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ABSTRACT The C4-dicarboxylates (C4-DC) L-aspartate and L-malate have been identified
as playing an important role in the colonization of mammalian intestine by enteric bacte-
ria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as
a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exoge-
nous fumarate respiration and related functions are required for efficient initial growth
of the bacteria. L-Aspartate represents a major substrate for fumarate respiration in the
intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimila-
tion, DcuA catalyzes an L-aspartate/fumarate antiport and serves as a nitrogen shuttle for
the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the
L-malate/succinate antiport during fumarate respiration. The C4-DC two-component system
DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in
macrophages and in mice, succinate is a signal that promotes virulence and survival of S.
Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important
signaling molecule for the host and activates response and protective programs. Therefore,
C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling
molecules for the adaptation of host physiology.
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E scherichia coli and Salmonella enterica serovar Typhimurium belong to the
Enterobacteriaceae, which are characterized by their metabolic versatility. Hexoses

represent the preferred carbon source of enterobacteria and are degraded by glycolysis
(1) followed by complete oxidation in the citric acid cycle under aerobic conditions, or
by mixed acid fermentation under anaerobic conditions (2–4). C4-dicarboxylic acids (C4-
DCs) such as succinate, L-malate, L-tartrate, and L-aspartate represent alternative sub-
strates for growth (5–9). C4-DCs are degraded by the citric acid cycle in combination
with the pyruvate bypass under aerobic conditions and by fumarate respiration under
anaerobic conditions. C4-DC degradation is subject to glucose repression, and central
genes for the degradation of C4-DC substrates are induced by the C4-DC two-compo-
nent system DcuS-DcuR (10). Major targets of regulation by DcuS-DcuR are the genes
encoding the aerobic C4-DC transporter DctA, and of the anaerobic fumarate respiration,
namely, the C4-DC/succinate antiporter DcuB, fumarate reductase FrdABCD, and fuma-
rase FumB (10, 11). Fumarate respiration represents an important mode of energy con-
servation during anaerobic growth of enteric and proteobacteria (12–14).

The physiology, biochemistry, and regulation of hexose and C4-DC metabolism
have been studied in detail for enteric bacteria, particularly under defined (laboratory)
conditions. The significance of hexoses and hexose derivatives was confirmed for growth in
the intestine of mice or the mucus covering the cecal epithelium by commensal and
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pathogenic E. coli (15, 16). On the other hand, the role of C4-DCs for the enteric bacteria in
the intestine has remained uncertain. Under anaerobic conditions in the intestine, fumarate
respiration has been shown to be important for fitness and initial growth of commensal E.
coli and the enteropathogenic S. Typhimurium (17–20). The levels of fumarate in the cecum
and intestinal lumen were negligible, whereas those for L-aspartate and L-malate are notable
and reach levels that are sufficient to induce DcuS-DcuR dependent genes of fumarate respi-
ration (19, 20). Therefore, C4-DCs represented by L-aspartate and L-malate have an important
role for microbiota by driving fumarate respiration (19–22). Under the oxidative conditions
in an inflamed intestine, S. Typhimurium also oxidizes succinate (and other C4-DCs) by an
oxidative central metabolism (23). C4-DCs also serve as a carbon source during aerobic and
anaerobic growth of E. coli and S. Typhimurium (8, 9, 24). L-Aspartate is used as an important
nitrogen source (20, 21). The key enzyme of the assimilatory pathway, aspartase AspA, is
subject to regulation by the general nitrogen regulatory system (22).

Recent findings suggest that, in addition to its role as substrates, succinate coordinates
reactions related to virulence and survival of S. Typhimurium in macrophages and in
mice (25). Moreover, succinate is an important signaling molecule for the host.
Accumulation of microbiota-derived succinate affects transcriptional and posttranslational
modifications in the host and activates inflammatory programs, epigenetic regulation, and
ROS production (26–28).

