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Pioneer transcription factors are associated 
with the modulation of DNA methylation 
patterns across cancers
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Abstract 

Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant 
DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To 
shed light on the underlying molecular mechanism driving this process, we hypothesised that aberrant methylation 
patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining 
DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between 
TF binding and DNA methylation in 19 cancer types. We performed emQTL (expression–methylation quantitative trait 
loci) analyses independently in each cancer type and identified 13 TFs whose expression levels are correlated with 
local DNA methylation patterns around their binding sites in at least 2 cancer types. The 13 TFs are mainly associated 
with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulat-
ing chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation 
is precluded across cancers at CpGs lying in genomic regions enriched for TF binding signatures associated with SP1, 
CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed 
at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals 
were derived from both cancer and tumor-infiltrating cells. As a case example, we experimentally confirmed that 
FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. 
Finally, we reported physical interactions between FOXA1 with TET1 and TET2 both in an in vitro setup and in vivo at 
physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local dem-
ethylation in cancer cells.
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Introduction
Chromatin and DNA modifications act as molecular 
stamps associated with active and inactive regulatory sta-
tus of corresponding genomic regions, which are crucial 
for proper homeostasis and development [1, 2]. Among 
the various possible DNA modifications [3], the addition 
of a methyl group to the 5th carbon of cytosine leads to 

the 5-methylcytosine (5mC) mark. The 5 mC mark (here-
after referred to as DNA methylation) is usually associ-
ated with the transcriptional silencing of cis-regulatory 
elements, such as promoters or enhancers [4, 5]. As 
aberrant DNA methylation patterns are linked to vari-
ous diseases, such as cancers [6–8], it is critical to under-
stand the underlying molecular mechanisms driving this 
process.

Covalent DNA methylation at cytosines (mainly in the 
CpG context) is acquired by the addition of 5-methylcy-
tosine catalysed by the DNA methyltransferase (DNMT) 
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enzymes. DNA demethylation is carried out by the 
Ten–Eleven Translocation (TET) proteins in successive 
hydroxylation reactions resulting in 5mC derivatives, 
which are removed by thymine DNA glycosylase through 
the base excision repair pathway (reviewed in [9]). As 
DNMTs and TETs bind DNA in a limited sequence-
specific manner, their recruitment to specific genomic 
regions has been reported to be driven by interactions 
with transcription factors [10–13].

Transcription factors (TFs) are proteins that recognize 
and bind cis-regulatory regions (promoters and enhanc-
ers) at their TF binding sites (TFBSs) through sequence-
specific TF–DNA interactions to regulate transcription 
[14]. Through their binding at cis-regulatory regions, 
most TFs recruit co-factors to activate or repress the 
transcription of target genes [14, 15]. While most of the 
TFs engage with open chromatin regions at their TFBSs, 
a specific class of TFs, the pioneer TFs, have the ability 
to engage with nucleosome-bound chromatin independ-
ent of other factors. Pioneer TFs are believed to be the 
first factors to engage with target chromatin regions and 
associate with compact chromatin to facilitate the bind-
ing of other additional factors and local epigenetic modi-
fications [16–18]. For instance, changes across myeloid 
cell fate transitions are marked with the priming of inac-
cessible enhancers by pioneer TFs, which leads to locally 
increased chromatin accessibility and DNA methylation 
loss [19].

Several TFs have been reported to physically interact 
with DNMTs and/or TETs and are, therefore, likely to 
recruit these enzymes to specific genomic regions. The 
leukemogenic PML–RAR fusion protein has been shown 
to recruit DNMTs, while RUNX1 recruits the DNA dem-
ethylation machinery [20–22]. Using co-immunoprecip-
itation in HEK293T cells and endogenous IP in LNCaP 
cells, FOXA1 was found to physically interact with TET1 
and promote the co-occupancy of TET1 in FOXA1 occu-
pied regions [23].

To investigate the association between TF binding and 
DNA demethylation at large scale, Suzuki et  al. devel-
oped a screening system combined with TF  binding 
motif enrichment at differentially methylated regions 
after ectopic expression of selected TFs. This strategy 
identified a set of developmental (cell fate determining) 
TFs that were associated with binding site-directed DNA 
demethylation [24]. Another high-throughput screen-
ing strategy investigated the interplay between TF bind-
ing and DNA methylation for hundreds of TFs [25]. The 
strategy relies on the integration of a sequence backbone 
with known methylation status but containing diverse 
TF  binding motifs followed by bisulfite sequencing of 
PCR amplicons. The study revealed pioneer TFs that can 
induce local DNA demethylation and pioneer TFs whose 

binding have a protective effect against de novo DNA 
methylation [25]. Using a computational approach, the 
ELMER (Enhancer Linking by Methylation/Expression 
Relationships) tool allowed for the large-scale identifica-
tion of transcriptional enhancers and their target genes 
based on DNA methylation data (at enhancers) and gene 
expression [26]. Motif enrichment analysis at the enhanc-
ers predicted pan-cancer by ELMER inferred TFs that 
could act as upstream regulators of DNA methylation 
patterns at these enhancers [26]. Similarly, the TENET 
framework identified cancer-specific hypo- and hyper-
methylated CpGs in putative enhancers before link-
ing them with candidate upstream regulators through 
methylation–expression correlation [27]. Using this 
strategy, TENET predicted > 1200 TFs potentially regu-
lating enhancer networks in breast, prostate, and kidney 
cancers [27]. Despite continuous efforts to unravel the 
molecular mechanism by which DNA methylation is 
regulated, the current understanding of how DNA meth-
ylation is regulated and its interplay with TF binding in 
cancer patients is limited [19, 22, 24]. We hypothesised 
that a pan-cancer and genome-wide investigation of the 
interplay between TF binding and resulting local DNA 
methylation patterns in cancer genomes could reveal 
key regulatory processes that are critical for an improved 
molecular understanding of cancers.

In this study, we designed a computational approach 
to identify CpGs with DNA methylation level corre-
lated with the expression level of 231 TFs. We further 
assessed the enrichment of these CpGs around TFBSs 
for the corresponding TFs. This TF  binding-centric 
expression–methylation quantitative trait loci (emQTL) 
methodology was applied to 19 cancer types from The 
Cancer Genome Atlas (TCGA) to predict TFs associ-
ated with DNA methylation patterns (emTFs, expres-
sion–methylation TFs). The analyses revealed 13 emTFs 
(33 TF-cancer type pairs) for which an enrichment for 
correlated CpGs around their TFBSs was observed in at 
least 2 cancer types, providing evidence for their poten-
tial role in DNA methylation patterns in cancer patients. 
The pioneer function of these 13 emTFs, which we found 
predominantly associated with DNA demethylation, has 
been demonstrated by previous studies. Furthermore, 
we confirmed the presence of TF binding signatures that 
are discriminative between regulatory regions associ-
ated with varying DNA methylation across patients and 
regions, where de novo DNA methylation is precluded. 
From the list of 13 emTFs, we experimentally investi-
gated the role of FOXA1 in DNA demethylation in breast 
cancer. We observed that FOXA1 knockdown led to an 
increase of DNA methylation at some regions bound by 
FOXA1 in MCF-7 cells. We further reported physical 
interactions between FOXA1 and both TET1 and TET2 
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at physiological levels in MCF-7 cells as well as using 
in vitro GST-pulldown assays.

Results
Prediction of transcription factors associated with DNA 
methylation patterns around their binding sites 
across cancer types
We aimed to unravel the interplay between TF binding to 
the DNA and local DNA (de-)methylation. We hypoth-
esised that the binding of specific TFs to their TFBSs 
would be correlated with local DNA (de-)methylation if 
these factors were associated with DNA modifications. 
By combining DNA methylation (from Illumina 450  K 
arrays) and gene expression data from 19 cancer type 
cohorts from TCGA [28] (Additional file 4: Table S1) with 
high-quality direct TF–DNA interactions (i.e. TFBSs) 
from the UniBind database [29], we assessed the correla-
tion between DNA methylation and TF binding using TF 
expression as a surrogate for TF binding potential at their 
TFBSs. Altogether, we evaluated the expression of 231 
TFs with DNA methylation at CpGs in cancer cohorts of 
59 to 703 patients (Additional file  4: Table  S1). Specifi-
cally, we performed expression–methylation quantitative 
trait loci (emQTL) analyses by computing Spearman cor-
relation coefficients between the expression of the 231 
TFs and methylation level at 376,997 CpGs located close 
to TFBSs in each cancer type independently (see "Materi-
als and methods" section for details and Additional file 4: 
Table S2 for the number of CpGs close to TFBSs for each 
TF). This emQTL computation followed our previously 
published methodology associating CpGs with gene 
expression [8] but was restricted to TFs and CpGs sur-
rounding their binding sites. Note that for each TF, we 
considered all 376,997 CpGs in the emQTL analysis.

