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SUMMARY
Single-cell technologies are revolutionizing the ability of researchers to infer the causes and results of biolog-
ical processes. Although several studies of pluripotent cell differentiation have recently utilized single-cell
sequencing data, other aspects related to the optimization of differentiation protocols, their validation,
robustness, and usage are still not taking full advantage of single-cell technologies. In this review, we focus
on computational approaches for the analysis of single-cell omics and imaging data and discuss their use to
addressmany of themajor challenges involved in the development, validation, and use of cells obtained from
pluripotent cell differentiation.
INTRODUCTION

Induced pluripotent stem cell (iPSC) differentiation has emerged

as a promising technology for generating cells for several human

tissues and organs. Cells derived from iPSCs are used for many

different purposes including to study development (Zhu and

Huangfu, 2013) and for therapeutics (Moradi et al., 2019). A

key advantage of iPSCs over stem cells is their autologous na-

ture, which enables their therapeutic usage. In 2014, the first

iPSC therapy was initiated in the RIKEN Center in Japan for pa-

tients with macular degeneration (Wang et al., 2020). The first

completed human clinical trial using iPSC-derived cells was re-

ported in 2020 and demonstrated tolerability and safety of

iPSC-derived mesenchymal stem cell (MSC) in the treatment of

steroid-resistant acute graft versus host disease (Bloor et al.,

2020). Case studies or clinical trials have also been initiated for

a number of pathologies, including CD19+ malignancies

(Elstrom, 2020), heart diseases (Sawa, 2021), or brain pathol-

ogies (Takahashi, 2020). In addition to directly using differenti-

ated cells for clinical applications, iPSCs are also useful for

drug development (Farkhondeh et al., 2019) and for personalized

medicine (Chun et al., 2011). The former relies on the ability of

these cells to differentiate to several different human organs to

study the impact of different drugs. The latter makes use of the

fact that these cells can be directly derived from individuals to

tailor specific treatments on the basis of how differentiated cells

from these individuals respond to the infection. Several other

non-clinical applications of iPSCs have been extensively dis-

cussed including their use in studying development (Hoshina

et al., 2018; Snoeck, 2015), identifying regulators and pathways
Cell Repo
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(Friedman et al., 2018), and for inferring underlying causes of

specific diseases (Lin et al., 2017b).

Although promising, the use of differentiated iPSCs has faced

several challenges since their discovery 15 years ago. A key

challenge for the use of iPSCs in clinical applications is the devel-

opment of protocols that can efficiently differentiate iPSCs to

various cell types and organoids. Although several protocols

have been developed for differentiating iPSC-derived cells to

different tissue types, including protocols for heart cells (Fried-

man et al., 2018; Giacomelli et al., 2020; Mummery et al.,

2012), various brain cells (Gunhanlar et al., 2018), lung (Hurley

et al., 2020; Mucci et al., 2018), liver (Mallanna and Duncan,

2013; Zhang et al., 2018), pancreas (Jacobson and Tzanakakis,

2017), and more, their efficiency (yield), success rates, and

reproducibility vary considerably with many leading to only a

small fraction of the cells differentiating to the desired tissue

and/or cell type (Liu et al., 2020). Other challenges include the

issue of safety and their potential to cause unregulated replica-

tion and cancer (Doss and Sachinidis, 2019). Epigenetics differ-

ences between the derived and original cells is also a major

concern (Liu et al., 2020). Finally, for cells being injected, their

ability to replicate within the organs they are injected to and their

ability to function as the primary cells is still a major open ques-

tion (Morris et al., 2014; Rezvani et al., 2016). There are also chal-

lenges associatedwith using iPSCs for drug development and/or

personalized medicine. These include questions about how

similar are derived cells to cells from the same organ of the indi-

vidual and are the cell types and their frequencies similar to what

we would observe in the healthy organ (Handel et al., 2016).

Other issues relate to determination of the pathways, regulators,
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Figure 1. An end-to-end approach for using single cell technologies in iPSC studies

Top: computational models for optimizing cell differentiation protocols. These methods fall into four different categories. (1) Time series iPSC single-cell

experimental design. (2) Clustering/cell-type annotation: usingmarker genes and annotation datasets to determine cell types at different stages in the analysis. (3)

Trajectory inferences: reconstructing cell differentiation trajectories (from iPSCs) to identify the different fates and their onset. (4) Regulatory and signaling

network inference: using epigenomics and spatial single cell data to infer the underlying regulatory network within cells and the cell-cell interaction networks.

(legend continued on next page)
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and interactions that are involved in the differentiation both

within the different cell types and between cell types of the

same organ/tissue.

THE PROMISE OF SINGLE-CELL TECHNOLOGIES IN
STUDYING iPSCs

Recent advances in genomics enable the study of biological pro-

cesses at the single-cell level (Cahan et al., 2021). The most

widely used technology for such studies is single-cell RNA

sequencing (scRNA-seq) (Tang et al., 2009), which profiles the

expression of genes in single cells. Several other related

single-cell sequencing technologies have been developed

for studying molecular events at the single-cell level. These

include assay for transposase-accessible chromatin with high-

throughput sequencing (ATAC-seq) (Buenrostro et al., 2015),

which looks for open chromatin locations in single cells, methyl-

ation sequencing (methyl-seq), which profiles methylation at sin-

gle cells (Smallwood et al., 2014), and other epigenetics profiling

technologies (Ramani et al., 2017; Smallwood et al., 2014). More

recently spatial single-cell level technologies for both transcrip-

tomics and proteomics have been developed. Unlike scRNA-

seq in which cells are first extracted from the sample and then

sequenced, in spatial transcriptomics the location of cells is re-

corded and expression levels for each cell are determined (Ståhl

et al., 2016). These methods extend fluorescence in situ hybrid-

ization and combines it with transcription or proteomics profiling.

This enables the quantification of expression levels for several

genes or proteins at a single-cell resolution while still recording

the location of each of the cells in the sample. Although not all

spatial transcriptomics methods are profiling at the single-cell

level (Rodriques et al., 2019), many newer methods do. Exam-

ples of platforms for single-cell spatial transcriptomics include

MERFISH (Chen et al., 2015), seqFISH (Shah et al., 2016), seq-

FISH+ (Eng et al., 2019), osmFISH (Codeluppi et al., 2018), and

the 3D transcriptomics record (STARMAP) (Wang et al., 2018).

