 March 2021)

Pubmed (n = 1,723)
Embase (n = 2,872)
Total (n = 4,595)

Diabetes Care Volume 45, April 2022

Total (n=21)

\

Reports from prospective studies included in

the primary version of this review (n = 19)
Additional records identified
through other sources (n = 2)

\

Records screened after duplicate removal

Records excluded after screening
for title/abstract

(n=3508)

\

Full-text articles assessed

Y

(n = 3,364)

Full-text articles excluded, with
reasons (n = 83)
Adolescent population (n = 1)

for eligibility
(n =144)

\

Reports identified as eligible for

Previously included (n = 14)
Newly included (n = 47)

inclusion
(n=61)

\/

Cross-sectional/Case-control
design (n =13)
Conference abstracts (n = 23)
Duplicated report (n = 9)
Metabolomics assessment not
perfomed (n=7)
Multivariable analysis results only
(n=7)

Not relevant outcome for
extraction (n = 22)
Review (n =1)

Figure 1—Flowchart presenting information on the search and selection of studies included in the updated systematic review on metabolomics

and incident type 2 diabetes.

associated with higher type 2 diabetes
risk (increase of 18-36%, 1> = 0-69%,
72 = 0.000-0.016, n = 2-5).

Two AAAs, phenylalanine (RR1.sp 1.30
[95% Cl 1.16-1.45], * = 87%, T =
0.044, n = 18) and tyrosine (RRysp 1.35
[1.22-1.49], I* = 81%, 7> = 0.031, n =
18), were associated with a higher type
2 diabetes risk. Moreover, higher ala-
nine (RRy.sp 1.32 [1.20-1.44], * = 79%,
72 0.030, n = 21) and glutamate
(RRysp 1.38 [1.20-1.60], /> = 91%, 72 =
0.058, n = 13) levels were associated
with higher type 2 diabetes risk. An
inverse association was observed for glu-
tamine and type 2 diabetes risk (RR;isp
0.84 [0.75-0.94], * = 89%, 7> = 0.051,
n 19). Higher levels of glycine were
also linked to lower risk (RRy_sp 0.79
[0.68-0.90], I* = 89%, v = 0.071,

n = 18), while 2-hydroxybutyrate was
associated with higher risk (RRy.sp
1.45 [1.24-1.70], I* = 85%, > =
0.040, n = 8). Methionine was associ-
ated with higher risk (RRysp 1.10
[1.04-1.17], I* = 46%, 7> = 0.005,
n 12) and its metabolite, spermi-
dine, with lower risk (RR;.sp 0.90
[0.84-0.96], I = 0%, T2 = 0.000, n
3). Both lysine (RRysp 1.10 [1.05-1.15],
I* = 0%, ™ = 0.000, n = 11) and 2-ami-
noadipate (RRysp 1.33 [1.18-1.51],
0%, T = 0.000, n = 3) were associated
with higher type 2 diabetes risk. Two
metabolites of tryptophan metabo-
lism were associated with type 2 dia-
betes: indoleproprionate, with lower
risk (RRy.sp 0.82 [0.74-0.92], I* =
67%, > = 0.014, n = 8), and indole-
lactate (RRy_sp 1.13 [1.06-1.21], /> =

0%, T2 = 0.000, n = 3), with higher
risk.

Carbohydrates and Energy
Metabolism

In total, 19 carbohydrates and energy-
related metabolites were included in
meta-analysis (Fig. 3 and Supplemen-
tary Table 7), and 3 of them were
associated with type 2 diabetes risk
(FDR-corrected P < 0.05). For carbohy-
drate metabolites, we found that higher
mannose (RRysp 2.58 [95% Cl 1.59-
4.20], > = 87%, > = 0.157, n = 3) and
trehalose (RRy.sp 1.17 [1.09-1.25], * =
0%, 7> = 0.000, n = 2) levels were asso-
ciated with higher type 2 diabetes risk.
One glycolysis/gluconeogenesis metabolite,
pyruvate (RRysp 1.24 [1.10-1.40], P =


https://doi.org/10.2337/figshare.18857807
https://doi.org/10.2337/figshare.18857807