For each TF we examined the proportion of the CpGs 
close to its TFBS that were in emQTL with the TF itself; 
the percentages varied significantly between TFs and 
across cancer types (Fig. 1A). In some cancer types, sev-
eral TFs were associated with high percentages of corre-
lated CpGs (e.g. in breast cancer, BRCA, and brain lower 
grade glioma, LGG), while small proportions of CpGs 
were observed for all TFs in other cancer types (e.g. in 
glioblastoma multiforme, GBM, and acute myeloid leu-
kaemia, LAML). We examined whether this variabil-
ity could be explained by the lack of statistical power in 
the emQTL analyses for the cohorts with a lower num-
ber of samples. Indeed, we observed a significant cor-
relation between the number of samples in a cohort 
and the median number of correlated CpG percentages 
(Additional file 3: Fig. S1B). We speculate that the iden-
tification of TFs that could be associated with local DNA 
methylation patterns around their TFBSs is precluded in 
cohorts with smaller sample sizes.

To focus on the TFs for which the binding is most likely 
to have a local effect on DNA methylation, we consid-
ered the TFs associated with the highest percentages of 
correlated CpGs that were especially enriched close to 
their TFBSs. Specifically, we extracted the top 5% of CpG 
percentages from the distribution obtained for all TF-
cancer pairs (Additional file 3: Fig. S1C). In addition, we 
filtered out TFs that did not show a specific enrichment 
of CpGs in emQTL close to their TFBSs. The filtering 
was achieved by assessing the enrichment for correlated 
CpGs around the TF’s TFBSs using Mann–Whitney U 
tests; we retained TFs with p values < 0.01 ("Materials and 
methods" section; Additional file 4: Table S3). This strat-
egy revealed 37 TFs in 12 cancer types (Additional file 3: 
Fig. S1D). We observed consistent association with local 
DNA methylation patterns in at least 2 cancer types for 
13 TFs (Fig.  1B). Even though the 13 TFs were associ-
ated with an enrichment of correlated CpGs close to their 
binding sites, the corresponding CpGs identified in each 
cancer type vary (Additional file 3: Figs. S2, S3). Hereaf-
ter, we refer to these 13 TFs as emTFs (expression–meth-
ylation TFs) and to the correlated CpGs close to their 
TFBSs as emCpGs (expression–methylation CpGs).

Cytosines represented in the Illumina 450  K meth-
ylation array are not distributed evenly throughout the 
genome but mainly localised in proximal promoters 
and gene bodies [30]. Similarly, the TFBSs from UniB-
ind that were considered in this study are also predomi-
nantly found at proximal promoters [31]. We assessed the 
genomic distribution of emCpGs and compared it to the 
complete set of 376,997 CpGs considered (and located 
close to TFBSs). Across cancer types, we observed a 
smaller proportion of emCpGs at proximal promot-
ers than observed with the complete set of CpGs, while 
emCpGs were more frequently found at intronic and 
intergenic regions (Additional file 3: Fig. S4). This obser-
vation suggests that emCpGs are more predominantly 
detected at distal regulatory elements than promoter 
regions.

emTFs are mainly associated with demethylation and are 
enriched for pioneer function
We sought to provide molecular mechanistic insights 
underlying the interplay between emTF binding and local 
DNA methylation modulation around their TFBSs. We 
first investigated the nature of the correlations (positive 
versus negative correlations) between emTFs’ expression 
and DNA methylation at emCpGs. Across cancer types, 
the expression of the emTFs was mainly negatively cor-
related with the level of methylation of the associated 
emCpGs (Fig. 1C; Additional file 3: Fig. S5). The propor-
tion of negatively correlated emCpGs ranged from ~ 1 
to ~ 58% per TF-cohort (mean = 30.7%; median = 32.1%), 
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while the proportion of positively correlated emCpGs 
ranged from ~ 0.3 to ~ 28% (mean = 9.6%; median = 6%). 
These results indicate that, in most cases, higher emTF 
expression is associated with lower CpG methylation 
around their TFBSs, suggesting local DNA demethylation 
through TF binding.

Higher level of DNA methylation is usually associated 
with silenced and inaccessible cis-regulatory regions 
[4, 32]. We speculated that the emTFs would engage 

with these regions of methylated and closed chroma-
tin to trigger demethylation and chromatin accessibility. 
As pioneer TFs have the capacity to engage with closed 
chromatin, we examined if the 13 identified emTFs were 
enriched for such pioneer function. We collected a list 
of pioneer TFs by reviewing the literature (Additional 
file 4: Table S4) [33–42] and found that the emTFs were 
enriched in the list of pioneer TFs (11 out of the 13 
emTFs; Fisher test p value < 9.4e−31; Fig. 1D).

Fig. 1  Identification and analysis of emTFs. A Box plot depicting the fraction of CpGs close to TFBSs for each TF (each point corresponds to a TF in 
a given cohort (columns)) with DNA methylation level correlated with the TF expression. The horizontal blue line represents the 95th percentile of 
the distribution of all fractions (see Additional file 3: Fig. S1C for the distribution). B Upset plot representing the emTF predictions across the cancer 
types. Each row represents a cancer type with points providing information about the intersection of the TFs predicted in the different cancer types. 
The bars at the top indicate the number of intersecting TFs (annotated above each bar) in each combination of cancer types (indicated by the 
points). The set size below the horizontal bars depicts the number of TFs predicted in each cohort. C For each emTF (columns), the plot provides the 
percentage of positively (purple dots) and negatively (green dots) correlated CpGs (emCpGs; y-axis) close to their TFBSs predicted in each cancer 
type (one per facet). See Additional file 4: Table S3 for the detailed numbers. D Venn diagram of the intersection between the predicted emTFs 
(n = 13), pioneer TFs from the literature (known PTFs; n = 34), and flanking accessibility-associated TFs from [43] (n = 29)
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Next, we aimed to provide complementary evidence for 
emTFs to engage with closed chromatin and reshape the 
chromatin landscape in cancer patients. A recent study 
reported the chromatin accessibility landscape of human 
cancers using ATAC-seq [43]. This work predicted 55 TFs 
(29 of which were among the 231 TFs investigated in this 
study) for which the binding is associated with increased 
chromatin accessibility in the regions flanking their 
TFBSs, providing evidence for their pioneer function [43, 
44]. We found that the emTFs were enriched in the list 
of flanking accessibility-associated TFs reported from 
cancer samples in  [43] (6 out of the 13 emTFs: CEBPB, 
GATA3, FOXA1, RUNX1, RUNX3, and TP63; Fisher test 
p value < 3.9e−15; Fig. 1D; Additional file 4: Table S5).

Furthermore, the ATAC-seq study observed that the 
increased chromatin accessibility was accompanied by 
local DNA demethylation [43]. For each cancer type, 
we considered the emCpGs lying in open chromatin 
regions and computed spearman correlations between 
their level of methylation and the level of openness of 
the regions that contain them ("Materials and methods" 
section). As expected, we recapitulated the results previ-
ously observed [43] with consistent negative correlations 
between chromatin accessibility and DNA methylation at 
emCpGs (Additional file 3: Fig. S6). Although the num-
ber of matching patient IDs for the other cancer types 
investigated is too small, we still observed similar correla-
tion trends.

Taken together, these results provide complementary 
supporting evidence for the enrichment of emTFs with 
pioneer function to promote chromatin accessibility and 
demethylation in a binding site-directed fashion in can-
cer patients.