Similarly, advances in spatial proteomics enable the study of

protein levels at the single-cell resolution. Methods, including

CODEX (Goltsev et al., 2018) and digital spatial profiling (Merritt

et al., 2020), can detect the location of up to 70 different proteins

in single tissue sections by using antibodies for specific proteins

and imaging them directly on the slides.

Single-cell technologies provide several promising directions

for solving the most challenging issues researchers face when

developing iPSC-based cell types and organoids. The ability to

profile the expression of single cells over time enables the study

of the different states and cell types that various protocols intro-

duce. It can also be used to identify key junctions, places in the

protocol where some cells commit to a specific cell typewhereas

others commit to another. Such junctions can often be studied

further to determine the pathways and regulators involved in

such commitment and to determine where specific intervention

can further optimize the protocol, leading more cells to differen-
Middle: protocol validation and reproducibility. Cell alignment methods can comp

metrics are used to estimate the similarity between multiple datasets (e.g., from di

and timing of the cell fate decisions. Bottom: applications. Generated cells can

either used to replace damaged cells or for studying the impact of treatments on
tiate to the desired outcome. Single-cell technologies can also

be used to study in much greater details the set of resulting cells

from each protocol and to compare these and their distribution

with the cells observed in real tissues and organs. It can also

be applied to study variations and mutations in individual cells,

their longevity and the factors impacting them. Spatial profiling

can further provide information on the key interactions between

different cells and cell types and how these impact the ability to

generate the required set of cells or organoids. When using

iPSCs to generate organoids, multilineage communication plays

an important role in self-organization of differentiated cells. For

example, He et al. (2020) have recently used lineage-coupled

spatial transcriptomics to study lineage and clonal locations dur-

ing brain organoid regionalization. Cell-cell interactionmight also

occur in other settings, such as reprogramming to iPSCs (Sha-

kiba et al., 2019). Spatial transcriptomics and other single-cell

imaging methods can thus improve our ability to better model

and understand differentiation in these systems.

In this review we discuss several aspects related to the use of

single-cell technologies and analysis in iPSC differentiation

studies (Figure 1). We first present single-cell technologies and

computational analysis methods for designing and using time

series experiments to model regulatory and signaling networks

involved in the differentiation process, and their time of activa-

tion. We then discuss methods that can be used to validate the

resulting cells to determine consistency or similarity to primary

human cells. Finally, we discuss potential applications of sin-

gle-cell technologies for reducing cancer risk and immunoge-

nicity and for improving personal-based disease treatments.

DESIGNING SINGLE-CELL EXPERIMENTS

Several points should be considered when designing single-cell

experiments for studying iPSC differentiation protocols. In

sequencing-based experiments researchers need to determine

how many cells would be profiled from each time point and at

what depth. The number of cells, and the sequencing depth

can have a large impact on the ability to identify rare cell types

and to correctly characterize subtypes. In addition, although pro-

tocols for stem cell differentiation differ in their duration, they

usually span multiple days and even weeks. This makes it impor-

tant to determine a subset of time points to sample. Selecting the

most appropriate time points is important to identify all stages of

the process while minimizing costs and the need to use large

quantities of cells.

To define adequate cell numbers per time point, one must

consider cell heterogeneity and expected frequency for each

subpopulation. Several computational tools have been devel-

oped to determine howmany cells should be profiled for different

expected distributions. For example, howmanycells (https://

satijalab.org/howmanycells/) and sceb (Zhang et al., 2020)

(Table 1) are computational tools that can estimate the total

required number of cells on the basis of user inputs for the
are datasets to human reference or between repeated studies. Reproductivity

fferent runs). Barcoding methods are used to determine the cellular trajectories

be studied to determine longevity and potential cancer risk. Cells can then be

individuals.
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Table 1. Computational tools for the processing, analysis, and modeling of single-cell data

0: Single-cell Experiment Design; 1 Clustering/Cell Type Annotation; 2: Reproductivity; 3: Cell Alignment & other 

iPSC protocol validation methods; 4: Trajectory Inference from expression data;  5: Barcoding; 6:Regulatoryand 

Signaling Networks;   
 

Name Task Input Output Software  Software link Reference  

Howmanycell

s 

0 Expected number 

of cell types; 

Minimum fraction 

(of rarest cell type) 

1) number of cells 

to profile 

Online server https://satijalab.or

g/howmanycells/ 

 

 

N/A 

sceb 0 Total sequencing 

budget 

1) Number of cells 

to profile 

2) Sequencing 

depth (number of 

reads/cell) 

sceb (Python) https://github.com/

martinjzhang/singl

e_cell_eb/ 

(Zhang et al., 2020) 

TPS 0 Time-series bulk 

RNA-seq (Time 

By Genes Matrix) 

1) the optimal time 

points to profile 

TPS (Python) http://www.sb.cs.c

mu.edu/TPS 

 

(Kleyman et al., 2017) 

 

Monocle 1, 4 Cells by Genes 

Matrix 

1) Clusters 

2) Trajectory 

Monocle3 (R) https://cole-

trapnell-

(Cao et al., 2019) 

graph 

3) pseudo-time for 

all cells

lab.github.io/mono

cle3/

Louvian 1 Cells by Genes 

Matrix

Clusters Implemented in 

many languages 

(e.g., in python) 

https://python-

louvain.readthedoc

s.io/en/latest/

(Blondel et al., 2008)

Leiden 1 Cells by Genes 

Matrix

Clusters Leiden 

(Python)

https://github.com/

vtraag/leidenalg

(Traag et al., 2019)

Seurat 1, 3, 

4

Cells by Genes 

Matrix

1) Clusters

2) Trajectory 

graph 

3) pseudo-time for 

all cells

Seurat (R) https://satijalab.or

g/seurat/

(Stuart et al., 2019)

SCNN 1 Cells by Genes 

Matrix

Cell type 

annotation 

SCNN (Python) http://sb.cs.cmu.ed

u/scnn/

(Lin et al., 2017a)

scQuery 1,3 Cells by Genes

Matrix

Cell type identify 

for each cell

Online-Server https://scquery.cs.

cmu.edu/

https://github.com/

mruffalo/sc-rna-

seq-pipeline

(Alavi et al., 2018)

Local Inverse 

Simpson’s 

Index (LISI)

2 Cells by Features 

and Batch Labels

Real-valued per-

cell LISI score

LISI (R) https://github.com/

immunogenomics/

LISI

(Korsunsky et al., 

2019)

k-BET 2 Cells by Features 

and Batch Labels

Average rejection 

rate per batch label 

(lower is better)

kBET (R) https://github.com/

theislab/kBET

(Büttner et al., 2019)

Adjusted 

Rand Index 

(ARI)

2 Cells by Features 

and Batch Labels

A single scalar 

value (ARI) for 

the integrated 

dataset.