diabetesjournals.org/care

Morze and Associates

1017

O\
) 8)
9‘509 08
N ®

200 50 A0
180 ‘1Q0 aSso(:\a\\O\'\

Figure 2—Chord diagram illustrating groups of metabolites identified in the current review. The thickness of ribbons and sectors is proportional to
the number of metabolites. Red, gray, and blue colors correspond, respectively, with metabolites positively, not, and inversely associated with
type 2 diabetes risk. AA, amino acids; AcylC, acylcarnitines; Bile, bile acids; CHO, carbohydrates; FA, fatty acids; (L)PC, (lyso)phosphatidylcholine;
(L)PE, (lyso)phosphatidylethanolamine; L(P1), (lyso)phosphatidylinositol; Org, organic compounds; T2D, type 2 diabetes.

74%, v = 0.027, n = 11), was also asso-
ciated with higher type 2 diabetes risk.

Acylcarnitines

We performed meta-analysis for 49
acylcarnitines and related metabolites
(Fig. 4 and Supplementary Table 7), and
6 of them were significantly associated
with type 2 diabetes risk (FDR-corrected
P < 0.05). Trimethyllysine, a precursor
of carnitine, was associated with higher
type 2 diabetes risk (RR1sp 1.25 [95% CI
1.15-1.35], * = 0%, 7 = 0.000, n = 4).
Higher levels of short-chain acylcarnitines
C4-DC (RRysp 1.10 [1.02-1.18], * = 0%,
72 = 0.000, n = 4), C4-OH (RRy.p 1.09
[1.02-1.16], # = 0%, T = 0.000, n = 6),
C5 (RRysp 1.13 [1.08-1.18], * = 18%,
72 = 0.001, n = 14), and C5-OH (RRy.sp
1.14 [1.03-1.26], ” = 58%, 7> = 0.008,
n = 6) were associated with higher type
2 diabetes risk. Regarding medium-chain

acylcarnitines, higher C8:1 was associated
with higher type 2 diabetes risk (RRysp
1.16 [1.07-1.25], * = 39%, 1> = 0.003,
n = 5). After pooling of specific com-
pounds to length groups, higher levels of
short-chain and long-chain acylcarnitines
were associated with 6% and 7% higher
type 2 diabetes risk (P = 0.049 and P =
0.016, respectively), and no association
was found for the medium-chain group
(Supplementary Table 8).

Glycerolipids

From the triacylglycerol (TG) class, we
performed meta-analysis for 52 com-
pounds (Fig. 4 and Supplementary Table
7). Higher levels of 27 of them were
associated (FDR-corrected P < 0.05)
with higher type 2 diabetes risk (inc-
rease of 21-78%, I° = 0-93%, 7> =
0.000-0.068, n = 2-8). Among 14 diac-
ylglycerols (DGs) included in meta-analysis,

9 were associated with higher type 2 dia-
betes risk (increase of 17-46%, P =0
88%, > = 0.000-0.029, n = 2-9). Two
out of three monoacylglycerols were
linked to higher type 2 diabetes risk
(increase of 16—39%, P = 0-72%, v =
0.000-0.008, n = 2-3). Moreover, there
was a significant trend of lower type 2
diabetes risk with a higher number of car-
bon atoms in TGs (P < 0.001) and double
bonds in TGs and DGs (P < 0.001 and
P = 0.008) (Supplementary Table 8).

Glycerophospholipids

We performed meta-analysis for 53 pho
sphatidylcholines (PCs), out of which 2,
PC 38:3 (RRysp 1.19 [95% CI 1.09-1.29],
* = 75%, v = 0.008, n = 7) and PC
30:0 (RRy.sp 1.07 [1.03-1.12], # = 0%,
7 = 0.000, n = 5), were associated
(FDR-corrected P < 0.05) with a higher
type 2 diabetes risk (Fig. 4 and


https://doi.org/10.2337/figshare.18857807
https://doi.org/10.2337/figshare.18857807
https://doi.org/10.2337/figshare.18857807
https://doi.org/10.2337/figshare.18857807
https://doi.org/10.2337/figshare.18857807

1018 Metabolomics and Type 2 Diabetes Diabetes Care Volume 45, April 2022
|

AAA metabolism N  SRR(95%CI) I’