Overall, C4-DCs have a major and specific role in the interaction of the mammalian
host with enteric bacteria. L-Aspartate and L-malate are important for gut colonization
of E. coli and S. Typhimurium due to their role in fumarate respiration, nitrogen assimi-
lation, and regulation of virulence. On the other hand, succinate produced by the
microbiota represents a substrate and signaling molecule for host luminal cells and
macrophages. This review will discuss the role of C4-DCs in the growth and coloniza-
tion of bacteria in the intestine with an overview of recent aspects of succinate as a sig-
naling molecule in host-microbiota interaction and physiology.

L-ASPARTATE AND L-MALATE AS SUBSTRATES FOR FUMARATE RESPIRATION IN
THE INTESTINE

E. coli and other enteric bacteria perform fumarate respiration in the absence of electron
acceptors like O2 or nitrate (2, 12, 14, 29). Fumarate reductase FrdABCD is membrane-integral
and perceives the electrons for fumarate reduction frommenaquinol (30). During fermentation
of hexoses and other carbohydrates, menaquinone (MK) is reduced at the expense of NADH,
formate, or H2 originating from fermentation (1, 3, 31). NADH and H2 are oxidized by NADH
dehydrogenase I (NuoA-N) and respiratory hydrogenase (mostly hydrogenase 2 or Hyb in
E. coli and S. Typhimurium) to reduce MK. NuoA-N and Hyb conserve the redox
energy in H1 potential (32–35).

E. coli ferments hexoses to ethanol, acetate, and formate (or H2 1 CO2) as the main
products; additionally, 0.11 to 0.29 mol of succinate are formed per mol of glucose (36,
37). Succinate is the product of endogenous fumarate respiration; the fumarate for this
reaction is derived from the phospho-enol-pyruvate of glycolysis by carboxylation and the
reductive branch of the (anaerobic) citric acid cycle (Fig. 1) (38). Succinate is excreted by
transporter DcuC (39, 40). E. coli also utilizes exogenous C4-DCs such as fumarate in the
medium as the electron acceptor for fumarate respiration (8, 12, 31). The electrons for fu-
marate respiration are derived mostly from NADH or H2 that originate from glucose fer-
mentation, or glycerol-3P (from glycerol) and H2 as exogenous electron donors (3, 8, 31)
(Fig. 1). During fumarate respiration, uptake of external C4-DCs is catalyzed by the antiporters
DcuA or DcuB in antiport against succinate (Fig. 1). In addition to fumarate, L-malate, L-aspar-
tate, L-tartrate, and citrate can be utilized by E. coli as precursors of fumarate for fumarate respi-
ration. L-Malate, L-tartrate, and citrate are found in significant amounts in fruit or plant materi-
als, while L-aspartate is derived from proteins. Fumarate/succinate and L-malate/succinate
antiport is performed preferentially by DcuB, and L-aspartate/succinate antiport by DcuA
(8, 21, 39, 40). At high concentrations of fumarate, L-malate, and L-aspartate (.0.1 mM), the
transporters are mutually active. In addition, DcuC, which mainly functions in succinate
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excretion during fermentation, can substitute for DcuA and DcuB (41, 42). The feeding
reactions for fumarate formation from the latter C4-DCs are shown in Fig. 1. After uptake,
L-malate and L-aspartate are converted to fumarate by fumarase FumB and aspartase
AspA. It appears that FumB and AspA are organized in metabolons with the transporters
for efficient channeling and supply of fumarate for respiration (Fig. 2) (43). L-Tartrate and
citrate are transported by TtdT and CitT, respectively, in antiport against succinate (6, 44–47).
L-Tartrate is dehydrated to oxaloacetate by L-tartrate dehydratase TtdAB, while citrate is
cleaved by citrate lyase CL, also producing oxaloacetate (OAA). The OAA is converted to fu-
marate in E. coli by the anaerobic reductive part of the tricarboxylic acid (TCA) cycle and
used for fumarate respiration (Fig. 1) (6, 8, 45), while in S. Typhimurium, the OAA is decarbox-
ylated by the Na1-translocating OAA decarboxylase into pyruvate (48, 49).