Available in 

many statistical 

packages n/a

(Tran et al., 2020)

CellNet 3 Bulk gene 

expression profiles

1)Cell type 

identity 

2) GRN 

establishment 

status for different 

cell types

CellNet(R) https://github.com/

pcahan1/CellNet

(Morris et al., 2014)

SingleCellNet 3 Cells by Genes 

Matrix

Cell type 

composition 

(probability 

distribution of 

different cell 

types) for each cell

SingleCellNet 

(R)

https://github.com/

pcahan1/singleCel

lNet

(Tan and Cahan, 2019)

(Continued on next page)
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Table 1. Continued

Capybara 3 Cells by Gene 

Matrix

1) continuous 

measurement of 

cell identify for 

each cell

2) Binarized cell 

type annotation for 

each cell

Capybara (R) https://github.com/

morris-

lab/Capybara

(Kong et al., 2020)

KeyGenes 3 Samples (cells) by 

Gene Matrix

identify score for 

each input sample 

(cell) 

KeyGenes https://github.com/

DavyCats/KeyGen

es

(Roost et al., 2015)

Diffusion

maps
4 Cells by Gene 

Matrix

Trajectory graph 

with pseudo-time 

for all cells

Implementation 

in several 

packages

https://www.helm

holtz-

muenchen.de/icb/r

esearch/machine-

learning/projects/s

ingle-cell-

diffusion-

map/index.html

(Haghverdi et al., 

2016)

PAGA 4 Clusters from 

other clustering 

methods

2) Trajectory 

graph 

3) pseudo-time for 

all cells

PAGA (Python) https://github.com/

theislab/paga

(Wolf et al., 2019)

scdiff 4,6 Cells by Genes 

matrix

Regulatory 

networks (TFs and 

their target genes) 

underlying the cell 

dynamics 

trajectory (discrete 

stats)

SCDIFF

(Python, 

Javascript)

https://github.com/

phoenixding/scdiff

(Ding et al., 2018a)

CSHMM 4,6 Cells by Genes 

matrix 

Regulatory 

networks (TFs and 

their target genes) 

underlying the cell 

dynamics 

trajectory 

(continuous sates)

CSHMM 

(Python)

https://github.com/

jessica1338/CSH

MM-for-time-

series-scRNA-Seq

(Lin and Bar-Joseph, 

2019)

scVelo 4 scRNA-seq reads RNA velocity 

vector for each of 

the cells 

scVelo https://scvelo.readt

hedocs.io/about.ht

ml

(Bergen et al., 2020)

scGESTALT 5 Cells by Barcodes 

matrix

Development tree n/a n/a (Raj et al., 2018)

LinTIMaT 5 Cells by Barcodes 

matrix +Cells by 

Genes Matrix

Trajectories and 

barcodes that mark 

different cell fates 

LinTIMaT 

(Python)

https://jessica1338

.github.io/LinTIM

aT/

(Zafar et al., 2020)

GSEA 6 List of 

differentially 

expressed genes

Enriched TFs and 

Pathways

Several tools 

implemented

GSEA: 

https://www.gsea-

msigdb.org/gsea/in

dex.jsp

(Subramanian et al., 

2005)

PANTHER 6 List of 

differentially 

expressed genes

Enriched TFs and 

Pathways

Several tools 

implemented

Panther: 

http://www.panthe

rdb.org/

(Mi et al., 2019)

iDREM 6 Samples by Genes 

matrix

Co-expressed gene 

groups and their 

regulatory factors 

(TFs and 

microRNAs)

iDREM 

(Java, 

Javascript)

https://github.com/

phoenixding/idrem

(Ding et al., 2018b)

coupleNMF 6 Cells by Genes 

matrices (from 

scRNA-seq and 

scATAC-seq)

TF-gene 

regulatory 

networks

CoupleNMF

(Python)

https://github.com/

wanwenzeng/coup

leNMF

(Duren et al., 2018)

Cellphone

DB
6 Genes by Cells 

Matrix, and Cell 

labels

Interactions 

between different 

cell populations 

and associated 

ligand-receptor 

pairs 

CellphoneDB

(Python)

https://github.com/

Teichlab/cellphon

edb

(Efremova et al., 

2020)

CSOmap 6 Cells by Genes 

Matrix

Interactions 

between different 

cell populations 

and associated 

ligand-receptor 

pairs

CSOmap

(MATLAB)

https://codeocean.

com/capsule/2860

903/tree/v1

(Ren et al., 2020)

MESSI 6 Cells by Genes 

Matrix, and spatial 

information for all 

the cells

Interactions 

between different 

cell populations 

and associated 

ligand-receptor 

pairs

MESSI 

(Python)

https://github.com/

doraadong/MESSI

(Li et al., 2021)

The tools are numbered and color coded based on the specific tasks they are intended for. Note that a number of tools can be applied tomultiple tasks.
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Figure 2. Alignment of scRNA-seq data from

a large iPSC single-cell study.

Results are presented for the top three human iPSC

donors in terms of cell counts (‘‘joxm,’’ 1,415;

‘‘guss,’’ 1,093; ‘‘poih,’’ 1,077).

(A and B) UMAP embeddings of the unaligned cells,

colored by donor ID (A) and differentiation time

point (B).

(C and D) UMAP embeddings of the cells after

integration with Seurat, colored by donor ID (C) and

differentiation time point (D).

(E) Evaluation of the alignment, quantified using

the local inverse Simpson’s index score based on

PCA coordinates after integration with Seurat (the

same PCA embeddings used to produce the

UMAP embeddings) in (C and D). The top part

shows a high mixing score for donors, indicating

that the alignment successfully overcomes batch

affects. The bottom score shows low mixing for

time points, indicating that the alignment correctly

separates cells based on their differentiation

stage.
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expected subpopulation structure and cell-type frequency.