Hydrocinnamate , == | | } 3 0.86(0.80;0.93) O

Phenylalanine ! — ! ! ! 18 1.30(1.16; 1.45) 87

Tyrosine ! —— : ] ! 18 1.35(1.22;1.49) 81
Alanine, aspartate and glutamate metabolism

Alanine —— 21 1.32(1.20;1.44) 79

Glutamine

I | I |
I | I |

Glutamate ! —— ! ! ! 13 1.38(1.20; 1.60) 91
I —— ! ! ! 19 0.84(0.75;0.94) 89

BCAA metabolism

2-hydroxy-3-methylbutyrate | — 1 : 1 3  1.18(1.04; 1.34) 0
2-hydroxyisocaproate | —— | | | 3 122(1.06;139) 0
3-hydroxy-2-ethylpropionate | —— | | | 2 1.36(1.20;1.55) 0
3-hydroxyisobutyrate | — | | | 5 1.36(1.18;1.56) 69
3-hydroxyisovalerate | — | | | 2 119(1.04;,137) 0
Isoleucine ! —— ; ; 19 1.54(1.36;1.74) 88
Leucine | —— ! ! ! 23 1.40(1.29;1.52) 74
Valine | — | | | 19 1.40(1.25;1.57) 86

Choline metabolism
Betaine | —e— | : 1 1 10 0.82(0.76;0.89) 49

Glycine, serine and threonine metabolism

2-hydroxybutyrate ! —_— 8 1.45(1.24;1.70) 85

| I |
| 1 |
Glycine = ; | | 18 0.79(0.68; 0.90) 89

0.7 1.0 2.0 3.0 4.0
Summary RR (95% CI)

Glycolysis/gluconeogenesis and TCA cycle N SRR (95% CI)
Pyruvate | R i i ? 11 1.24(1.10;1.40) 74

I I I |

Lysine metabolism

Aminoadipate —_—

| 3 133(1.18;151) O
Lysine ! -

11 1.10(1.05;1.15) 0

Methionine metabolism

Methionine | —— j | ! 12 1.10(1.04; 1.17) 46

Spermidine ! —— ! ! ! 3 0.90(0.84; 0.96) 0
Mono-, di- and oligosaccharides

Mannose | 1 * \ : 3 258(1.59;4.20) 87

Trehalose j —— ! ! ; 2 117 (1.09; 1.25) 0

Tryptophan metabolism

Indolelactate J ——

Indolepropionate A

3 113(1.06;121) 0
8 0.82(0.74;0.92) 67

Xenobiotics, food components
2-hydroxyisobutyrate ! = = ! ! ! 3  1.33(1.22; 1.45) 0

0.7 1.0 2.0 3.0 4.0
Summary RR (95% CI)

Figure 3—Summary relative risk (SRR) with corresponding 95% Cls for the association between 1 SD increase in levels of amino acids and other
organic compounds and risk of incident type 2 diabetes. N, number of studies; TCA, tricarboxylic acid.

Supplementary Table 7). Inverse associ- (decrease of 11-22%, I* = 0-87%, T2 = meta-analysis, 13 showed an associ-
ations with type 2 diabetes risk were 0.000-0.019, n = 2-3). Of 20 lysophos- ation with lower type 2 diabetes risk
found for higher levels of 10 PCs phatidylcholines (LPCs) included in (decrease of 11-31%, I> = 0-76%,
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7 = 0.000-0.015, n = 2-13). Out of
12 pooled phosphatidylethanolamines
(PEs), 6 were associated with higher type
2 diabetes risk (increase of 17-41%, P =
0-83%, T = 0.000-0.026, n = 2-4). In
the phosphatidylinositol (PI) class (nine
metabolites included for meta-analysis),
Pl 38:3 was associated with higher (RRy.sp
1.13 [1.05-1.21], # = 0%, 7> = 0.000,
n = 2) and Pl 38:5 with lower (RRisp
0.85 [0.80-0.92], # = 0%, v> = 0.000

n = 2) type 2 diabetes risk. The risk esti-
mates tended to be lower with higher
numbers of carbon atoms in PCs (Pyeng <
0.001) and LPCs (Piend 0.006) and
higher numbers of double bonds in PCs
(Pirena <0.001) and PIs (Pyeng = 0.034)
(Supplementary Table 8).