De novo methylation‑protected CpGs and CpGs associated 
with emTFs harbour distinct TF binding signatures
In the previous sections, we revealed that regions around 
emTF binding sites harboured significant proportions of 
emCpGs. Nevertheless, not all CpGs proximal to the cor-
responding TFBSs exhibited DNA methylation levels cor-
relating with the emTFs’ expression across patients. We 
investigated whether distinct TF  binding patterns could 
discriminate between these two sets of CpGs (correlated/
emCpGs versus uncorrelated for each emTF in each can-
cer type). For each emTF-cancer type pair, we looked 
for the differential enrichment of TFBSs for 231 TFs 
using the UniBind enrichment tool [31], when consider-
ing regions surrounding emCpGs versus non-correlated 
CpGs and vice versa ("Materials and methods" section).

We consistently observe that regions of ± 200 bp sur-
rounding emCpGs for a given emTF are differentially 
enriched for binding sites bound by that particular emTF 
(Fig.  2A and Additional file  1: Data S1). It is important 

to note that both emCpGs and non-correlated CpGs 
are close to TFBSs for the given emTF and the regions 
analysed did not exhibit distinct %GC content (Fig.  2C, 
Additional file  3: Figs. S7A–S17A). Hence, the differen-
tial enrichment analysis highlights that regions flanking 
emCpGs contain significantly more TFBSs for the emTF 
than regions flanking non-correlated CpGs, without an 
overall nucleotide composition difference. Figure  2A 
depicts a representative example using flanking regions 
of CpGs close to FOXA1 TFBSs with emCpGs and non-
correlated CpGs identified in the BRCA cohort. Note the 
combined enrichment for FOXA1, ESR1, and GATA3 
TFs close to the emCpGs; these 3 TFs have already been 
associated with DNA methylation patterns in estrogen 
receptor positive breast cancers [8].

 The analyses of regions surrounding non-correlated 
CpGs consistently revealed the differential enrichment 
for TFBSs associated with the TFs CTCF, YY1, NRF1, 
GABPA, KLF9, and SP1 (Fig.  2B and Additional file  2: 
Data S2). The enrichment of these TFs is in agreement 
with previous studies that identified the binding of SP1, 
CTCF, NRF1, and YY1 to prevent de novo methylation 
[7, 45–47]. The protective effect of these TFs against 
de novo methylation is in line with the constant hypo-
methylation of the non-correlated CpGs observed across 
emTFs and cancer cohorts (Fig. 2D and Additional file 3: 
Figs. S7B–S17B).

Altogether, these results support the existence of two 
distinct TF binding signatures that discriminate emCpGs 
associated with emTFs from other CpGs close to the 
TFBSs of emTFs. While the emCpGs harbour enriched 
binding sites for their specific emTFs, the non-correlated 
CpGs shared a binding signatures for SP1, CTCF, NRF1, 
GABPA, KLF9, and YY1 providing a protective effect 
against de novo methylation across cancer types.

emCpGs are predicted to regulate genes involved 
in immune response, cell fate determination, and cancer 
pathways
With multiple lines of evidence supporting the pio-
neer function of the emTFs, we hypothesized that they 
might be involved in the activation of specific genes via 
demethylation of emCpGs in cis-regulatory regions. As 
the methylation and expression data from TCGA were 
derived from bulk tumours, the samples are a combina-
tion of cancer cells and cells from the tumour microen-
vironment. Hence, some emTFs might be acting upon 
cancer cells, while others would be active in cells from 
the microenvironment. We investigated the associa-
tion between the observed emQTL signals and tumour 
purity of the TCGA samples. By comparing the level of 
expression of the emTFs with the tumour purity esti-
mate of the samples in the cancer cohorts, we observed a 
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positive correlation for about half of the emTFs ("Materi-
als and methods" section; Fig. 3A, Additional file 3: Fig. 
S7C–S17C). emTFs BHLHE40, ETS1, FOXA1, FOXA2, 
GATA3, PBX3, TP63, and SOX2 lie in this category 
across several cancer types (Fig.  3A, Additional file  3: 
Fig. S7C–S17C). The positive correlation points to the 
emQTL signal being mostly driven by cancer cells in 
the associated cohorts. On the contrary, the expression 
of some emTFs in specific cancer types was negatively 
correlated with tumour purity (Fig. 3B, Additional file 3: 
Fig. S7C–S17C). emTFs CEBPB, ETS1, FLI1, BHLHE40, 
TP63, GATA3, PBX3, RUNX1, RUNX3, and SPI1 lie in 
this category across several cancer types (Additional 
file  3: Figs. S7C–S17C). The negative association with 
tumour purity indicates that these emTFs might be acting 
in cells from the microenvironment in the corresponding 
cancer types.

To assess the functional relevance of the identified 
emCpGs in these different cellular contexts, we estimated 
the enrichment for biological processes and pathways in 
the list of genes linked to emCpGs for each pair of emTF-
cancer types. We linked emCpGs to genes using gene-
specific regulatory elements defined by the STITCHIT 
algorithm, which relies on an integrative analysis of epi-
genetic and transcriptomic data [48]. This method allows 
to assign emCpGs lying in distal cis-regulatory elements 
to their potential target genes. When emCpGs did not 
lie within STITCHIT regulatory elements, we assigned 
them to the closest gene ("Materials and methods" sec-
tion). The number and proportion of emCpGs in each 
pair of emTF-cancer type linked to genes using the 
STITCHIT method versus the distance-based method 
are provided in Additional file 4: Table S6. The emCpG-
gene links were derived from multiple cell types/tissues 

Fig. 2  TF binding signatures at FOXA1-associated emCpGs versus de novo methylation-protected CpGs in breast cancer. A Beeswarm plot 
depicting TFBS sets enrichment (y-axis) specific to regions surrounding emCpGs associated with FOXA1. Each point corresponds to a TFBS data set 
in UniBind (one colour per TF, see legend). B Beeswarm plot depicting TFBS sets enrichment (y-axis) specific to regions surrounding non-correlated 
CpGs, which are close to FOXA1 TFBSs but whose DNA methylation levels do not correlate with FOXA1 expression in breast cancer samples. C 
Density distribution (y-axis) of GC contents (x-axis) at regions surrounding FOXA1 emCpGs (purple) and non-correlated CpGs (green). D Density 
distribution (y-axis) of mean methylation levels (x-axis) across breast cancer samples for FOXA1 emCpGs (purple) and non-correlated CpGs (green)
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but we aimed to focus on the most likely regulatory links 
in a cancer type-specific way. Specifically, we required a 
significant (Bonferroni adjusted p value < 0.01) negative 
correlation between emCpG methylation level and tar-
get gene expression in a given cancer type to conserve an 
emCpG-to-gene link.

The genes linked to emCpGs associated with cancer-
cell emTFs were mostly found enriched in hormone- and 

cancer-associated Hallmark sets of genes from the 
Molecular Signatures Database [49] (MSigDB; Fig.  3C). 
For instance, emCpGs associated with FOXA1, FOXA2, 
and GATA3 were linked to genes enriched in estrogen 
receptor signalling pathways; SOX2 emCpGs enriched for 
genes associated with apoptosis; ETS1 emCpGs enriched 
for genes associated with epithelial to mesenchymal tran-
sition (Fig.  3C). Moreover, we observed the recurrent 

Fig. 3  Functional evaluation of the emCpG gene targets. A Pearson correlation between FOXA1 expression and tumour purity in BRCA patients. B 
Pearson correlation between SPI1 expression and tumour purity in KIRP patients. As a tumour purity variable, we used cumulative purity estimates 
from BRCA and KIRP patients, respectively, reported by Aran et al. [52]. The scatterplots compare the tumour purity (x-axis; cumulative purity 
estimate) and expression of the TFs (y-axis). The blue lines represent the fitted Pearson linear relationship with the grey zone representing the 95% 
confidence interval (Pearson R coefficients and associated p values are provided in the top-left corner). The expression of FOXA1 in breast cancer 
patients shows positive correlation indicating that the signals observed in the GO term and pathway enrichments are coming from the tumour cells 
themselves. The expression of SPI1 in kidney renal papillary cell carcinoma patients shows negative correlation indicating that the signals observed 
in the GO term and pathway enrichments may be coming from the tumour microenvironment. C Functional enrichment analysis for genes 
linked to emCpGs associated with cancer cell emTFs (i.e. emTFs whose expression positively correlate with tumour purity as in A.). D Functional 
enrichment analysis for genes linked to emCpGs associated with immune cell emTFs (i.e. emTFs whose expression negatively correlates with 
tumour purity as in B.). Functional enrichments in C–D were performed using the Hallmark sets from MSigDB [49]
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enrichment for genes in Gene Ontology biological pro-
cesses (GO-BP) associated with cell fate determination 
and development (i.e. differentiation-, development-, 
morphogenesis-, and growth-related terms; Additional 
file 3: Fig. S18A). The enrichment for these processes is 
in line with the biological function of pioneer TFs, which 
are associated with the control of cell fate and cell lineage 
reprogramming in normal development and cancers [16, 
33, 50, 51].