Sequencing depth is often determined by the platform used for

the analysis. For example, 10x genomics scRNA-seq measure-

ments often requires at least 20k reads/cell. It is important to

note that, unlike the number of cells, increasing read depth usu-

ally will not increase the cost by much. To capture genes that are

less abundant but might be of importance it is recommended to

profile at least 50k reads/cell. A list of recommended sequencing

depth for various single-cell sequencing platforms (e.g., 10x

Chromium, smart-seq) is also available for reference (Haque

et al., 2017).

As for selecting time points, this is often a tradeoff between

costs and accuracy. Obviously, the more time points the bet-

ter, although exactly how many are needed and how they

should be spaced (uniformly, more emphasis on the start,

etc.) is often unknown. To select an optimal set of time points

Kleyman et al. (2017) developed the time point selection (TPS)

method (Table 1). TPS is based on oversampling (i.e., sam-

pling at very high frequency) followed by nanostring profiling

of relatively few genes in bulk samples. This procedure is

often much cheaper and faster than full bulk or single-cell

sequencing. Although results are best if the genes selected

are relevant for the process being studied, random genes

can also lead to good results. Next, computational methods

are used to reconstruct the temporal profiles of the genes

and to determine the optimal subset of points which are

enough to correctly predict the other, unused, time points.

In addition to the selected points, TPS provides a measure

of accuracy that indicates the expected loss resulting from
6 Cell Reports Methods 1, 100087, October 25, 2021
the reduction in time points sampled.

TPS was recently applied to a single-

cell study which aimed to optimize the

protocol differentiating iPSCs to alveolar

epithelial type 2 cells (AEC2s) (Hurley

et al., 2020). The method selected six

time points to profile and these were
shown to accurately capture the different stages and transi-

tions involved in the differentiation process.

CELL TYPE ANNOTATION FOR SINGLE-CELL
SEQUENCING DATA

The end results of specific differentiation are sets of cells that can

be in one or several states (cell type). Inferring the set of cell

types, their distribution, and their similarity to known human

cell types is one of the most important issues when determining

the success of a differentiation protocol. Accurate assignments

are even more challenging for iPSC studies when compared

with other scRNA-seq studies because of variability in the differ-

entiation ability of iPSC lines that can impact consistent cell-type

annotation (Cuomo et al., 2020; Guhr et al., 2018). Even

canonical markers of differentiation stage can be unreliable for

annotating significant portions of iPSCs that might be rapidly un-

dergoing transcriptional changes, or are in transition between

differentiation states (Cuomo et al., 2020). Further complication

is due to higher variability at the mRNA level compared with

expression of canonical protein markers (Carcamo-Orive et al.,

2017).

Cell-type inference can be performed in an unsupervised or

supervised manner. The former involves clustering of the cells

(either from the last time point or using the branches obtained

by the pseudo-time analysis). Next, each cluster is analyzed by

looking at differentially expressed genes or known markers to

determine cell types. Finally, cell types are assigned from a set

of ontologies. If none of the known types matches a specific
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cluster it might represent a new or intermediate state. Most clus-

tering methods used for such assignment work on a dimension-

ally reduced set of genes and provide visualization by using 2D

projections. PCA, t-SNE (Maaten and Hinton, 2008), and

UMAP (McInnes et al., 2018) are among the most widely used

dimensionality reduction methods. Examples of clustering

methods used for this include Monocle (Cao et al., 2019; Qiu

et al., 2017), Louvain (Blondel et al., 2008), and Leiden (Traag

et al., 2019) (Table 1). A variety of statistical methods, such as

Student’s t test, Wilcoxon rank-sum test, and several others

can be applied to the resulting clusters to identify top differential

genes, which are then compared with known cell-type markers

to identify the most likely cell types (or a list of probabilities for

different cell types) (Zhang et al., 2019).

Another option for assigning cell types to new scRNA-seq da-

tasets are supervised methods that either classify cell types

(classification methods) or use previously annotated datasets

to ‘‘transfer’’ labels to a new dataset (alignment methods). In

classification methods, iPSCs are used as a query and a classi-

fier trained on a labeled reference is used to predict their labels.

Examples of these methods include SCNN (Lin et al., 2017a) and

scQuery (Alavi et al., 2018) (Table 1). Alignment methods (Johan-

sen and Quon, 2019) rely on various strategies and often start by

identifying similar sets of anchor cells between the two datasets

based on the expression of a subset or all genes. This is an

important step for iPSC studies, as there are many sources of

batch effects present that make comparisons of experiments

difficult. As a result, adjustment for experimental batch effects

is often an early step in iPSC scRNA-seq analysis (Jerber

et al., 2021). Next, nearest neighbor approaches (either between

or within the same dataset) are used to assign all cells in the new

dataset to a cell or representation in the previously annotated da-

taset. Most alignment methods begin with learning a shared joint

reduced dimension representation, either using various embed-

ding neural networks or usingmore standardmethods (e.g., PCA

or SVD [Golub and Reinsch, 1971]). Next, variants of nearest

neighbor algorithms are used to assign cells in the new dataset.

Although some of these methods rely on linear transformations

of one dataset onto the other, based on identified anchor cells

(Alavi and Bar-Joseph, 2020; Haghverdi et al., 2018; Stuart

et al., 2019), others utilize neural network models to embed

both datasets in a shared reduced dimension (Johansen and

Quon, 2019; Lopez et al., 2018). Several evaluation metrics for

the accuracy of the assignment have been proposed and are

used to determine if the alignment can indeed correctly match

the same cell types. One such metric is local inverse Simpson’s

index (LISI) (Korsunsky et al., 2019), which estimates the diver-

sity within a small neighborhood around each cell, measuring

the effective number of datasets around the cell (higher values

indicate better alignments) and the effective number of cell types

around the cell (lower values indicate better alignments) simulta-

neously. Another example is k-BET (B€uttner et al., 2019), which

tests the null hypothesis that the fraction of cells from a particular

batch within a small neighborhood is the same as the fraction

among all cells. This test is conducted for many random local

neighborhoods, and a low rejection rate indicates well-mixed

batches and thus a good alignment. Other metrics to assess

alignments include those based on clustering agreement mea-
sures, such as the adjusted Rand index, where a clustering

method is applied to the aligned cells, and this clustering is

compared with cell-type labels and dataset labels (Tran et al.,

2020) (Table 1).

