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Abstract

Clinical interest in poly(ADP-ribose) polymerase 1 (PARP-1) has increased over the past decade 

with the recognition of its roles in transcription regulation, DNA repair, epigenetic bookmarking, 

and chromatin restructuring. A number of PARP-1 inhibitors demonstrating clinical efficacy 

against tumors of various origins have emerged in recent years. These inhibitors have been 

essentially designed as NAD+ mimetics. However, because NAD+ is utilized by many enzymes 

other than PARP-1, NAD+ competitors tend to produce certain off-target effects. To overcome 

the limitation of NAD-like PARP-1 inhibitors, we have developed a new class of PARP-1 

inhibitors that specifically targets the histone-dependent route of PARP-1 activation, a mechanism 

of activation that is unique to PARP-1. Novel histone-dependent inhibitors are highly specific 

for PARP-1 and demonstrate promising in vitro and in vivo efficacy against prostate and renal 

tumors. Our findings suggest that novel PARP-1 inhibitors have strong therapeutic potential for the 

treatment of urological tumors.
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Introduction

Poly(ADP-ribose) polymerase 1 (PARP-1) is an abundant and ubiquitous nuclear enzyme. 

When active, it captures NAD+ to assemble long and branching polymers of poly(ADP-

ribose) (pADPr) covalently modifying itself and surrounding proteins [1]. One of the most 
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common and well-studied activities of PARP-1 is its role in DNA repair [2, 3]. Inhibition 

of PARP-1 may be lethal if combined with a loss-of-function of certain DNA repair genes, 

including BRCA1, BRCA2, PTEN, ATM, CHEK2, FANCA, and several others. These 

genes are frequently mutated in various malignancies [4–8]. Thus, tumor cells harboring 

defects in DNA repair pathways can be selectively targeted with PARP-1 inhibitors. In 

addition to its DNA repair function, PARP-1 participates in many other nuclear processes, 

including ribosome biogenesis, regulation of chromatin, nuclear traffic, and epigenetic 

bookmarking [9–11]. PARP-1 is also involved in transcriptional regulation by promoting 

an ‘open’ chromatin conformation favoring transcriptional activation [12, 13] and by serving 

as a cofactor of different pro-tumorigenic transcription factors, most notably NF-κB and 

AP-1 [14, 15].

In prostate cancer (PC), the PARP-1 function is critical for transcriptional activity of the 

androgen receptor (AR) [16]. PARP-1 is recruited to sites of the AR transcriptional function; 

PARP-1 enzymatic activity is required for the AR-driven gene expression and subsequent 

proliferation of androgen-dependent and castration-resistant PC (CRPC) cells [16, 17]. 

PARP-1 inhibition results in attenuation of the AR transcriptional activity and, therefore, 

interferes with androgen-dependent and -independent modes of the AR activation, whereas 

conventional antiandrogens, such as abiraterone (Zytiga) and enzalutamide (Xtandi), target 

only androgen-mediated activation of the AR [18]. PARP-1 also enhances the stability and 

accumulation of hypoxia-inducible factor alpha subunits (HIF-1α and HIF-2α) [19, 20], 

arguably the most common factors in renal carcinogenesis [19–22]. Therefore, the inhibition 

of PARP-1 activity represents a powerful therapeutic strategy against tumors of various 

origins and has been a field of intense investigation over the last two decades.

The PARP-1 pathway is aberrantly activated in several types of tumors, including prostate 

and kidney cancers [23–27]. Our studies reveal that the expression levels of PARP-1 and 

pADPr, a marker of PARP-1 activity, are significantly elevated in PC cells, relative to 

those in normal prostate epithelial cells. In contrast, PC cells display a loss of poly(ADP-

Ribose) glycohydrolase (PARG) [27], an enzymatic antagonist of PARP-1. Furthermore, 

the overall pADPr levels are significantly elevated in CRPC cells compared with androgen-

dependent PC cells [16]. We have also found that levels of pADPr are significantly 

elevated in ccRCC cell lines compared to those in normal kidney epithelial cells. pADPr 

expression was also augmented in the specimens of primary ccRCC tumors compared 

with corresponding normal kidney tissue samples. Notably, severe misregulation of PARP-1 

activity was observed in all examined metastatic ccRCC tumor specimens (unpublished 

results). Cancer cells sensitive to PARP-1 inhibitors display a loss of PARG expression and 

produce excessive amounts of pADPr [26, 28]. Increased accumulation of pADPr appears to 

be the best predictor of tumor sensitivity to PARP-1 inhibition [2, 26, 28].