When considering emCpGs linked to emTFs associ-
ated with cells from the tumour microenvironment, 
we observed the recurrent functional enrichment for 
immune-related terms both from MSigDB and GO-BP 
(Fig.  3D, Additional file  3: Fig. S18B). The functional 
enrichment observed suggests that the emQTL signal 
associated with these emTFs in the corresponding cancer 
cohorts is derived from tumour infiltrating lymphocytes.

Taken together, these results highlight that some emTFs 
are likely associated with immune cells in the tumour 
microenvironment, while other emTFs are likely driving 
local demethylation of targeted cis-regulatory regions.

Experimental assessment of the impact of FOXA1 
expression on DNA methylation in MCF‑7 breast cancer 
cells
We sought to experimentally assess the impact of the 
expression of an emTF on DNA methylation around its 
TFBSs using a cancer cell line. We selected FOXA1 and 
evaluated the impact of its expression in the MCF-7 
breast cancer cell line. Specifically, we profiled DNA 
methylation in MCF-7 cells using Illumina EPIC meth-
ylation arrays under three conditions in triplicate: (1) 
control, (2) endogenous knock-down (KD) of FOXA1, 
and (3) rescue of the endogenous KD by transient ectopic 
expression of FOXA1-V5 (see Additional file 3: Fig. S19 
for evaluation of the KD and transient rescue efficiencies 
using western blot). Compared to the control condition, 
the KD experiment assessed DNA methylation with less 
FOXA1 proteins, while the transient ectopic expression 
of FOXA1-V5 was used to try to rescue endogenous 
expression of FOXA1 after KD and to evaluate how it 
could restore the DNA methylation phenotype observed 
in the control condition.

We specifically evaluated the effect of FOXA1 KD on 
DNA methylation at genomic regions observed to be 
bound by FOXA1 in MCF-7 cells captured by ChIP-seq 
experiments ("Materials and methods" section). DNA 
methylation levels of the 83,521 CpGs within FOXA1 
ChIP-seq peak regions were compared between control 
and KD replicates with the mCSEA tool [53] to identify 
differentially methylated regions (DMRs; see "Materi-
als and methods" section). mCSEA predicted 229 DMRs 
(adjusted p value < 0.1), encompassing 431 CpGs. We 

observed that CpGs within the DMRs mostly exhibited 
higher levels of methylation after FOXA1 KD (Fig.  4A). 
Rescuing FOXA1 expression using transient ectopic 
expression of FOXA1-V5 did not restore methylation 
at the identified DMRs after 24  h (Fig.  4A). The lack of 
demethylation observed after 24 h of ectopic expression 
of FOXA1-V5 might be due to a slow DNA methylation 
process as previously observed [13]. Figure  4B–D pro-
vides case examples of DMRs after FOXA1 KD in the 
promoter regions of genes that have previously been 
associated with breast cancer: GREB1 (growth regulation 
by estrogen in breast cancer 1, a regulator of hormone-
dependent breast cancer growth [54]), TFF1 (trefoil fac-
tor 1, an estrogen-regulated protein [55]), and BRIP1 
(BRCA1 Interacting Protein C-Terminal Helicase 1, 
whose mutants participate in breast cancer development 
[56]).

The experimental results outlined here confirm the 
association between FOXA1 expression and DNA meth-
ylation levels at genomic regions bound by FOXA1. The 
KD of FOXA1 increased methylation at regions bound in 
MCF-7 by FOXA1, supporting the link between FOXA1 
binding and local demethylation.

FOXA1 physically interacts with TET1 and TET2 
at endogenous levels
The observations above suggest that FOXA1 is associ-
ated with demethylation, which can be achieved by the 
TET1 and/or TET2 proteins. While FOXA1 has been 
shown to interact with TET1 in the LNCaP (lymph node 
carcinoma of the prostate) cell line [23], no interaction 
has been reported in breast cancer cell lines with neither 
TET1 nor TET2, to the best of our knowledge. We aimed 
to assess potential protein–protein interactions between 
FOXA1 and TET1 and/or TET2 in the MCF-7 cell line.

We first assessed interactions for FOXA1 with TET1 
and TET2 in  vitro through GST-pulldown assays. The 
assays were performed using N-terminally GST fused 
full length human TET1 and mouse TET2 isoform 2 
(mTET2) ("Materials and methods" section). Note that 
the mTET2 aligns well with the C-terminal half of the 
human TET2 (from residue 1388 to 2002, see Addi-
tional file  3: Fig. S20A for protein sequence alignment 
and Additional file 3: Fig. S20B for structural alignments 
of hTET2 and mTET2). Using the GST tagged TET pro-
teins, we successfully pulled out FOXA1-V5 from COS-1 
cells whole protein extract, where FOXA1-V5 was tran-
siently transfected in these cells for 24 h (Fig. 5A, B).

Next, we investigated the interactions between 
FOXA1 and the TETs in  vivo in MCF-7 cells. We per-
formed endogenous immunoprecipitations using nuclear 
extracts derived from MCF-7 cells ("Materials and meth-
ods" section). Immunoprecipitation of FOXA1 revealed 
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an interaction with TET1 and TET2 endogenously at 
physiological levels in MCF-7 cells (Fig. 5C, D).

Taken together, these results suggest that TET1 and 
TET2 interact with FOXA1 and that they are recruited 
by FOXA1 in MCF-7 cells for local demethylation. These 
interactions further support the in silico predictions for 
the importance of FOXA1 in driving local demethylation 
patterns in breast cancer.

Discussion
We established a computational framework that allowed 
for a systematic investigation of the interplay between TF 
binding and DNA methylation in cancer patient samples. 
Through emQTL computations, we predicted 13 TFs to 

be associated with DNA methylation patterns around 
their binding sites across several cancer types. We con-
firmed that specific genomic regions are protected 
against de novo methylation and harbour a characteristic 
TF  binding motif signature with enrichment of binding 
sites for SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. 
The 13 emTFs are strongly enriched for TFs with previ-
ously established pioneer function, which enables them 
to engage with closed chromatin and reshape the chro-
matin landscape. We found that some of the emTFs are 
likely acting in cancer cells, while others are more likely 
specific to cells from the tumour microenvironment 
(most probably immune infiltrating cells). Accordingly, 
the CpGs whose methylation levels are associated with 

Fig. 4  FOXA1 KD in MCF-7 cells leads to local DNA methylation increase. A Heatmap depicting DNA methylation β-values at 228 CpGs (rows) in 
DMRs (the mean β-value at the control replicates are subtracted to the β-value of each CpG, see "Materials and methods" section). Blue indicates 
demethylation when compared to the control replicates and red indicates increased methylation. See Additional file 3: Fig. S19 for immunoblotting 
evaluation of the three conditions (control, KD, and rescue). B, C, D Genomic context and methylation information at 3 of the 229 identified 
DMRs, which correspond to the promoter regions of the GREB1 (B), TFF1 (C), and BRIP1 (D) genes. The upper panels provide the location in the 
corresponding chromosome. The second panel from the top provides the beta-values at the CpGs in the regions (blue for control samples, purple 
for knock-down (KD), and green for transient rescue). The third panel from the top indicates in green the significant CpGs used to predict the DMR, 
while the non-significant CpGs are depicted in red
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the expression of the emTFs are predicted to regulate 
genes enriched for cancer-associated or immune path-
ways. Finally, we experimentally (i) confirmed the effect 
of FOXA1 expression on DNA methylation patterns at 
regions bound by FOXA1 in the MCF-7 breast cancer 
cell line, and (ii) detected interactions of FOXA1 with 
TET1 and TET2 proteins both in an in  vitro setup and 
at endogenous levels. The in  vitro GST-pulldown assay 
of GST fused mTET2 further revealed that the interac-
tion observed between TET2 and FOXA1 is mapped to 
the C-terminal end of TET2 (amino acid residues 1388-
2002). Altogether, the findings outlined in this study 
provide evidence supporting the importance of specific 
pioneer TFs in reshaping the chromatin landscape in can-
cer patients to rewire gene regulatory networks through 
local DNA demethylation of cis-regulatory regions.