Sphingolipids
We performed meta-analysis for 30 SMs,
of which 5 were significantly (FDR-
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corrected P < 0.05) associated with type
2 diabetes risk (Fig. 4 and Supplementary
Table 7). An association with lower type
2 diabetes risk was observed for two
compounds, SM 36:3 (RRysp 0.86 [95% Cl
0.79-0.93], P = 44%, 7 = 0.004, n = 6)
and SM 44:2 (RRysp 0.88 [0.81-0.96],
P = 23%, > = 0.001, n = 2). Three
SMs, 34:0 (RRysp 1.15 [1.10-1.21], P* =
0%, 7> = 0.000, n = 3), 39:1 (RRy.¢p 1.11
[1.03-1.19], # = 0%, > = 0.000, n = 2),

N

SRR (95% Cl)

N
4 110(1.02;1.18) 0
6 1.09(1.02;1.16) 0
4 1.13(1.08;1.18) 18
6 1.14(1.03;1.26) 58
5 1.16(1.07;1.25) 39
4 125(1.15,135) 0

N

5 1.17(1.05;1.29) 63
2 115(1.07;123) 0
2 118(1.10;1.26) 0
2 117(1.08,127) 0
4 1.11(1.04;1.20) 15
4 115(1.05,1.26) 51
3 111(1.051.18) 0
3 1.10(1.03;117) 0
3 1.11(1.03;1.19) 0
3 1.09(1.03;117) 0
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2 1.36(1.06;1.74) 88
3 117(1.10;125) 0
5 1.47(1.22;,1.77) 66
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5 1.30(1.09;155) 87
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2 1.25(1.14;1.36) 39
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8 0.80(0.74;0.85) 18
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13 0.89(0.82;0.96) 76

13 0.79(0.75;0.83) 24
0.74 (0.69; 0.79) 58
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Figure 4—Summary relative risk (SRR) with corresponding 95% Cls for the association between 1-SD increase in levels of lipid metabolites and risk of inci-
dent type 2 diabetes. N, number of studies; CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; HexCer, hexosylceramide.
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and 41:1 (RRygp 1.23 [1.14-1.33], P =
0%, 7 = 0.000, n = 4), were associated
with higher type 2 diabetes risk. Among
25 ceramides (Cer) included in meta-anal-
ysis, 9 were positively associated with
incident type 2 diabetes (increase of 9—
18%, P = 0-51%, > = 0.000-0.004,
n = 2-4). The SM-associated type 2 dia-
betes risk tended to decrease with higher
numbers of double bonds (Pyenq <
0.001) (Supplementary Table 8).

I
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I

+++

| ——

1.0
Summary RR (95% Cl)

Nonesterified Fatty Acids

Among 23 nonesterified fatty acids
included in meta-analysis (Fig. 4 and
Supplementary Table 7), two were associ-
ated with type 2 diabetes risk (FDR-
corrected P < 0.05). Adrenate (C22:4)
(RRy.p 1.36 [95% CI 1.11-1.66], * = 0%,
72 = 0.000, n = 2) was associated with
higher type 2 diabetes risk, and 3-carbox-
y-4-methyl-5-propyl-2-furanpropanoate
was associated with lower type 2
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0.86 (0.79; 0.93) 44
1.11(1.03;1.19) 0
1.23(1.14;1.33) 0
0.88 (0.81; 0.96) 23
1.33(1.23; 1.44) 22
129 (1.22;1.37) 0
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1.31(1.21;1.43) 63
1.26 (1.09; 1.47) 83
124 (113;1.36) 0
1.38(1.30;1.47) 0
1.51(1.30; 1.75) 75
1.55(1.38; 1.73) 80
152 (1.36; 1.70) 82
1.37 (1.14; 1.66) 93
1.26 (1.13; 1.39) 55
1.25(1.13;1.37) 0
1.38(1.25;1.53) 0
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diabetes risk (RRi.sp 0.80 [0.70-0.92],
> = 0%, T2 = 0.000, n = 4).