Alignment methods are also useful for a critical question in

stem cell differentiation: evaluation of the similarity of cell types

generated by a differentiation protocol and cells from healthy

controls for the same tissue/organ. Although individual differ-

ences will likely lead to some differences between iPSC-derived

cells and control cells from healthy individuals, alignment

methods can be used to overcome batch and experimental ef-

fects to determine the similarity of the differentiated cells. This

is particularly important in iPSC differentiation, as batch effects,

such as time point of collection, cell line of origin, and experi-

mental batch, often dominate the variability in the data (Cuomo

et al., 2020). In addition to alignment to human-derived datasets,

iPSC studies can also be aligned to model species datasets. In

this case the alignment method would be used to overcome

both batch affects and differences in the set of genes between

species (Pola�nski et al., 2020). Such analysis might be of critical

importance in cases where it is hard to obtain specific reference

sets from human (e.g., specific developmental data from real

embryos). As an example, we present here an alignment of

iPSCs from a recent large iPSC study (Cuomo et al., 2020) that

contained cells from 125 donors collected at different time points

during differentiation (Figure 2).Without aligning the cells, iPSCs

from the same time points are separated by donor, making it

hard to compare cell types across donors (Figures 2A and 2B).

However, after we integrate the cells by using Seurat (Stuart

et al., 2019), we see that the batches (donors) are well mixed,

while still keeping the biological signal (distinct differentiation

time points) intact (Figures 2C and 2D). We also quantitatively

evaluate the alignment via the LISI score and observe that the

alignment indeed leads to high mixing between batches (do-

nors), while time points remain distinct (Figure 2E).

COMPUTATIONAL TOOLS TO EVALUATE iPSC
DIFFERENTIATION PROTOCOLS

A number of machine learning and network analysis methods

have also been developed to directly evaluate differentiation pro-

tocols. These methods, including CellNet (Morris et al., 2014),

SingleCellNet (Tan and Cahan, 2019), Capybara (Kong et al.,

2020), and KeyGenes (Roost et al., 2015), examine the relation-

ship between differentiated (or reprogrammed) cells and their

in vivo counterparts to quantify how closely engineered cell pop-

ulations resemble target cell types (Table 1). CellNet, which was

developed for bulk data, uses information on a set of cell types

and associated gene regulatory networks (GRNs). For an input

dataset, it predicts active GRNs by using context-likelihood

and, on the basis of the set of identified GRNs, it determines

probabilities for cell and tissue types. Other methods can use

similar ideas for single-cell data. For example, Alavi et al.

(2018) presented scQuery, a neural network-based classification

method that can be used to assign cell types in new samples on

the basis of previously annotated cell types. scQuery compiled a

large database of annotated scRNA-seq data and combined

neural networks and k nearest neighbors to predict cell types
Cell Reports Methods 1, 100087, October 25, 2021 7



Figure 3. A typical dimensionality reduction-based trajectory infer-

ence pipeline

The high-dimensional cell expression profiles (blue dots, top) are first pro-

jected to a lower space (bottom, 2D in this example). Next, a trajectory is in-

ferred by connecting anchor nodes (gray dots), which represent cell clusters.

In most methods the initial (or starting) set of cells are identified by the user and

serve as the starting point for the trajectory (left most gray node). Next, this

point is linked to other points by edges to construct the full trajectory (edges

from left to right).
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for new samples on the basis of the similarity to samples in the

database. SingleCellNet uses Random Forest to achieve a

similar goal of cell-type classification. Capybara (Kong et al.,

2020) is another method for cell type assignment on the basis

of reference data. It is based on quadratic programming and

uses bulk expression signatures to deconvolve single cells as a

linear combination of different cell types. Each cell is then as-

signed a score for each of the possible cell type. The method

was further extended to incorporate single-cell annotations,

which improves performance (Table 1).

TOOLS FOR TRAJECTORY INFERENCE FROM
scRNA-SEQ TIME SERIES DATA

Although analysis of the set of resulting cells is often required to

determine if the protocol indeed achieves its goals, the process

itself and the way cells differentiate from iPSCs to the required

cell types is also of great interest. Understanding the biological

events that take place as part of the differentiation process pro-

vides information on both the way specific tissues and organs

develop and the way different aspects of the protocol contribute

to the correct differentiation. Thus, reconstructing the set of

states and transitions leading to the end result is often of great

interest. When performing time series analysis, which is the ma-

jor focus on many differentiation studies, scRNA-seq and

scATAC-seq studies present challenges that differ from bulk ex-

periments. Although in bulk studies it is possible to follow the

(average) trajectories of genes over time by obtaining samples

at specific time points, when individual cells are profiled, they

are consumed and cannot be directly followed over time. In addi-

tion, single cells even at the same time point might be at different

stages (some can be slightly faster or slower than others), which

means that even cells sampled at the same time might not be in

the same state. To overcome this issue, several methods have

been developed for pseudo-time inference from time series

scRNA-seq data (Trapnell et al., 2014). Most methods for

pseudo-time inference rely on using dimensionality reduction
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followed by the construction of spanning trees or graphs to con-

nect points in the lower dimensional space (Figure 3). A large

number of variants on this basic idea have been proposed.

Some of the more widely used include Monocole3 (Cao et al.,

2019), Diffusion maps (Haghverdi et al., 2016), and PAGA (Wolf

et al., 2019) (Table 1). Other methods, including scdiff and

CSHMM, use a probabilistic approach that either assigns cells

to a discrete (Weinreb et al., 2018) or infinitely many states (Lin

and Bar-Joseph, 2019). Such methods can be used to infer

continuous trajectories. Following cell assignments by any of

the methods researchers can reconstruct the expression trajec-

tories of individual genes for specific branches by using their

levels in cells assigned along the branches.