The results highlighted in this report complement pre-
vious investigations of the interplay between TF binding 
and DNA methylation. The high-throughput screening 
approach developed by Suzuki et  al. [24] exhibited that 
some developmental TFs induce binding site-directed 
DNA demethylation. The screening approach requires 
to select a set of TFs to test and is based on TF overex-
pression in specific cell lines, while the emQTL approach 
allows for the large-scale assessment of TFs from can-
cer patient material. The emQTL methodology has the 
potential to highlight the physiological and spatio-tem-
poral context of TFs’ expression in cancer samples. Other 

computational studies predicted TFs involved in shap-
ing the methylation landscape of cancer cells [26, 27, 57, 
58]. These studies focused on CpGs that were hypo- or 
hyper-methylated in cancer when compared to healthy 
samples, while our framework considers the variation of 
methylation across cancer samples for all CpGs. Moreo-
ver, the ELMER and TENET software are restricted to 
CpGs lying in potential enhancers that need to be identi-
fied with orthogonal data relevant to the cell type associ-
ated with each cancer type. We show that emCpGs were 
predominantly located in intronic and intergenic regions, 
which are often associated with enhancers. This observa-
tion combined with previous predictions [26, 27, 57, 58] 
suggests that the emTFs are likely to drive demethylation 
at numerous enhancer regions. Nevertheless, we high-
lighted that ~ 35% of the emCpGs are in promoter regions 
(Additional file 3: Fig. S4), which cannot be captured by 
ELMER or TENET. Our approach focuses on DNA meth-
ylation patterns focal to TFBSs to predict driver TFs, 
while other studies rely on TF binding motif enrichment. 
As often in computational biology, we believe all these 
approaches are complementary as they address different 
aspects of the underlying biological mechanism. Among 
the predicted upstream regulators identified by ELMER 
while leveraging DNA methylation status at transcrip-
tional enhancers [26], multiple predictions are in agree-
ment with the emTFs identified here: FOXA1 and GATA3 
in BRCA, FOXA2 in UCEC, RUNX1 in KIRP, and SOX2 

Fig. 5  FOXA1 endogenous interaction with TET1 and TET2. We employed endogenous IP on nuclear extracts obtained from MCF-7 cells. A 
GST-pulldown of FOXA1-V5 using GST-TET1. B GST-pulldown of FOXA1-V5 using GST-mTET2. C Immunoprecipitation of endogenous FOXA1 using 
rabbit anti-FOXA1 antibody to detect endogenous TET1 pulled together with endogenous FOXA1. D Immunoprecipitation of endogenous FOXA1 
using rabbit anti-FOXA1 antibody and detecting endogenous TET2 pulled together with FOXA1. Non-specific bands are marked with asterisks (*)
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and TP63 in LUSC cohorts. Similarly, both TENET [27] 
and our study predicted FOXA1, GATA3, ESR1, and SPI1 
as emTFs in BRCA and CEBPB and RUNX1 as emTFs in 
PRAD. In addition, Detilleux et al. [58] and the present 
study both identified FOXA1, GATA3, ESR1, CEBPB, and 
BHLHE40 as potential divers of methylation patterns in 
BRCA and FOXA2 in UCEC.

We considered in this study a collection of TFBSs 
with experimental and computational support for direct 
TF–DNA interactions, which are stored in the UniBind 
database [29]. This collection was obtained through the 
uniform processing of thousands of ChIP-seq experi-
ments from diverse cell types/tissues and conditions. We 
acknowledge that some TFBSs might not be functional 
in the cancer cells or cell type of origin analysed here. 
Nevertheless, they provide the necessary background for 
large-scale analysis and these regions have been identi-
fied as TF-bound in biological contexts. Furthermore, the 
TFBSs stored in UniBind represent evolutionarily con-
served elements [29] and harbour similar mutational load 
than protein-coding exons (using TCGA somatic muta-
tion data), supporting their functional relevance [59].

In the emQTL analysis performed in this study, TF 
expression was used as a surrogate to the capacity of TFs 
to bind their TFBSs. We considered ~ 400 bp surrounding 
TFBSs (± 200 bp) to assess the local effect of TF binding 
on DNA methylation following [24], where the authors 
estimated that TF-induced DNA demethylation was local 
to the TFBSs with a range of a few hundred base pairs 
(from ~ 106 to ~ 320 bp). We acknowledge that the RNA 
expression of a TF might not always relate to its capac-
ity to bind its TFBSs. Nevertheless, increasing TF con-
centration is related to the capacity of a TF to bind more 
DNA segments with distinct affinities [60]. Furthermore, 
we acknowledge that the regulatory activity of TFs goes 
beyond what can be estimated through their level of tran-
scription. Indeed, several post-translational modifica-
tions (PTMs), such as phosphorylation, SUMOylation, 
ubiquitination, acetylation, glycosylation, and methyla-
tion are regarded as one type of regulatory mechanism 
controlling the activity of TFs [61–64]. Unfortunately, 
capturing PTM information for all TFs in cancer samples 
is intractable. Past efforts aimed at classifying TFs based 
on their functional features, such as their involvement in 
signal response versus cell specific developmental func-
tion [65]. It is noteworthy that several of the 13 emTF 
appear to be in the developmental group. For instance, 
GATA3 is required for the T-helper 2 (Th2) differentia-
tion process (reviewed in [66]); C/EBPB in adipocyte dif-
ferentiation [67, 68]; PBX3 is a homeodomain protein, 
which are known to be important for human develop-
mental processes [69]; RUNX1 and RUNX3 have a pri-
mary role in the development of all hematopoietic cell 

types [70]; and FLI1 plays an essential role in embryogen-
esis, vascular development, and megakaryopoiesis [71, 
72]. As expected, this may indicate that our methodology 
selects for TFs whose expressions are of key importance 
for their function.

We further recognize that, as we previously observed 
for emQTLs in general [8], emTFs are not specific to can-
cer cells. Indeed, TCGA data were obtained from popu-
lations of heterogeneous cancer cells and cells from the 
tumour microenvironment. Nevertheless, we argue that 
the heterogeneity of the cells provides the appropriate 
means to perform correlation analysis, such as emQTLs. 
Furthermore, this strategy provided us with the opportu-
nity to capture signals coming from both cancer cells and 
immune cells, which could be disentangled through the 
assessment of tumour purity in TCGA samples.

Several studies previously proposed a model where 
pioneer TFs remodel the chromatin landscape through 
increased accessibility followed by DNA methylation 
loss priming inaccessible enhancers during cell fate 
transitions (reviewed in [19]). Barnett et  al. validated 
this model by profiling DNA methylation and chro-
matin accessibility at the same time from a single DNA 
fragment, where they differentiate THP-1 cells into 
naive M(-) macrophages. They reported that along the 
enhancer regulation continuum during differentiation 
of THP-1 cells, loss of DNA methylation is necessary for 
cell fate determination [19]. Similarly, Reizel et al. dem-
onstrated that FOXA1 and FOXA2 TFs are responsible 
for DNA demethylation at tissue-specific enhancers dur-
ing liver development, likely through the recruitment 
of TET2/3 enzymes [73]. Furthermore, pioneer TFs act 
as developmental factors by controlling key regulatory 
processes leading to cell identity changes. With the pre-
dicted emTFs strongly enriched for pioneer function, we 
hypothesize that they trigger the aberrant activation of 
developmental cis-regulatory regions leading to cell iden-
tity transitions during carcinogenesis. This hypothesis 
is in agreement with previous observations of architec-
tural protein- and pioneer TF-mediated chromatin rear-
rangements that lead to reactivation of embryonic gene 
expression signatures occurring during cancer (reviewed 
in [34]).