E. coli or S. Typhimurium deficient in frdA, dcuSR, dcuB, and aspA are severely
impaired in their capacity to colonize mouse intestine. The most pronounced effects are
observed in frdA deficiency (18–20), followed by the loss of dcuS dcuR, while the effects of
dcuB and aspA deletion are more moderate. Also, the mRNA levels of not only frdA but also of
aspA, dcuB, and dcuC are greatly increased in the cecum and colon of mice in a DcuR-depend-
ent manner (20). The expression of dcuA, on the other hand, was constant, as previously
shown in vitro (50). In the presence of E. coli, S. Typhimurium has reduced initial growth in the
gut lumen, which is not the case for dcuAB- and frdA-deficient E. coli strains, suggesting that

FIG 1 Exogenous and endogenous fumarate respiration (FR) by E. coli. For endogenous FR (fumarate produced during hexose fermentation) up to 15% of
the PEP formed during hexose fermentation (37) is carboxylated to yield OAA, which is then converted by the reductive branch of the anaerobic citric acid
cycle to succinate. For exogenous FR, L-aspartate, L-malate, fumarate, L-tartrate, or citrate are taken up by antiporters from the medium, and succinate is
excreted in an electroneutral antiport. Enzymes and feeding reactions for fumarate formation are shown in blue and red, respectively, joint reactions in
green. Details are described in the text and in reviews (3, 8, 31, 35). At concentrations . 0.1 mM fumarate, L-aspartate or L-malate, the transporters DcuA,
DcuB, and DcuC are able to replace each other. DcuA, DcuB, and DcuC are present in S. Typhimurium as well (19), whereas citrate and tartrate are used
only by E. coli (6, 46), but not by S. Typhimurium for FR (47, 48, 100). AspA, aspartase; CitT, citrate/succinate antiporter; CL, citrate lyase; DcuA, C4-DC
antiporter DcuA; DcuB, C4-DC antiporter DcuB; DcuC, C4-DC transporter DcuC; FR, fumarate respiration; Frd, fumarate reductase FrdABCD; FumB, fumarase
B; Hyb, hydrogenase; Nuo, NuoA-N; PtsG, glucose transporter of the phosphotransferase system; TtdAB, tartrate dehydratase; TtdT, L-tartrate/succinate
antiporter; MK, menaquinone; MKH2, menaquinol.
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fumarate respiration promotes colonization of E. coli and establishes colonization resistance
against S. Typhimurium (19). Therefore, fumarate respiratory genes, including the regulatory
genes dcuS and dcuR, are important for gut colonization. Remarkably, frdA and dcuS dcuR,
central for both exogenous and endogenous fumarate respiration, were most important for
gut colonization; dcuB and dcuA, required for only externally supplied C4-DCs, were less sig-
nificant for colonization efficiency but support initial growth (19, 20). The hydrogenase Hyb,
the major uptake hydrogenase for MK reduction, is also essential for intestinal colonization of
S. Typhimurium and E. coli (51, 52). The H2 could originate from formate that is converted by E.
coli formate-hydrogen lyase to H2 and CO2, or from the fermentative metabolism of gut micro-
biota. In an inflamed gut, S. Typhimurium utilizes formate directly as an electron donor for aer-
obic and nitrate respiration. The reaction involves formate dehydrogenases of aerobic (fdo
genes) and (fdn genes) nitrate respiration, as concluded from the decreased fitness of the cor-
responding mutants (53). Taken together, the data demonstrate the significance of fumarate
respiration for colonization, and in particular of the genes that are also required for endoge-
nous fumarate respiration. The frdA is expressed almost constitutively under anaerobic condi-
tions in the interest of endogenous fumarate respiration and is stimulated by external C4-DCs
by a factor of 1.5 to 2 only (10, 20), in contrast to the stimulation of dcuB by a factor of 5.6 to
11.6 (10, 20).

The significance of C4-DCs and of fumarate respiration for establishing growth in
the intestine appears to be mostly related to its capacity to facilitate redox balancing
in hexose fermentation. Thus, endogenous fumarate respiration provides an alternative
means to consume reducing equivalents during fermentation, such as NADH or H2.
Therefore, endogenous (and exogenous) fumarate respiration allows metabolic flexibil-
ity and the production of alternative substrates.