Other Metabolites

Among seven bile acids included in meta-
analysis (Figs. 3 and 4 and Supplementary
Table 7), only glycocholate level was
linked (FDR-corrected P < 0.05) to a
higher type 2 diabetes risk (RRy.sp 1.17
[95% Cl 1.05-1.29], P = 63%, 7
0.008, n = 5). Among four choline-related
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metabolites, betaine was associated with
a lower type 2 diabetes risk (RRy.sp
0.82 [0.76-0.89], I* = 49%, *° =
0.007, n = 10).

Inconsistency and Publication Bias
We detected notable differences in some
of the metabolite-associated type 2 dia-
betes risk estimates in analysis stratified
by geographical location (studies based in
the U.S., Europe, or Asia) or fasting status.
Other subgroup analyses were generally
consistent with the results from the pri-
mary analyses (Supplementary Tables 9—
14). For BCAAs, AAAs, betaine, pyruvate,
and tryptophan, moderate funnel plot
asymmetry (Supplementary Fig. 1), con-
firmed by Egger’s test (Supplementary
Table 15), was observed, suggesting pos-
sible publication bias.

Studies on Urine Metabolites

Friedrich et al. (9) conducted a targeted
metabolomics assessment using *H NMR
in urine samples of 2,709 subjects from
northeastern Germany and evaluated the
association between measured metabo-
lites and type 2 diabetes incidence after 5
years of follow-up. Results indicated a
marked difference in the type 2 diabetes
risk associations of the urinary metabo-
lites between men and women. Only
urine glucose was robustly associated
with a higher type 2 diabetes risk in both
sexes. Svingen et al. (10) measured urine
levels of five choline-related metabolites
in a hospital-based cohort of patients
with suspected stable angina. Three
metabolites, betaine, N,N-dimethylglycine,
and sarcosine, were associated with a
19-25% increased risk of incident type 2
diabetes after an average of 7.5 years of
follow-up.

DISCUSSION

This systematic review and meta-analy-
sis provides an updated overview and
quantitative summary of the associa-
tions between single baseline metabo-
lite levels and subsequent risk of type 2
diabetes from high-throughput metabo-
lomics approaches in prospective human
population studies. In comparison with
the previous version of this meta-analysis
published in 2016, we included a total of
61 reports, including 47 additional reports
(14 reports were included in the original
version), and performed meta-analysis

for 403 additional metabolites (vs. 9
metabolites in the original version), repre-
senting many metabolic pathways, includ-
ing carbohydrate, acylcarnitine, and lipid
metabolism. Our updated meta-analysis
reflects impressive technological advances
and the increasing availability of metabo-
lomics applications in prospective cohorts,
generating a multitude of putative bio-
markers of type 2 diabetes risk.

Mechanisms Explaining the Link
Between Metabolome and Diabetes
The findings of the present meta-analy-
sis confirm our previous findings on the
strong positive prospective associations
between BCAAs and type 2 diabetes risk.
Moreover, we observed similar results for
branched-chain keto acids and further
derivates of BCAA turnover. BCAAs were
the first and, so far, the most widely
investigated group of metabolites in the
context of type 2 diabetes development
(27,65). BCAAs might impair insulin signal-
ing by interaction with mTOR kinase, and
accumulation of their metabolites may
lead to increased insulin secretion
and pancreatic B-cell exhaustion (69,70).
Moreover, a possible causal role of BCAAs
in type 2 diabetes development was also
recently supported by findings from Men-
delian randomization studies (27,71).
BCAAs are critical markers of the meta-
bolic alterations that precede type 2 dia-
betes incidence, and our meta-results
corroborate their robust and strong asso-
ciations with type 2 diabetes risk.

In addition, our meta-analysis indicated
robust associations of other amino acids
with increased (AAAs, alanine, glutamate,
lysine, and methionine) or decreased (glu-
tamine and glycine) type 2 diabetes risk.
AAAs, phenylalanine, and tyrosine are
precursors of dopamine and levodopa,
which might have an anti-incretin effect,
decreasing cell uptake of glucose. The
observed inverse associations of glycine
with type 2 diabetes risk can potentially
be explained by improved insulin sensitiv-
ity (59). Glutamate might promote oxida-
tive damage and dysfunction of (3-cells—
the opposite of glutamine effects, includ-
ing reduction of postprandial glycemia
and secretion of glucagon-like peptide 1
(26). Both lysine and its metabolite, 2-ami-
noadipate, were previously linked with
unfavorable cardiometabolic status and
impaired insulin sensitivity (66). A deterio-
rating effect of 2-aminoadipate on insulin
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signaling through interaction with AKT
kinase was proposed in a recent study
using a mouse model (72). Moreover,
results of studies in rodent models sug-
gested that dietary methionine restriction
can improve insulin sensitivity through
elevated hepatic secretion of FGF-21 (73).