Another direction for reconstructing such trajectories is RNA

velocity (LaManno et al., 2018). scVelo is an example RNA veloc-

ity method that could be generalized to systems with transient

cell states (Bergen et al., 2020). Unlike pseudo-time ordering

methods that only look at the expression levels of genes in

different cells, RNA velocity methods analyze both the levels of

gene expression and the levels of unspliced introns to obtain a

time derivative estimate of the direction the cell is moving. This

estimate can assign a trajectory to each individual cell by

comparing the unspliced RNAs in one cell to the spliced (pre-

sumably a later time point) RNA in another. By obtaining a trajec-

tory for each cell the method can infer an overall trajectory for all

cells in a dataset that is not directly based on similarity of the

expression levels.

TRAJECTORY INFERENCE BY USING GENETIC
BARCODING

Trajectory inference methods based on scRNA-seq (discussed

above) assume that cell states change continuously over time

and so can be traced by using changes in the expression of spe-

cific genes. Although this assumption seems to be correct in

many cases, the sampling rates and other experimental and bio-

logical artifacts (e.g., threshold expression switches [Torres

et al., 2018]) might lead to inaccuracies in the reconstructed tra-

jectories and might prevent the identification of cell paths and

branching. An alternative, which can also provide information

on the specific cell type commitment time and the potential of

specific cells to differentiate to multiple types at a specific

time, is to use genetic barcoding to label a set of cells at a certain

point in the experiment. In these experiments, cells are tagged

with a specific genetic barcode at one or multiple stages of the

experiments. These barcodes can be read as part of the RNA-

seq of each of the cells and used to reconstruct relationships be-

tween cells profiled at different time points. Two main variants of

this approach have been used in developmental and differentia-

tion studies. The first introduces a set of barcodes from a specific

library at one or more stages and uses them to identify the set of

all progenitors of a cell at later time points (Hurley et al., 2020;

Weinreb et al., 2020). By profiling the cells at different time points

such an approach can be used to both reconstruct trajectories

by combining the scRNA-seq profiles with the genetic barcodes

and to determine if multiple cell types can arise from the same

cell. Inserting such barcodes at multiple time points leads to a

finer resolution of the reconstructed branching tree given that
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cells can be traced to both immediate and previous parents.

Genetic barcoding has been used in several recent iPSC studies,

including for hematopoietic stem cells and progenitor cell differ-

entiation (da Rocha and Malleshaiah, 2019; Hollmann et al.,

2020).

Genetic barcoding is often limited in the number of different

barcodes that can be used along a specific trajectory. Thus,

not all cell divisions can be recorded by using this approach

and a large number of cells might end up with the exact same

barcodes making it hard to fully reconstruct specific trajectories.

Thus, a second, alternative approach was developed to trace a

much larger number of divisions by using CRISPR mutations

(Kalhor et al., 2018; Raj et al., 2018). In this method, a CRISPR-

Cas9 construct is inserted into cells and random mutations

accumulate with each division. When cells are sequenced, a

phylogeny tree for cells can be reconstructed by using scGES-

TALT (Raj et al., 2018) based on the mutations accumulated for

each cell, leading to a much better resolution of the branching

history. However, unlike genetic barcoding, the CRISPR

approach is much noisier (mutations can be reversed and/or

missing leading to errors in the reconstruction) and mutations

can saturate, leading to cells with the same mutations arising

from different trajectories. Recent methods have integrated sin-

gle-cell expression data with the CRISPR mutations to improve

the tree reconstruction. These methods, including LinTMat (Za-

far et al., 2020), result in improved accuracy of tree reconstruc-

tion and overcome some of the noise associated with the

CRISPRmutations. Still, even when using expression to improve

accuracy, the resulting tree might still contain errors and is only

the maximum likelihood estimation of the process.

INFERRING REGULATORS AND PATHWAYS
CONTROLLING CELL DIFFERENTIATION

The above analysis can be used to characterize the activity and

resulting outcomes of iPSC differentiation protocols. Such anal-

ysis is critical for both understanding the set of states that cells

take while differentiating and determining if the resulting set of

cells, or at least a specific cell type,matchwhat we are interested

in. However, these analyses do not provide explicit information

on how to improve protocols and how to obtain cells and differ-

entiated organoids that match more closely the target. In several

cases, even for successful differentiation protocols, the yield

might be very low (sometimes less than 5% [Chun et al.,

2011]). The vast majority of resulting cells often do not express

the markers that are targeted by the protocol. This means that

only a small subset of the cells activate the pathways that are

needed for correct differentiation. Determining how and when

to activate these pathways for the other cells might lead to

much better results and higher yields.

A number of computational methods have been developed to

model the set of regulatory networks that are activated within

cells and that govern the differentiation processes. This can be

largely divided into twomain categories. The first relies on trajec-

tory inference methods (discussed above) to obtain an initial

temporal model. This model is then analyzed to identify genes,

regulators, and pathways that correlate with the inferred trajec-

tories for the cells (e.g., a set of genes that go up in correlation
with the order assigned to cells along a specific branch). Once

such genes are identified, various set enrichment methods are

used to infer the pathways and functional relevance of these

genes and to identify potential regulators of such genes.

Example of such methods include GSEA (Subramanian et al.,

2005) and PANTHER (Mi et al., 2019) (Table 1). This set can

then be used to determine potential interventions that might

lead to the desired outcome; for example, overexpression of a

pathway that is upregulated in the set of cells that are the target

of the protocol.

The second set of methods perform joint trajectory inference

and pathway analysis. Unlike the standard trajectory inference

methods, which mainly use the expression of genes, such joint

analysis methods take into account both the set of expressed

genes and the set of regulators/pathways they belong to. This

allows these methods to focus on a subset of the genes rather

than on all genes and to construct the resulting trajectories on

the basis of these regulatory relationships. An advantage of

these methods is the fact that they can pinpoint not just the reg-

ulators and pathways but also the exact time in the process in

which they are activating their targets. For example, scdiff

(Ding et al., 2018a) and its extension CSHMM (Lin et al., 2020)

(Table 1), were shown to correctly predict specific regulators

and pathways whose removal or overexpression can lead to

changes in cell fate during iPSC differentiation. Such information

can be used to better tailor perturbations by either repressing or

overexpressing specific transcription factors or treatment with

relevant small molecules at the exact time point leading to

much higher yields and improved iPSC differentiation protocols.