Several TFs have been reported with a protective role 
against de novo DNA methylation. These TFs include 
SPI1 [45, 46, 74–76], YY1, NRF1 [7, 75], GABPA, NF-YA 
[75], CTCF [47], and KLF9 [77]. In line with these 
reports, we found consistent enrichment for TFBSs 
associated with these TFs proximal to CpGs harbouring 
constant hypomethylation across patients, despite the 
presence of TFBSs for emTFs. On the contrary, regions 
surrounding emCpGs were enriched for TFBSs asso-
ciated with the emTFs. This enrichment suggests that 
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several TFBSs for the same emTF colocalize in regula-
tory regions, which is a signature of homotypic clus-
ters of TFBSs [78]. These homotypic clusters have been 
described as key components of human promoters and 
enhancers and have been found to be enriched in devel-
opmental enhancers [78]. The expression of the majority 
of the emTFs exhibited anti-correlation with CpG meth-
ylation close to their TFBSs, indicating that these emTFs 
are likely inducing local DNA demethylation. This is in 
agreement with previous studies that reported RUNX1 
[22, 79], RUNX3 [24], SPI1 [21, 24, 79], BHLHE40  [79], 
and FOXA1 [25] to induce binding-site directed DNA 
demethylation. Altogether, these observations provide 
further evidence for the involvement of emTFs in the 
specific transcriptional activation of developmental cis-
regulatory regions in cancers.

We also captured positively correlated emCpGs, 
wherein higher TF expression is associated with higher 
DNA methylation near their TFBS, although in smaller 
proportions. It is noteworthy that recent work from 
diverse model systems suggests that 5mC might not 
always act as a dominant repressive mechanism and that 
hypermethylated promoters and enhancers can be per-
missive to transcription in vivo and in vitro (Reviewed in 
[80]).

The emQTL analysis did not examine specifically the 
CpGs lying within TFBSs but rather considered CpGs 
located at most 200 bp regions away from the TFBSs. As 
a consequence, the impact of DNA methylation at the 
TFBSs was not specifically addressed. From the 13 emTFs 
predicted, eight have either previously been shown 
in vitro to prefer binding methylated sites [81] or recog-
nize binding motifs that do not contain CpGs (GATA3, 
SOX2, PBX3, CEBPB, FOXA1, FOXA2, SPI1, and TP63). 
These characteristics provide an advantage for these 
TFs to act as pioneer factors, since their binding would 
not be precluded by methylation in closed chromatin 
regions. On the contrary, in vitro evidence suggests that 
the five remaining TFs (ETS1, BHLHE40, FLI1, RUNX1, 
and RUNX3) do not bind, or more weakly, to methyl-
ated sites [81]. Nevertheless, the inhibition of bind-
ing via DNA methylation detected in vitro is not always 
observed in  vivo or can be restricted to some genomic 
regions [82–84]. Supporting evidence for pioneer func-
tion has been reported for FLI1 [40, 85, 86], RUNX1, and 
RUNX3  [87, 88]. How the rest of the remaining factors 
can engage with closed chromatin would require further 
investigations.

We associated emCpGs with target genes by relying 
on (i) the STITCHIT database of regulatory elements 
to gene links [48] or (ii) genomic distance. It is well 
known that cis-regulatory elements may regulate distal 
genes, which are not necessarily the closest ones [89]. 

By prioritising regulatory elements to gene links from 
STITCHIT, we aimed to rely on regulatory associations 
previously observed in a large collection of cell types. As 
some links between regulatory elements to genes might 
be false positives and as some links might be cell type-
specific, we exclusively kept the CpG-gene pairs exhib-
iting anti-correlation (between DNA methylation and 
expression) to refine the associations in a cancer type-
specific way.

The functional enrichment analyses for the genes 
predicted to be targets of emCpGs confirmed that the 
emQTL signals were likely derived from either cancer 
cells or tumour-infiltrating cells. Indeed, bulk tumour 
samples from TCGA that were analysed in this study 
represent a mixture of cancer cells and cells from the 
tumour microenvironment [52]. The correlation between 
emTF expression and tumor purity in the samples allows 
for the discrimination between the two types of signals. 
However, the heterogeneity of cancer cells, which belong 
to several clonal populations, provides an additional level 
of complexity that was not considered in this study. Nev-
ertheless, the identified emTFs are likely to play a major 
role in shaping the chromatin landscape at cis-regula-
tory regions controlling the transcription of cancer- or 
immune-related genes, respectively.

The experimental assessment of the effect of FOXA1 
expression on DNA methylation in the MCF-7 breast 
cancer cell line revealed a limited number of FOXA1-
bound regions with significant differential methylation. 
This is in line with a recent study [58], where CRISPR 
knockout (KO) of FOXA1 or GATA3 in HCC1954 cells 
followed by whole genome bisulfite sequencing revealed 
84 FOXA1 hypermethylated regions around FOXA1 
TFBSs and 30 around GATA3 TFBSs. The limited effect 
detected could be explained by the fact that DNA meth-
ylation is a stable epigenetic mark and the dynamic regu-
lation of methylation and demethylation are rather slow 
processes. Indeed, the investigation of DNA methylation 
turnover using experimental and theoretical frameworks 
revealed that it takes from several days to weeks  [13]. 
Furthermore, the efficiency of transient transfection 
of the FOXA1 expression plasmid might be lower than 
the siRNA transfection efficiency, which can contribute 
to the small effect observed. As our experimental setup 
subjected the cells to siRNA-mediated KD for 72 h and 
to transient rescue of FOXA1-V5 ectopic expression for 
24 h, some longer term effects have been missed.

In summary, we reported an interplay between TF 
binding and DNA methylation marks, where the binding 
of pioneer TFs at their TFBSs are likely to trigger local 
DNA demethylation that could lead to carcinogenesis. 
These results confirm the central role for pioneer TFs 
in aberrant DNA demethylation patterns in cancers. 
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While we experimentally assessed the effect of a single 
TF in a cell line, the predictions outlined in this report 
could be followed up through experimental validation to 
assess their capacity to drive methylation patterns and 
carcinogenesis.

Materials and methods
TCGA RNA‑seq and methylation data
We obtained patient RNA-seq and DNA methylation 
array (Illumina 450  K arrays) data collected by TCGA 
for 19 cancer types (LAML-US, BRCA-US, PRAD-US, 
LUAD-US, LUSC-US, COAD-US, LIHC-US, HNSC-US, 
THCA-US, GBM-US, LGG-US, KIRC-US, KIRP-US, 
UCEC-US, STAD-US, SKCM-US, PAAD-US, CESC-US, 
and BLCA-US) from the ICGC data portal [28, 90]. The 
number of samples for which both RNA-seq and DNA 
methylation array data was available is provided in Addi-
tional file 4: Table S1.

Transcription factor binding sites
Direct TF–DNA interaction predictions were retrieved 
from the UniBind database (version 2018) for 231 human 
TFs [29]. TFBS coordinates were provided using the 
GRCh38 assembly of the human genome and were con-
verted to the GRCh19 assembly using the UCSC liftOver 
tool [91].

emQTL computation
We performed emQTL analyses by computing Spearman 
correlations between the levels of methylation at CpGs 
and TF expression levels in each cohort independently 
using the same methodology as previously described [8] 
with the eMap R package (version 1.2) [92]. The emQTL 
computation was restricted to CpGs at most 200 bp away 
from UniBind TFBSs. Intersections between CpG coor-
dinates and extended TFBS regions were obtained using 
the BedTools version 2.26.0 [93]. For each cancer type, 
we only considered CpGs with an interquartile range of 
methylation beta values > 0.1 for the computation as in 
[8].

For each TF in each cancer type, we selected the cor-
related CpGs with a Bonferroni corrected p value < 0.01. 
We only further considered TFs significantly correlated 
with at least 5000 CpGs for downstream analyses. To 
assess the enrichment for correlated CpGs close to the 
TF’s TFBSs, we performed Mann–Whitney U (MWU) 
tests with the set of considered CpGs in the correspond-
ing cohort as the universe. TF-cancer type pairs were 
considered significant with a MWU Bonferroni-cor-
rected p value < 0.01. An overview of the computational 
workflow is provided in Additional file 3: Fig. S1A.