The lumen of the murine small intestine contains significant levels of L-aspartate
(.1 mmol/kg wet mass), depending on diet and mouse breeding (19, 20), and the con-
tents in the cecum are still notable ($0.1 to 1 mmol/kg wet mass). In addition, L-aspar-
tate-related compounds, such as L-asparagine or fructose-asparagine (Fruc-Asn) (54), can

FIG 2 Scheme for the DcuA/AspA, DcuB/AspA, and DcuB/FumB metabolons of E. coli. Complex
formation between AspA and FumB with the Dcu transporters is based on interaction studies (43),
suggesting metabolon formation and metabolic channeling. The L-aspartate/fumarate antiport used
during nitrogen assimilation by DcuA results in net uptake of ammonium (“nitrogen or ammonium
shuttle”), the fumarate/succinate or L-malate/succinate antiport in the net uptake of 2 [H] (“H or
redox shuttle”) for the sake of fumarate respiration. Figure modified from Schubert and Unden (43).
AspA, aspartase; DcuA, C4-DC transporter; DcuB, C4-DC transporter; FrdABCD, fumarate reductase; GS-
GOGAT, glutamine synthetase (GS)-glutamine 2-oxoglutarate aminotransferase (GOGAT) pathway;
Fum, fumarate; FumB, fumarase B; L-Asp, L-aspartate; L-Mal, L-malate; MKH2, menaquinol; Succ,
succinate.
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provide L-aspartate in the intestine. The contents of L-malate were lower but also significant,
whereas those for fumarate were negligible (19, 20).

L-Aspartate and L-malate levels in the intestine exceed the Km values for uptake by
DcuA and DcuB (43 and 110 mM, respectively) (21, 40), suggesting efficient uptake of
C4-DCs by E. coli. The C4-DC-dependent stimulation of DcuS-DcuR occurs via the periplasmic
sensor domain of DcuS (55, 56). The apparent Km for the activation of DcuS by C4-DCs is in
the range of 0.5 to 3 mM (57). Schubert and coworkers confirmed that C4-DC concentrations
of the small intestine or the cecum induce the expression of a dcuB-lacZ reporter fusion,
which is in agreement with the high levels of mRNA of fumarate respiratory genes in mouse
intestine (20). Most stimulation will be caused by L-aspartate, which stimulates DcuS with an
apparent Km of 2 mM (57) and L-malate. In summary, endogenous and exogenous fumarate
respiration contribute to initial growth of E. coli and S. Typhimurium in mouse intestine.
L-Aspartate and, to a lesser extent, L-malate are the main substrates for fumarate respiration
by external C4-DCs. Remarkably, L-aspartate is also a major regulator of chemotaxis in E. coli
utilizing the chemoreceptor Tar for perception (58).

The mid small intestine and colon of mice are microaerobic with approximately 7.8 mbar
O2 (59), which allows an almost half-maximal expression of FNR-regulated fumarate respiration
(60, 61). Under the same O2 tension, the microaerobic oxidase encoded by cydAB is strongly
expressed (61, 62), and the microaerobic conditions in the intestine are compatible with
the concurrent expression of the genes for fumarate and microaerobic respiration (17–20).
Fumarate and microaerobic respiration therefore coexist in the homeostatic mouse intestine.
Under inflammatory conditions, reactive nitrogen species (RNS) and oxygen species (ROS)
are formed (63, 64). RNS generate nitrate (NO3

2), an important electron acceptor for faculta-
tive anaerobic bacteria (65). Nitrate represses fumarate respiration and frdABCD (66), indicat-
ing a decreased role for C4-DC utilization under inflammation (53). In support of this specu-
lation, DcuS-DcuR is dispensable for E. coli fitness under inflammatory conditions (20).

L-ASPARTATE AS A HIGH-QUALITY NITROGEN SOURCE

L-Aspartate is a high-quality nitrogen source and is capable of saturating the nitrogen
demand of E. coli under aerobic and anaerobic conditions (20–22). Nitrogen assimilation
from L-aspartate requires the transporter DcuA and aspartate ammonia lyase AspA (Fig. 2). L-
Asparagine (L-Asn) is deamidated to L-aspartate in the periplasmic space of E. coli by aspa-
raginase AnsB (67, 68), and then utilized in the same way as L-aspartate. Fruc-Asn, a primary
nutrient of S. Typhimurium in an inflamed intestine (54), is also an excellent source of nitro-
gen and carbon. Fruc-Asn is deamidated in the periplasmic space by FraE, transported into
the bacterial cell by FraA, phosphorylated by FraD, and hydrolyzed to glucose-6-P (G6P) and
L-aspartate by FraB (69).