To our knowledge, this is the first
comprehensive meta-analysis of lipid
metabolites in relation to type 2 diabe-
tes risk. Meta-analysis results showed a
higher risk of type 2 diabetes associated
with higher levels of lipid metabolites in
the classes of glycerolipids (DGs and
TGs), Cer, PEs, and selected acylcarni-
tines. Lower type 2 diabetes risk was
primarily associated with lipid metabo-
lites in the PC and LPC classes. Excessive
lipids supply and reduction in mito-
chondrial oxidative function impair
[3-oxidation, leading to accumulation of
DGs, Cer, and acylcarnitines (74). Stud-
ies reported correlations of Cer with
obesity, insulin resistance, and disturbed
glucose metabolism (16,19). Moreover,
inhibition of Cer synthase-6 improved
glucose tolerance and insulin sensitivity
in genetically modified mouse models
(75). The role of acylcarnitines in the
development of diabetes may depend
on their acyl chain length. Short-chain
acylcarnitines are linked to BCAA catab-
olism, while long-chain compounds may
reflect incomplete fatty acid oxidation
(5). Indeed, in our meta-analysis, we
observed that BCAA catabolism-related
individual acylcarnitines and the sum of
short-chain acylcarnitines were associ-
ated with higher type 2 diabetes risk.
Overall, metabolic profiling captures the
complex relationship between dysregu-
lated lipid metabolism and type 2 diabe-
tes risk.

While risk estimates included in meta-
analyses of lipid metabolites were derived
from prospective studies with sufficient
statistical power, the small number of
studies available per comparison (two to
five on average) precluded exploring
potential sources of heterogeneity (i.e.,
study population, analytical platform, bio-
specimen, or covariate adjustment set).
Moreover, due to the use of different lipi-
domic protocols, studies provided differ-
ent depths of lipid profiling. Therefore, we
generalized annotation of lipid metabolites
to the lipid species level, i.e., the total
number of carbon atoms and double
bonds, and disregarded the more detailed
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information on single fatty acids and iso-
mers provided by the most advanced
platforms. Altogether, our meta-analysis
confirms significant advances as well as
critical gaps in the evidence base on com-
prehensive lipid profiles and type 2 diabe-
tes risk.

In this meta-analysis, we observed/
detected considerable between-study
heterogeneity for type 2 diabetes risk
associations of many metabolites. We
considered biospecimen, study location,
fasting status, metabolomics platform,
fasting glucose adjustment, and follow-
up length as potential sources of het-
erogeneity. The results of these sub-
group analyses were largely consistent
with the primary analyses results. How-
ever, stratified analyses were limited to
comparisons with =10 available studies,
and these factors may still explain het-
erogeneous risk associations of metabo-
lites with fewer available studies. Race
and ethnicity can influence metabolite
levels through genetic factors. We found
a nonequal representation of studies
from different geographical locations and
potential differences in metabolite associ-
ations across those locations. Therefore,
studies investigating potential heteroge-
neity of metabolite—type 2 diabetes risk
associations across different races and
ethnicities are warranted.

With respect to biospecimens, simul-
taneous analysis of some metabolites in
serum and plasma revealed higher con-
centrations in serum samples (76). How-
ever, we observed a general consistency
of associations for the same metabolites
assessed in plasma and serum. Most
included studies used overnight fasted
blood samples. For most metabolites,
the biological stability within the same
individuals over months to years was
moderately higher in fasted than non-
fasted samples (77,78). Specifically, the
use of nonfasting samples for lipid meas-
urements is frequently debated; however,
the performance in risk prediction was
comparable with that of using lipid meas-
urements from fasting samples (79). App-
lication of different metabolomics plat-
forms leads to some differences in the list
of analyzed metabolites. This issue influ-
ences the comparability across platforms
and therefore may have an impact on the
number of studies per comparison as
well as the degree of statistical heteroge-
neity. Due to the small number of studies,
we could not stratify our analysis on

platform providers, and a systematic
examination of the cross-platform compa-
rability is warranted (80).