To elucidate this application, we present CSHMM performed on

an iPSC scRNA-seq of differentiating alveolar epithelial type 1

(AT1) cells (GEO accession series: GSE145539 [Kanagaki

et al., 2021]) (Figure 4). Although the method is unsupervised,

in the CSHMM reconstructed trajectory the expression of the

AT1 marker gene, HOPX, is increasing along with the differenti-

ation stage. The method also identifies a number of transcription

factors, including EGR1, as key regulators of the differentiation

process and provides information on the specific stages and

time points that are critical for regulating AT1 cell differentiation

(Figure 4). Many of these findings agree with previous studies

(Martinez et al., 2004).

Although the above discussion is focused on scRNA-seq, for

modeling regulation scATAC-seq is a valuable and sometimes

critical addition. A number of methods (mainly for bulk), such

as iDREM (Ding et al., 2018b) and coupleNMF (Duren et al.,

2018) (Table 1), have been developed to integrate RNA-seq

and ATAC-seq data for regulatory network inference and,

when possible, sequencing methods that can simultaneously

profile both types of data in the same cells would lead to more

accurate results and better models. Other methods, such as

sci-CAR and snare-seq, enable the joint profiling of scRNA-seq

and scATAC-seq from the same cells (Cao et al., 2018; Liu

et al., 2019; Ma et al., 2020; Xing et al., 2020). These are benefi-

cial because they allow for a joint analysis of both the levels of

genes in cells and their regulation. Recent studies have begun

to integrate single-cell chromatin accessibility data (scATAC-

seq) with scRNA-seq for inferring fate-specific regulators. For

example, Ranzoni et al. (2021) profiled hematopoietic stem and
Cell Reports Methods 1, 100087, October 25, 2021 9



Figure 4. CSHMM results for an iPSC data on

lung alveolar epithelial cell differentiation, in

GEO: GSE145539

(A) UMAP plot of all clusters.

(B and C) HOPX expression (alveolar type 1 marker)

in different clusters. HOPX expression is higher in

clusters 2, 6, and 8 CSHMM trajectories.

(D) CSHMM reconstructed trajectories. Each dot

represents a cell, while colors for cells correspond

to the clusters in (A) HOPX expression is highest for

later branches. TFs are assigned by the method to

some edges of the differentiation tree. For example,

EGR1 regulate the cellular state transitions out of

the cluster 0.
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progenitor cells and mature blood cells from fetal bone marrow

and liver tissues. For some of the samples they performed

both scRNA-seq and scATAC-seq profiling. They initially clus-

tered the scRNA-seq data and inferred trajectories by using

PAGA (Wolf et al., 2019). Based on the scRNA-seq analysis

they selected 36 markers genes. Next, they clustered the

scATAC-seq results and analyzed the accessibility of the identi-

fied markers in each of the clusters. They have also performed

label transfer between scRNA-seq and scATAC-seq results.

Using single-cell motif discovery methods (Schep et al., 2017),

they were able to identify lineage-specific transcription factors

(TFs) and match these to the clusters and trajectories they

regulate as part of the process. The main advantage of using

scATAC-seq was in identifying TFs that are expressed at low

levels and so cannot be detected by using expression data

alone. Motifs for such TFs can still show significant enrichment

at key target genes enabling their identification when performing

joint analysis.

INFERRING SIGNALING PATHWAYS BY USING
scRNA-SEQ AND SPATIAL SINGLE-CELL DATA

The above discussion focused on internal cell controls that are

often achieved by gene regulation. However, a key aspect of

development and differentiation is cell-cell signaling networks.

To better model the iPSC differentiation process, especially

when the goal is to obtain an organoid rather than a specific

cell type requires the analysis and modeling of these networks

as well. scRNA-seq and other sequencing methods do not

directly provide information on such interactions given that

when cells are extracted for profiling their location with respect

to other cells is lost and so it is not clear which cells are neighbors

in the sample. Although the spatial profiling methods discussed

in the introduction above provide clear advantages over the

sequencing-based methods by providing a direct measure of

the spatial organization of cells, they are currently limited in

several ways including the number of genes they profile, the
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types of samples they can analyze, and

in the way samples are prepared and

processed.

The computational methods attempt to

determine interactions between cell types

by analyzing interactions between clusters
obtained from the scRNA-seq data. Generally, these methods

rely on the assumption that, if cells interact, one would express

a set of ligands that will interact with a set of receptors in the

other (Armingol et al., 2020). To identify such interactions, re-

searchers often start with a general or tissue-specific set of

such ligand-receptor pairs and attempt to determine if any of

them are activated in neighboring cells. Some methods extend

the analysis to look not just at neighboring receptors but also

at their downstream targets (i.e., signaling pathways activated

by these receptors). This is achieved by studying the set of differ-

entially expressed genes in each cell type and intersecting them

with sets of known pathways. Such pathways can then be linked

to receptors that are activating them to link cells. CellphoneDB

(Efremova et al., 2020), CSOmap (Ren et al., 2020), and MESSI

(Li et al., 2021) (Table 1) are three suchmethods that can perform

cell interaction analysis. These methods rely on clustering of

scRNA-seq data. For each pair of clusters, they evaluate the

expression pairs of ligands and their known receptor targets

and obtain a summary score for all potential ligand-receptor

pairs. This score is then used to predict which clusters (cell

types) might be interacting.

A number of computational methods have also been devel-

oped to infer cell-cell interactions from spatial transcriptomics

and proteomics data. These methods range from graph-based

approaches that attempt to model cells as nodes in a graph

and their interactions as edges (Yuan and Bar-Joseph, 2020)

to more global inference approaches that look at pre-defined

neighborhoods on the basis of distance for performing such

analysis. In addition, spatial methods can also be used to

compare the organization of cells between organoids and real

tissues (Fleck et al., 2020). A key advantage of spatial transcrip-

tomics methods is their ability to determine cell types and loca-

tions of cells. This can be used to study if cells in the organoid are

organized in a similar way to those in real healthy tissues; for

example, by computing the neighborhood distributions for spe-

cific cell types in both types of samples. Changes observed can

be then traced back to the signaling networks inferred and
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interventions can be determined to further improve the similarity

of the two samples.