AspA catalyzes the deamination of L-aspartate, producing fumarate and ammonium
(21, 22). Assimilation of the ammonium occurs by glutamine synthetase GS (or GlnA)
and glutamine 2-oxoglutarate aminotransferase GOGAT (or GltBD) yielding L-Glu (70, 71).
The DcuA-AspA-GS-GOGAT pathway saturates the nitrogen requirement of E. coli efficiently
(21, 22).

The expression of aspA and dcuA is essentially constitutive in E. coli (22, 50). AspA is
integrated, however, into the nitrogen regulatory system of the central nitrogen regu-
lator GlnB (alternative name PII) (72). GlnB regulates AspA activity in response to nitro-
gen availability in the cell (22). Under nitrogen-limited conditions, the deaminase activ-
ity of AspA and ammonium release is stimulated 2-fold by GlnB when the regulator is
activated by uridylylation and binding of ATP and 2-oxoglutarate (Fig. 3). The stimula-
tion is lost in the deuridylylated state of GlnB that prevails under nitrogen-saturated
conditions. Overall, GlnB regulates the utilization of L-aspartate to ensure nitrogen sup-
ply under nitrogen-limited conditions. The presence of high levels of L-aspartate in
mouse (20) or bovine (73) intestines, together with specific regulation, highlights the
physiological relevance of L-aspartate as a source of nitrogen in E. coli.

The fumarate released by the AspA reaction is excreted in aerobic growth nearly
stoichiometrically by DcuA (Fig. 2) when other carbon sources are available (21). Under

Minireview Journal of Bacteriology

April 2022 Volume 204 Issue 4 10.1128/jb.00545-21 5

https://journals.asm.org/journal/jb
https://doi.org/10.1128/jb.00545-21


anaerobic conditions, the fumarate is used as a substrate for fumarate respiration and excreted
only after reduction to succinate (8, 20, 39). DcuA therefore catalyzes an L-aspartate/fumarate
or L-aspartate/succinate substrate/product antiport under aerobic and anaerobic conditions,
respectively (Fig. 2). The L-aspartate/fumarate antiport results in the net uptake of ammonium
and serves as an ammonium shuttle for the purpose of nitrogen assimilation. The L-aspartate/
succinate antiport during fumarate respiration, on the other hand, represents a redox shuttle
(in addition to its function as the ammonium shuttle), similar to DcuB catalyzing the fumarate/
succinate antiport (Fig. 2B).

COORDINATION OF L-ASPARTATE AND C4-DC METABOLISM BY C4-DCS, CATABOLITE
CONTROL, RESPIRATION, ANDAMINOACID AVAILABILITY

Transcriptional regulation by C4-DCs is the result of direct regulation by the DcuS-
DcuR two-component system (8, 10, 11, 74). DcuS-DcuR-regulated genes encode proteins
catalyzing uptake and initial catabolic steps of C4-DC catabolism (DctA, DcuB, FumB, and
FrdABCD proteins). Most DcuS-DcuR-regulated genes are subject to multiple regulation,
including FNR for aerobic regulation, NarX-NarL for nitrate regulation, cAMP-CRP for catabolite
control, and Lrp responding to amino acids. Regulation of frdA, dcuB, and dctA by electron
acceptors O2, nitrate, and C4-DCs by FNR, NarX-NarL, and DcuS-DcuR has been discussed ear-
lier (10, 11, 50, 66, 75, 76), whereas regulation by cAMP-CRP and Lrp has been analyzed more
recently (11, 20, 77). Many proteins that display altered levels in response to fumarate are not
members of the DcuS-DcuR regulon but are subject to catabolite regulation by cAMP-CRP (77,
78). This includes proteins of the citric acid cycle and associated pathways, proteins involved
in motility and chemotaxis under anaerobic conditions, and oxidative stress (77, 78). Cellular
cAMP levels are known to increase during growth on low-quality carbon and energy sources,
such as C4-DCs and acetate (79–81), which has been related to the fumarate effect on the
expression of genes that are not under direct DcuS-DcuR control (77). Genes regulated by
DcuS-DcuR are apparently often under the control of cAMP-CRP or FNR also, as shown for the
dctA and dcuB promoters in Fig. 4. Transcriptional activation by cAMP-CRP and FNR is related
to DNA-bending of the promoter regions (82, 83). It has been suggested that regulation by