Over the years, the research frame-
work evolved from studies on a limited
number of selected metabolites and path-
ways into comprehensive metabolome-
wide investigations. Some studies sug-
gested that the addition of metabolites to
models including traditional risk factors
moderately improves the ability to predict
incident type 2 diabetes (30,33,39-41).
However, such risk prediction models inv-
olving metabolomics measures require
further optimization and validation before
they can be introduced into clinical prac-
tice. While some groups of metabolites,
like BCAAs and AAAs, have been widely
studied and consistently associated with
type 2 diabetes risk, others (like lipid
metabolites) still lack larger numbers of
comparable high-quality cohort studies.
Future pooled analyses of cohorts with
individual-level data may allow examina-
tion of other potential sources of hetero-
geneity, such as sex, age, race/ethnicity,
and time to disease incidence, that we
could not address based on published
results. Future studies combining metabo-
lomics with genome, proteome, and gut
microbiota will likely further elucidate the
role of the identified metabolites in the
pathogenesis of type 2 diabetes. In our
systematic review, we identified only
two studies investigating individual
urine metabolites and type 2 diabetes
risk, indicating the need for further
sufficiently powered studies.

Strengths and Limitations

To the best of our knowledge, our study
provides the most comprehensive meta-
evidence on the associations of single
metabolites with type 2 diabetes risk. This
systematic review’s particular strength
is a large number of included studies
conducted in different populations and
adopting metabolomics profiling using dif-
ferent biospecimens and analytic techni-
ques. We have performed meta-analysis
for a large number of metabolites and
conducted several stratified analyses. In
addition, we corrected the P values for
multiple testing. Narrowing the review’s
focus to prospective studies allowed us to
limit the influence of reverse causality
and selection bias, and most of the
included studies were evaluated to be of
high quality.

Diabetes Care Volume 45, April 2022

There are several limitations to be con-
sidered. First, our search covered only
two databases. However, relevant studies
are usually indexed in those databases.
Second, the majority of metabolites for
which we performed meta-analysis sho-
wed considerable between-study hetero-
geneity. As discussed above, we explored
potential sources of heterogeneity by
conducting extensive subgroup analyses,
which were largely in line with the pri-
mary analysis results. However, we could
not systematically explore the effect of
different adjustment sets because a stan-
dardized modeling strategy across the
underlying studies was lacking, and we
also could not examine sex as a potential
effect modifier due to the scarcity of sex-
specific risk estimates. Third, the observa-
tional nature of the studies included in
meta-analysis impedes inferences about
potential causal mechanisms underlying
the observed type 2 diabetes risk associa-
tions. However, Mendelian randomization
studies supported a possible causal role
of BCAAs in type 2 diabetes, but similar
investigations have not been conducted
for other metabolites (27,71). We only
considered evidence from metabolomics
studies, which implies that we disre-
garded potentially relevant data from tar-
geted assays for selected metabolites by
design. Finally, misclassification of the
reports during study selection and pub-
lication bias are essential sources of bias
for evidence summaries, which we miti-
gated through independent review of the
included studies by three authors and
detailed analyses of publication bias.

Summary

Taken together, the present systematic
review and meta-analysis provides an up-
dated overview of the associations bet-
ween a large number of metabolites and
incident type 2 diabetes. We performed
meta-analysis for >400 serum and plas-
ma metabolites in relation to the risk of
type 2 diabetes, detecting 123 significant
risk associations. The type 2 diabetes risk—
associated compounds reflect dysregula-
tion of a variety of metabolic pathways
and processes, such as proteolysis, gluco-
neogenesis, mitochondrial function, de
novo lipogenesis, and fatty acid oxidation.
Low availability of studies applying urine
metabolomics suggests a gap for future
studies. Further research is also war-
ranted to understand the underlying
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biological processes and translate the
robust type 2 diabetes risk associations of
multiple metabolites into clinically appli-
cable biomarkers.
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