DISCUSSION AND FUTURE PROSPECTS

Single-cell technologies can revolutionize the use of iPSCs and

their effectiveness. All stages of iPSC-based therapeutics,

including those used for directly treating individuals and those

used for personalized treatment determination, can be greatly

improved by utilizing such data and the associated analysis dis-

cussed above. Similarly, developmental studies that use iPSCs

will gain a much better understanding of the process when using

these datasets. Starting with the differentiation protocol, single-

cell technologies can provide information on the set of genes and

regulators that are activated at various stages of the differentia-

tion process. Both intracellular and intercellular pathways and

regulators can be identified and modeled. By analyzing these

pathways and their impact, researchers would be able to identify

the most likely interventions, and their timing, required to obtain

the target cells or organoids. Single-cell methods can then be

used to evaluate the success of the protocol at a much more

detailed level than currently done. Rather than relying on a small

set of markers, by profiling all genes at the single-cell level re-

searchers can determine the exact distribution of the resulting

cells and see if they match target cells both in terms of expres-

sion and in terms of cell-type frequencies. In addition, the use

of such technologies and computational methods are expected

to lead to important advances in a number of other key areas

relevant for the use of iPSCs in treating individuals.

Use of single-cell technologies in judging cell state
longevity and cancer risk of iPSC-derived cells
In this review we mainly focus on using single-cell technologies

to better understand andmodel the iPSC differentiation process.

However, evenwhen suchmethodswork and lead to an effective

protocol that is capable of generating tissue-specific cells, the

resulting cells might still not lead to an effective treatment or clin-

ical use. An important question for iPSC-derived cells is their

ability to maintain their states for long durations without

becoming cancerous (Lee et al., 2013). Similarly, the ability of

these cells to maintain their states for very long durations after

injections into a host, and to further proliferate in the host, is a

major open question. Single-cell technologies can be used to

address these questions both in vitro and in vivo. For example,

recent work has shown that differentiated lung cells remain

very similar to their states at the completion of the differentiation

protocol several months after the differentiation (Hurley et al.,

2020). Similar analysis, several weeks or months after differenti-

ation, can be used to study the in vitro potential for cancer and

oncogene expression. The advantage of single-cell technologies

over bulk or marker-based methods for this task is that they can

identify even a very small subset of cancerous cells, which will

likely go undetected when profiling groups of cells. In addition,

given that the analysis profiles all genes within a cell, there is

no need to preselect a set of oncogenes or other cancer markers

making it easier to identify all potential cancerous cells.

Beyond the analysis of expression data, the use of epigenom-

ics single-cell technologies, including scATAC-seq described
above and methyl-seq (Barros-Silva et al., 2018), might provide

further information about the potential of cells to become

cancerous. Methylation of specific DNA regions and genes has

been tightly linked to various forms of cancer (Baylin, 2005). Sin-

gle-cell methylation analysis can be performed to identify if even

a small number of cells display similar methylation patterns.

Such analysis can identify not just cells that actually became

cancerous but also those with the potential to become

cancerous leading to much safer resulting sets of cells.

Potential use of single-cell technologies to study
immunogenicity and for personalizing iPSC-based
treatments
As discussed in the Introduction, several therapeutic uses of

iPSC are now being studied in clinical trials. A major promise

of iPSCs is their injection to treat various diseases. One of the

most well-studied treatments along these lines is the injection

of MSCs to treat osteoarthritis (Jevotovsky et al., 2018). Other

ongoing studies include the use of human autologous iPSC-

derived dopaminergic progenitors to restore motor function in

Parkinson’s disease (Song et al., 2020) and transplanting retinal

pigment epithelial cells differentiated from iPSCs in patients with

age-related macular degeneration (Mandai et al., 2017). Howev-

er, recent studies indicate that, although some iPSC-differenti-

ated cells are usually well tolerated (De Almeida et al., 2014),

others might still trigger immune response in patients (Deuse

et al., 2019; Liu et al., 2017) because of the expression of immu-

nogenic antigens that are not expressed in parental somatic

cells. For instance, mutations during reprogramming or cell

expansion can generate neoantigens that stimulate immune

response after transplantations (Deuse et al., 2019). Single-cell

technologies are very suitable for studying these issues.

Comparing derived cells that do and do not trigger immune

response (Zhao et al., 2015) at the single-cell level can allow

the identification of both genomic and epigenomic differences

between such cells and differences in the presence (or absence)

of specific cell types that might trigger the response. Combined

with the ability to study the tumor-induction risks discussed

above, such analysis can lead to much safer treatments.

Autologous iPSCs are also a great way to study in vivo the ef-

fect of potential treatments on an individual. There has beenwide

interest in using cell lines and bulk data to study drug effects (Pa-

bon et al., 2018), and work by several groups indicated that

drugs can be tailored on the basis of the predicted impact of

the set of genes expressed in a certain disease. Methods such

as the connectivity map (Lamb, 2007) and related approaches

attempted to link the expression induced by specific drugs to

the expression observed in a patient to tailor a personal treat-

ment for individuals. The methods work by looking for drugs

that lead to expression patterns that ‘‘reverse’’ differences

observed between healthy and diseased tissue for an individual

(Lamb, 2007). Although the connectivity methods successfully

identified drugs for several diseases, these studies have so far

focused on cell lines or bulk expression data from individuals

and so could not take into account the impact of drugs on

individual cell types or on the distribution of cell types within a

tissue/organ. These are crucial issues for treatment. Using sin-

gle-cell technologies, we can extend the use of such methods
Cell Reports Methods 1, 100087, October 25, 2021 11
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to improve the ability to identify the correct drug for patients. This

can be done by combining some of the computational methods

described above (including those that attempt to assign cell

types in samples before and after treatment, those that look for

specific genes, and those that study cell-cell interactions). The

ability to predict and then test drugs on autologous iPSCs can

have a large impact on the response of individuals to treatments.

To conclude, here, we present a comprehensive approach for

the use of new single-cell technologies in iPSC differentiation

studies. Still, several challenges remain to effectively use them

for improving these protocols. Many of these challenges are

computational and relate to the ability to efficiently and accu-

rately analyze the very large data that is generated by single-

cell technologies (Cahan et al., 2021). As we discussed, methods

are emerging to address many of these challenges and, while

more work remains, we believe that the existing computational

solutions are already mature enough to provide useful informa-

tion that will lead to much better iPSC-based methods.
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