Upset and venn diagram plots
All upset and Venn diagram plots were obtained using 
Intervene (version 0.6.4) [94].

Pioneer and flanking accessibility‑associated TFs
We compiled a list of pioneer TFs from the literature 
[33–42] (Additional file 4: Table S4). The list of flanking 
accessibility-associated TFs were retrieved from [43], 
where they have been described to be associated with 
increased flanking accessibility around their motif centre 
in cancer samples from ATAC-seq data. We considered 
in our study the 29 flanking accessibility-associated TFs 
that were tested for emQTL in this report  (Additional 
file 4: Table S5). We assessed the significance of the inter-
section between the list of pioneer TFs (or the list of 
flanking accessibility-associated TFs) and the emTFs by 
performing Fisher tests with the Bioconductor GeneO-
verlap package (version 1.18.0) [95].

Comparison between emCpGs and non‑correlated CpGs
For each emTF-cancer type pair, we assessed the enrich-
ment for TFBSs around the corresponding emCpGs and 
non-correlated CpGs. We computed differential enrich-
ment of TFBSs between regions of ± 200  bp centred 
around the emCpGs versus the non-correlated CpGs, 
and vice versa. Genomic regions were lifted, using the 
liftOver tool from UCSC [91], from the GRCh19 genome 
assembly over to the GRCh38 version, which is the 
assembly used in UniBind. Differential enrichment of 
TFBS sets was performed using the twoSets subcommand 
of the UniBind enrichment tool (https://​unibi​nd.​uio.​no/​
enric​hment/; https://​bitbu​cket.​org/​CBGR/​unibi​nd_​enric​
hment/) using the collection of TFBS sets from UniB-
ind version 2018 [29, 31]. Specifically, the foreground set 
of regions corresponded to the regions centred around 
emCpGs or non-correlated CpGs and the combined set 
of such regions was used as background.

The %GC distributions at genomic regions centred 
around emCpGs and non-correlated CpGs were com-
puted by the BedTools nuc function.

Association between emCpGs and target genes
We downloaded the associations between regulatory ele-
ments and target genes predicted by STITCHIT from the 
ENCODE, Roadmap, and Blueprint data sets at https://​
zenodo.​org/​record/​25473​84#.​XIK0x-​RYZ14. The coordi-
nates of the emCpGs considered for each emTF in each 
cohort were lifted from GRCh19 over to GRCh38 coor-
dinates and intersected with STITCHIT regulatory ele-
ments using the intersect subcommand of the BedTools. 
CpGs lying within the regulatory elements were associ-
ated with the corresponding target genes. The CpGs not 

https://unibind.uio.no/enrichment/
https://unibind.uio.no/enrichment/
https://bitbucket.org/CBGR/unibind_enrichment/
https://bitbucket.org/CBGR/unibind_enrichment/
https://zenodo.org/record/2547384#.XIK0x-RYZ14
https://zenodo.org/record/2547384#.XIK0x-RYZ14
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overlapping with STITCHIT regulatory elements were 
linked to genes with the nearest TSS using the HOMER 
annotatePeaks.pl script [96].

Genomic distribution of CpGs
We used the annotatePeaks.pl script from HOMER [96] 
to compute the genomic distribution of all CpGs inves-
tigated (n = 376,997) and of the emCpGs in each cancer 
type (Additional file 3: Fig. S4).

Correlation between ATAC signal and methylation 
at emCpGs
We downloaded the TCGA ATAC-seq data described in 
[43] from https://​gdc.​cancer.​gov/​about-​data/​publi​catio​
ns/​ATACs​eq-​AWG. We considered the cancer cohorts 
with at least 20 samples for which DNA methylation was 
available in our study. We selected the emCpGs predicted 
in each cancer type and their surrounding ± 200  bp 
regions and intersected them with the pancancer ATAC-
seq peaks provided in [43] using the BedTools intersect 
subcommand. Finally, spearman correlation between the 
level of methylation at emCpGs and the level of ATAC-
seq normalised counts at the underlying peaks were com-
puted in each cancer type.

Functional enrichment analysis
Genes associated to emTFs in cancer cohorts were sub-
mitted to the clusterProfiler R package (version 3.12.0) 
[97] to compute enrichment for gene ontology (GO) 
biological processes and MSigDB Hallmark sets (the 
gmt file corresponding to the Hallmark set was retrieved 
from MSigDB v7.4). Redundant enriched GO terms were 
reduced using the GOSemSim R package (version 2.10.0) 
[98]. For MsigDB Hallmark set enriched terms, we con-
sidered the top 10 enriched terms (ranked by Benjamini 
and Hochberg adjusted p values < 0.05) per emTF-cancer 
pairs for drawing the figures. In Additional file 3: Fig. S18, 
we considered the GO terms with Benjamini and Hoch-
berg adjusted p values < 0.05 and plotted the top 5 most 
enriched terms per emTF-cancer pair. Enrichment plots 
were produced using the geom_tile function from the 
ggplot2 R package (version 3.3.3).

Tumour purity
We downloaded cumulative tumour purity estimates 
from [52]. For the STAD-US cohort, the cumulative 
tumour purity was not computed in [52]; we retrieved 
tumour purity scores for STAD-US samples from the 
ICGC data portal (dcc.icgc.org/releases/PCAWG/con-
sensus_cnv). Pearson correlations between tumour purity 
and TF RNA expression were computed using the stat_
cor R function with the parameter method = ”pearson” 
using the ggscatter function in ggplot2.

Bioinformatics analysis of mTET2 and hTET2 proteins
To assess the interaction between TET2 and FOXA1, 
we used mTET2 GST fusion protein. To assess the rel-
evance of using mTET2 in the GST pull down assay, we 
assessed the amino acid sequence conservation between 
mTET2 isoform 2 (RefSeq ID: NP_001035490) and the 
human TET2 (hTET2; RefSeq ID: NP_001120680). 
We visualised the pairwise sequence alignment of the 
two proteins using the MUSCLE algorithm accessed 
through Jalview (version 2.11.1.4) [99]. It revealed that 
mTET2 aligns well with the C-terminal half of hTET2 
(pairwise sequence identity = 59.72%; Additional file 3: 
Fig. S20A). To further highlight the conservation of the 
TET2 proteins between mouse and human at the struc-
tural level, we obtained the Protein Data Bank struc-
tures corresponding to hTET2 (PDB ID: 4nm6A) and 
the modelled structure of mTET2 (PDB ID: Q6NO21). 
We compared the two structures with the ce align algo-
rithm implemented in pyMOL version 2.4.2, which is 
represented in Additional file 3: Fig. S20B.

Plasmid construction
The human FOXA1 sequence with RefSeq accession ID 
NM_004496 was synthesised with a C-terminal V5-tag 
sequence and obtained in pCIneo vector with NheI 
and XhoI cloning sites from GenScript. The sequence 
with the C-terminal V5-tag was transferred to the 
pEF1neo mammalian expression vector using NheI 
and SalI. pEF1neo is a vector generated from pCIneo 
by replacing the CMV promoter with the human EF1-
alpha promoter. It generates a mammalian expression 
vector for FOXA1 as pEF1neo-FOXA1-V5. GST-TET1 
fusion protein was made by transferring the full length 
TET1 sequence into the pGEX-KG vector, which was 
derived from pGEX-2  T as described in [100]. The 
pGEX-KG vector was first cut with XmaI and was filled 
in with Klenow (Roche Applied Science) to form blunt 
end, this was followed by XbaI digestion. N-terminally 
FLAG- and HA-tagged TET1 from the mammalian 
expression plasmid pEF1-FH-TET1 (ABCAM) was 
digested with BmgBI (blunt end cutter) and XbaI. The 
6436 bp fragment was then inserted into the XmaI and 
XbaI digested pGEX-KG vector. Mus musculus TET2 
(mTET2) clone IMAGE ID 4,977,050 was obtained 
from Source Bioscience and PCR cloned using oli-
gos (Tet2fwd: 5ʹ-GGG​GAC​AAG​TTT​GTA​CAA​AAA​
AGC​AGG​CTT​Aatgccaaatggcagtacagt-3ʹ and Tet2rev: 
5ʹ-GGG​GAC​CAC​TTT​GTA​CAA​GAA​AGC​TGG​GTT​
tcatacaaatgtgttgtaag-3ʹ) into pDonor221 (Invitrogen 
Gateway, ThermoFisher) and sequenced. mTET2 was 
then cloned into pGEX-AB-GAW by LR reaction for 
recombinant protein expression of GST fused mTET2.

https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
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Cell cultures and siRNA and plasmid transfections
MCF-7 cells (ATCC​® HTB-22™ Homo sapiens, epithe-
lial, mammary gland, breast; derived from metastatic 
site: pleural effusion, adenocarcinoma) were maintained 
in RPMI-1640-GlutaMAX supplement medium sup-
plemented with 10% FCS (foetal calf serum) and 1% PS 
(penicillin/streptomycin), and were grown at 37  °C and 
5% CO2.