FIG 3 Ammonium assimilation from L-aspartate using DcuA-AspA for uptake and intracellular ammonium
release, ammonium assimilation by GS-GOGAT, and the GlnB regulatory system. The scheme shows the uptake
of L-aspartate by DcuA and ammonium release by the DcuA-AspA metabolon, the ammonium assimilation via
the common GS-GOGAT pathway yielding L-Glu, and the regulation of AspA by the GlnB regulatory system and
regulatory factors. N;, nitrogen-limited conditions; N:, nitrogen-saturated conditions; 2-OG, 2-oxoglutarate; UTP,
uridine-triphosphate; PPi, diphosphate; Pi, phosphate; UMP, uridine-monophosphate; GlnD, uridylyltransferase/uridylyl-
removing enzyme; Fum, fumarate; PII, nitrogen regulator GlnB; DcuA, aerobic L-aspartate transporter; AspA, aspartate
ammonium-lyase; GS, glutamine synthetase GlnA; GOGAT, glutamine 2-oxoglutarate aminotransferase GltBD.
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DcuR requires DNA-bending by cAMP-CRP to induce expression in response to C4-DCs via
DcuS-DcuR (81).

Growth on C4-dicarboxylates also requires gluconeogenesis for the synthesis of the
glycolytic substrates and cell components derived from these. The gluconeogenic switch
is known for the transition from glucose to acetate-grown E. coli (84–86). A similar switch
and lower growth rates are observed for growth on C4-DCs, with an increase in all TCA
cycle enzymes, the pyruvate bypass malic enzyme MaeB, and PEP-carboxykinase PckA
(77). In the same way, the enzymes for the degradation of amino acids and fatty acids are
increased to feed the TCA cycle (77).

The dcuB and frdA genes are targets for regulation by the transcriptional regulator
Lrp (20), and the promoter regions of dcuB (Fig. 4) and frdA contain putative Lrp binding
sites. Lrp is a global transcriptional regulator that responds to L-leucine and controls the
expression of about 10% of E. coli genes; it is presumed to function by interaction with other
regulators (87, 88). Mammalian intestine is an amino acid-rich environment (20, 73) contain-
ing almost all proteinogenic amino acids. The regulation of dcuB and frdA by Lrp is sug-
gested to coordinate the utilization of L-aspartate as a source for fumarate respiration, for
ammonium, and for degradation and feeding into the citric acid cycle.

SUCCINATE AND DcuB AS TRIGGERS FOR INTRACELLULAR INFECTION AND HOST-
BACTERIUM SIGNALING

Intestinal colonization by enteric bacteria is established in two main steps—initial
growth and growth in the inflamed intestine. Commensal E. coli grows, in contrast to S.
Typhimurium or pathogenic E. coli strains, without initiation of inflammation. Inflammation
drastically alters the intestinal environment and causes the release of host-derived elec-
tron acceptors, such as oxygen, nitrate, and tetrathionate (17, 64, 89). Electron acceptors
promote the blooming of enterobacteria by conveying a growth advantage over the res-
ident microbiota. Under anaerobic conditions in the normal intestine, the TCA cycle is
repressed, but the reductive branch leading from oxaloacetate to succinate is active (19,
38), which is important for fumarate respiration and initial growth of E. coli and S.
Typhimurium. The oxidative conditions in an inflamed gut, however, allow expression of
the complete TCA cycle, which enables the utilization of the microbiota-derived fermen-
tation product succinate as a carbon source (23). Bacteroides strains are the major succi-
nate producers in the microbiota.