PARP inhibitors: mechanisms of action

PARP-1 activity can be regulated by three mechanisms: 1) competitive binding with 

nicotinamide adenine dinucleotide (NAD) [1]; 2) disruption of the interaction of PARP-1 

with histones [29]; and 3) obstruction of PARP-1 binding with DNA [27]. Pharmacological 

PARP-1 inhibitors have been designed as NAD+ competitors and represent various 
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memes of nicotinamide pharmacophore [30–32]. However, because NAD+ is extremely 

abundant and ubiquitous in living cells and is utilized by many enzymes other than 

PARP-1, NAD+ competitors tend to produce off-target effects. Multiple studies show that 

NAD-like PARP-1 inhibitors can affect distant unrelated targets, showing inter-family 

polypharmacology (promiscuous activities at targets of different families) and intra-family 

polypharmacology (non-selective activities at targets of the same family) as well as multi-

signaling polypharmacology (multi-signaling activities mediated by the same target) [33–

35]. Examples of off-target effects include inhibitory activities against mono-ADP-ribosyl-

transferases and sirtuins, which control vital metabolic processes [34, 36, 37]. Besides 

binding PARP-1, most of the clinically relevant inhibitors, including olaparib, ABT-888 

(veliparib,) and rucaparib, also bind to other NAD-dependent enzymes, suggesting that these 

compounds lack specificity and have promiscuous inhibitory activity [34, 37]. The most 

common dose-limiting toxicities of PARP-1 inhibitors include anemia, neutropenia, and 

thrombocytopenia [38]. A small number of fatal cases of myelodysplastic syndrome and 

acute myeloid leukemia have been reported [39–42]. In addition to the risk of undesirable 

off-target interactions, the polypharmacologic effects of current NAD-like PARP-1 inhibitors 

may interfere with the interpretation of data obtained in basic biological research and 

clinical outcome studies.

Screening for novel histone-dependent PARP-1 inhibitors

To overcome the limitation of NAD-like PARP-1 inhibitors, we have developed a new 

class of PARP-1 inhibitors that specifically targets the histone-dependent route of PARP-1 

activation, a mechanism of activation that is unique to PARP-1. To establish a screening 

platform, we designed a PARP-1 activation assay in a 384-well ELISA plate coated 

with histone H4 protein-activator [43]. PARP-1 reactions were performed in each well 

by incubating recombinant PARP-1 enzyme and NAD+ in the presence of a single small 

molecule compound or a positive and a negative control. We were able to detect compounds 

that could disrupt PARP-1 interaction with histone H4, compete with NAD+, or abolish 

the accumulation of poly (ADP)-ribose, the product of these reactions, by measuring the 

levels of pADPr, which were used as an indicator of PARP-1 activity [43]. Screening 

a ~50,000 member small-molecule library identified 903 small molecules which inhibit 

PARP-1 in a cell-free system. After eliminating redundancies that displayed negligible 

structural differences, we reanalyzed 639 selected compounds and confirmed that all strong 

positive hits were 100% reproducible. A total of 373 small molecules in this list inhibited 

PARP-1 with the same, or better efficacy than the commonly used NAD-like PARP-1 

inhibitors.

To narrow down the list of small molecules for further analysis, we used a computational 

approach to eliminate molecules with a structural similarity to known biologically active 

molecules. We identified a group of 17 small molecules that showed no significant structural 

similarity to known inhibitors and NAD+. Moreover, these compounds had no obvious 

structural homologues among any components of eukaryotic enzymatic pathways. All 

these molecules showed a strong capacity to block PARP-1 interaction with histone H4 

in a cell-free system. Structurally, these molecules could be split into two subgroups: 

the first contain N-methylpiperidin in its the core element (2-(N-methylpiperidin-1-
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yl)acetate or 2-(N-methylmorpholino)acetate or 2-(N-methylpyrrolidine-1-yl)acetate); the 

second contains 1,3-dioxolane-4-yl)methyl, with 1-((1,3-dioxolane-4-yl)methyl)piperidine 

or 1-((1,3-dioxolane-4-yl)methyl)N-methylmorpholino or 1-((1,3-dioxolane-4-yl)methyl) N-

methylpyrrolidine as core elements [43]. Based on anti-PARP-1 activity, ease of synthesis, 

and structural analysis we ultimately selected a lead hit 5F02 [18, 30]. As it was confirmed 

by inosine-5′-monophosphate dehydrogenase (IMPDH) activity assay, 5F02 showed no 

significant reduction of NADH production in contrast to olaparib, which is a structural 

analogue of NAD+ and competes with NAD+ to reduce the production of NADH in the 

IMPDH reaction [30]. The results of this experiment indicate that non-NAD-like inhibitors 

like 5F02 do not affect metabolic pathways associated with NAD+.