We performed siRNA mediated KD of endogenous 
FOXA1 from MCF-7 cells using custom synthesised 
siFOXA1 from Qiagen. The siRNA sequences that target 
the 3ʹ-UTR of FOXA1 were described in [101]. For con-
trol transfections, we used the AllStars Negative Con-
trol siRNA (Cat.No 1027281, Qiagen). Both siCtrl and 
siFOXA1 at a concentration of 10 µM were delivered to 
cells using the lullaby siRNA transfection reagent (OZ 
biosciences). Specifically, cells were seeded at a density of 
105 cells in 6 well plates 24 h prior to siRNA transfection. 
The next day, the media was changed and siRNAs were 
delivered using lullaby siRNA transfection reagent. The 
cells were subjected to siRNA mediated KD for 72  h at 
37  °C and 5% CO2 before they were harvested for DNA 
isolation. Transient rescue of the endogenous KD was 
made 2 days post-siRNA transfection by delivering 2.5 µg 
of pEF1neo-FOXA1-V5 plasmid with the lullaby trans-
fection reagent for 24 h.

For GST pull-down assay, COS-1 cells were transiently 
transfected with either 5 or 10  μg of each of pCIneo-
FOXA1-V5 and pCIneo-V5 plasmids using lipofectamine 
3000 Reagent (Invitrogen).

Methylation array profiling in MCF‑7 cells 
and bioinformatics analysis
Genomic DNA from MCF-7 cells transfected with either 
siCtrl or siFOXA1 and MCF-7 cells subjected to siFOXA1 
mediated endogenous KD and rescue with exogenous 
FOXA1-V5 in three biological replicates was isolated 
using NucleoSpin® Tissue genomic DNA isolation kit 
(Machery-Nagel). From each sample, 45 µl genomic DNA 
amounting to 500 ng concentration was delivered to the 
Genomics core facility at Oslo University hospital, where 
EPIC array profiling was performed. Bisulfite-converted 
DNA was amplified, fragmented, and hybridised to Illu-
mina Infinium Human Methylation 850  K Beadchip 
using standard Illumina protocol.

EPIC array methylation data in IDAT format were nor-
malised with the minfi (version 1.36.0) R package [102] 
using the within array Noob function followed by quan-
tile normalisation as recommended by shinyÉpico [103]. 
M values were obtained from the normalised β-values 
using minfi. Contrasts of M values were computed using 
the limma (version 3.46.0) R package between control 
and KD replicates with the limma::arrayWeights option 

to mitigate the influence of the arrays. The computed 
raw p values from the limma fit were provided to the 
mCSEATest function of the mCSEA R package (version 
1.10.0) to compute differentially methylated regions con-
sidering FOXA1 ChIP-seq peaks. FOXA1 ChIP-seq peaks 
were retrieved from the ReMap 2020 database [104] con-
sidering ChIP-seq experiments performed in MCF-7 
cells without target or biotype modification.

To draw the heatmap provided in Fig. 4A, we consid-
ered all CpGs in the EPIC array lying within the identified 
DMRs (n = 431). For each CpG, we computed the average 
of the β-values across the three control replicates. The 
average value was subtracted from the β-value of each 
CpG in each of the nine samples. Finally, we filtered out 
the resulting values vals that satisfied − 0.05 < vals < 0.05. 
The remaining values associated with 228 CpGs were 
plotted in Fig. 4A using the pheatmap R package (version 
1.0.12).

MCF‑7 nuclear extract preparation
Nuclear extracts from MCF-7 cells were prepared as 
described in [105] with a slight modification. To dis-
rupt the cytoplasmic membrane, in addition to dounc-
ing, detergent was used by supplementing buffer A with 
0.05% NP-40.

Antibodies
For western blot (WB) validation of positive transfections 
and endogenous KDs, we used the following primary 
antibodies: mouse anti-V5 monoclonal antibody (46-
0705, Invitrogen), rabbit anti-FOXA1 M2 polyclonal anti-
body (GTX100308, Gene-Tex), and mouse anti GAPDH 
monoclonal antibody (AM4300, Invitrogen). We used 
the following secondary antibodies for WB: anti-mouse 
IRDye® 680 RD (925-68072, LICOR) and anti-mouse 
IRDye 800 CW (925-32213, LI COR).

For endogenous immunoprecipitation, we used the 
following antibodies: anti-FOXA1 M2 rabbit polyclonal 
antibody (GTX100308, Gene-Tex), anti-TET1 mouse 
monoclonal antibody (GTX627420, Gene-Tex), anti-
TET2 Rabbit monoclonal antibody (D6B9Y, cell signalling 
technologies), normal rabbit IgG (2729S, cell signalling 
technologies), normal mouse IgG (sc-2025, Santa Cruz), 
and protein G Dynabeads (10004D, Invitrogen).

GST‑pulldown and immunoprecipitation assays
The GST fusion proteins and GST were expressed and 
isolated as described in [106]. Total cell lysates from 
COS-1 cells 24 h post transfection were prepared using 
300  μl of KAc interaction buffer (Roche Applied Sci-
ence). GST fusion proteins were bound to glutathione–
Sepharose beads (GE Healthcare) by rotating in binding 
buffer (50  mM Tris HCl pH 8.0, 150  mM NaCl, 5  mM 
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EDTA, 1% Triton X-100, 1  mM Dithiothreitol (DTT) 
and 1 × Complete protease inhibitor cocktail at 4  °C 
for 1  h prior to pull-down. The pre-bound fusion pro-
teins were then incubated for 1 h at 4 °C with whole cell 
lysate obtained from transfected COS-1 cells. The beads 
were washed 3 × in 500 μl of KAc interaction buffer. The 
bound proteins were eluted in 40  μl of 3 × SDS loading 
buffer at 95  °C for 10 min and detected using immuno-
blotting after SDS‐PAGE separation on a 4–15% SDS–
PAA gel and western blotting.

Immunoprecipitation at endogenous level of FOXA1, 
TET1, and TET2 was obtained by incubating rabbit 
anti-FOXA1 polyclonal, mouse anti-TET1 monoclonal, 
and rabbit anti-TET2 monoclonal antibodies, respec-
tively, coupled with protein G Dynabeads (Invitrogen) 
with nuclear extract derived from MCF-7 cells for 2  h, 
with rotation at 4  °C. As negative controls, mouse or 
rabbit normal IgG coupled with protein G Dynabeads 
were used. Prior to incubation, we washed the beads 
once with 1 × PBS supplemented with 0.03  µg BSA and 
further blocked them with 0.03  µg BSA in 1 × PBS for 
10  min with rotation. We then washed the beads twice 
with 400  µl lysis buffer (20  mM HEPES, 10% Glycerol, 
0,05%NP-40, 1,5  mM MgCl2, 150  mM KAc, and 1  mM 
DTT supplemented with 5 × Complete protease inhibitor 
cocktail). Each wash was performed for 5 min with rota-
tion at 4 °C. The bound proteins were eluted with a 20 μl 
3 × SDS loading buffer at 95  °C for 10  min. After SDS–
PAGE separation on a 4–15% SDS–PAA gel, the proteins 
were detected with western blot using a OdysseyCLX (LI 
COR).
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