Apart from its benefit for efficient colonization of S. Typhimurium in an inflamed
intestine, succinate is an activation signal for virulence of S. Typhimurium (25). Uptake
of host succinate induces Salmonella pathogenicity island 2 (SPI-2) and antimicrobial
resistance, which is vital for intracellular survival in macrophages. The response

FIG 4 Promoter regions of dctA (A) and dcuB (B) and binding sites for transcriptional regulators DcuR, cAMP-CRP, FNR, ArcA, NarL
and Lrp. The binding sites have been determined experimentally (solid line) (101–103) or by the presence of consensus sites
(broken lines). Transcriptional regulators exerting positive (green) or negative (red) regulation on the promoter are annotated.
Numbering gives the position relative to the transcriptional start sites of the promoters. The location of the binding sites for NarL
and Lrp at dcuB have not been identified.
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depends on the presence of DcuB, suggesting that DcuB is involved in the uptake or
sensing of succinate (25). SPI-2 is required to translocate effector proteins from vacuo-
lar-resident bacteria into host cells (90). In contrast, SPI-1 is essential for triggering gas-
trointestinal diseases, whereas it is dispensable for systemic infections (90). Therefore,
in addition to the role of C4-DCs as substrates for initial growth of E. coli and S.
Typhimurium in the intestine, succinate appears to function as a trigger inducing sur-
vival of the bacteria in the host cell.

Besides its role in bacteria in the activation of virulence factors and as a nutrient for
colonization (23, 24), succinate is an important signaling molecule for the host.
Accumulation of succinate in the host cytosol affects posttranslational modification by
succinylation and activates inflammatory programs, epigenetic regulation, and ROS
production (26–28). In addition, microbiota-derived succinate is used for gluconeogen-
esis (91–93) and thermogenesis (94, 95) by luminal host cells. Moreover, higher levels
of circulating succinate have been associated with obesity and gut dysbiosis disorders.
The gut microbiota is the predominant producer of luminal succinate (96–99).
Understanding the role and control of bacterial succinate production could be a start-
ing point for the development of probiotic interventions to modulate gut-derived suc-
cinate and to target obesity-related diseases (95).

CONCLUSION

Fumarate respiration, whether using endogenously produced fumarate from hex-
ose fermentation or consuming exogenously-supplied C4-DCs, was found to promote
initial growth and colonization of the mammalian gut by intestinal bacteria. The signifi-
cance of C4-DCs contrasts their rather low levels found in the intestine compared to
sugars and sugar derivatives. It is suggested that a major role of endogenous and ex-
ogenous fumarate respiration is to provide a means for redox balancing under anaero-
bic conditions (Fig. 5). For the same reason, microaerobic respiration might be impor-
tant for efficient colonization of the intestine by E. coli.

C4-DCs serve as important stimuli for regulating metabolism and physiology of en-
teric bacteria, using the two-component system DcuS-DcuR and the chemotaxis recep-
tor Tar for perception (Fig. 5). Succinate produced by the microbiota also represents an
important signaling molecule for host-microbiota interaction and a nutrient for host
cells that may be involved in intestinal dysbiosis disorders (Fig. 5). On the other hand,
succinate of host cells, such as macrophages, stimulates virulence and pathogenicity of
S. Typhimurium. Identifying these roles and functions will open up new avenues for
understanding and controlling host-microbiota interaction.
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FIG 5 C4-dicarboxylates as substrates or products of metabolism, and as signaling molecules for host/
microbiota interaction in the intestine. Hexose fermentation, fumarate respiration (FR) and microaerobic
respiration run in parallel under the microaerobic conditions of the intestine. The intestinal C4-DCs (black)
serve as stimuli of the DcuS regulated metabolism of enteric bacteria, and of chemotaxis by Tar. Succinate
produced by the enteric bacteria (red) or other microbiota is used for signaling or for communication with host
cell, and succinate of host cells (macrophages) stimulates virulence and pathogenicity of S. Typhimurium. See
the text for details. CytBD, microaerobic Cyt bd oxygen reductase; Fo, formate; ROS, reactive oxygen species;
other abbreviations as in Fig. 1 to 4.
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