Given that inhibiting PARP-1 in a cell-free system does not warrant activity of a compound 

in cell-based assays, we tested whether the new compounds were capable of inhibiting 

PARP-1 activity in a cell-based system. All 17 molecules identified by our screen potently 

inhibited PARP-1 in a panel of human prostate and ccRCC cell lines [30]. Dose-dependent 

decreases in clonogenic survival and cell viability were observed upon treatment of prostate 

and kidney cancer cells with histone-dependent PARP-1 inhibitors [18, 30].

Pre-clinical evaluation of the efficacy of histone-dependent PARP-1 

inhibitors against ccRCC and prostate cancer

Notably, the mechanism of action of histone-dependent PARP-1 inhibitors is completely 

different from that of the “classical” NAD-like PARP-1 inhibitors. NAD-like PARP-1 

inhibitors mediate their antitumor effect through two general mechanisms: (i) catalytic 

inhibition of PARP-1 and (ii) locking or ‘trapping’ PARP-1 on damaged DNA [44]. 

The results of our experiments are in agreement with these findings indicating that 

NAD-like inhibitors stabilize binding of PARP-1 to the activator histone H4 arresting 

PARP-1-activator complex in a transient conformation. In contrast, histone-dependent 

inhibitors disrupt PARP-1 binding to histone H4 and exclude PARP-1 from functional 

complexes [18, 30, 45]. Our experimental data support this premise, demonstrating that 

histone-dependent inhibitors suppress PARP-1-mediated transcription more potently than 

NAD-like inhibitors (unpublished results). Indeed, the expression of vascular endothelial 

growth factor (VEGF) was markedly suppressed in patient-derived PNX0010 ccRCC cells 

treated with 5F02, whereas treatment with olaparib had minimal effect on the expression of 

VEGF (unpublished results). Treatment with 5F02 inhibited the AR transcriptional activity 

and prostate-specific antigen (PSA) expression in LNCaP PC cells expressing either the 

wild-type AR or constitutively active AR splice variant, AR-V7 [18]. In contrast, treatment 

with the NAD-competing inhibitor olaparib and antiandrogen enzalutamide produced only 

negligible inhibitory effect on the AR transcriptional activity in LNCaP cells expressing 

AR-V7. Furthermore, 5F02 exerted significantly higher inhibitory effect on viability of 

LNCaP cells expressing AR-V7 compared with olaparib and enzalutamide. Collectively, 

our data demonstrate that unlike NAD-like PARP-1 inhibitors and antiandrogens that target 

androgen-mediated activation of the AR, histone-dependent PARP-1 inhibitors suppress 

the AR transcriptional function and, therefore, may be effective against both androgen-

dependent and -independent routes of the AR activation. Furthermore, 5F02 demonstrated 
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potent antitumor activity against true castration-resistant AR-negative PC-3 and DU-145 PC 

cells [18, 30].

In light of these encouraging in vitro data, we tested the antitumor activity of 5F02 using 

PNX0010 renal cell carcinoma and castration-resistant AR-negative PC-3 PC xenograft 

animal models. Animals treated with 5F02 showed a significantly stronger inhibition of 

tumor growth relative to control animals and animals treated with the classical PARP-1 

inhibitor olaparib [30]. Moreover, 5F02 demonstrated superior in vivo antitumor activity 

compared with clinically relevant anticancer drugs, i.e., docetaxel for prostate xenograft 

tumors and sunitinib for ccRCC xenograft tumors [34].

Conclusions

Clinical interest in PARP-1 has increased over the past decade with the recognition of 

its roles in transcription regulation, DNA repair, epigenetic bookmarking, and chromatin 

restructuring. Currently, over 50 clinical studies are being carried out to evaluate PARP-1 

inhibitors for the treatment of solid and hematological malignancies. Given the initial 

promising results, the efforts are now focused on finding more effective and specific 

PARP-1 inhibitors. Our group was the first to identify the agents that specifically target 

the histone-dependent route of PARP-1 activation, a mechanism of activation that is 

unique to PARP-1. Greater specificity and selectivity of new inhibitors compared with the 

conventional NAD-like PARP-1 inhibitors is expected. The new histone-dependent PARP-1 

inhibitors demonstrate higher efficacy in in vitro and in vivo settings against prostate and 

renal tumors compared to the classical NAD-like PARP-1 inhibitors. Taken together, our 

findings suggest that histone-dependent PARP-1 inhibitors have strong therapeutic potential 

for the treatment of urological tumors.
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