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ABSTRACT As an opportunistic fungal pathogen, Candida albicans is a major cause
of superficial and systemic infections in immunocompromised patients. The increas-
ing rate of azole resistance in C. albicans has brought further challenges to clinical
therapy. In this study, we collected five isogenic C. albicans strains recovered over
discrete intervals from an HIV-infected patient who suffered 2-year recurrent oropha-
ryngeal candidiasis. Azole resistance was known from the clinical history to have
developed gradually in this patient, and this was confirmed by MIC assays of each
strain. Proteomic techniques can be used to investigate more comprehensively how
resistance develops in pathogenic fungi over time. Our study is the first to use tandem
mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS) technology to investigate the acquired resistance mechanisms of serial
C. albicans isolates at the proteomic level. A total of 4,029 proteins have been identified,
of which 3,766 have been quantified. Compared with Ca1, bioinformatics analysis showed
that differentially expressed proteins were mainly associated with aspects such as the
downregulation of glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degrada-
tion, and oxidative stress response proteins in all four subsequent strains but, remark-
ably, the activation of amino acid metabolism in Ca8 and Ca14 and increased protection
against osmotic stress or excessive copper toxicity, upregulation of respiratory chain ac-
tivity, and suppression of iron transport in Ca17. By tracing proteomic alterations in this
set of isogenic resistance isolates, we acquire mechanistic insight into the steps involved
in the acquisition of azole resistance in C. albicans.
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C andida albicans is a major fungal pathogen in humans, causing mucosal, cutane-
ous, and life-threatening systemic infections (1–3). Studies have shown that sys-

temic infections by C. albicans have a crude mortality rate of ;40% despite antifungal
interventions (4–6). The annual attributable cost of candidemia in the United States
alone is $1.7 billion (7, 8). Azoles, in particular fluconazole, are the most common anti-
fungal drugs used to treat and prevent candidiasis. However, fluconazole is fungistatic
rather than fungicidal, and the treatment therefore invites the development of
acquired resistance in the presence of this agent (9, 10). Given its clinical and economic
impact, the Centers for Disease Control and Prevention (CDC) added C. albicans to the
list of pathogens that pose a potential drug resistance threat (11). Understanding the
mechanisms of fluconazole resistance is a critical part of managing our limited antifun-
gal options and maintaining fluconazole as a possible option for the treatment of
many candidiasis cases (9).

Several genes involved in ergosterol biosynthesis pathways have been noted as
mechanisms of azole resistance, and other mechanisms such as drug efflux pumps,
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ploidy changes, and loss of heterozygosity (LOH) were also revealed by genome-wide
gene expression profile or transcriptional analyses (3, 12–16). However, data gathered
from genomic or transcriptomic analyses do not necessarily reflect actual protein func-
tions in the cells (17–19). In a previous study, a gel-based proteomics analysis was
employed, which identified 17 proteins with differential expression in a matched set of
two C. albicans isolates, namely, an initially susceptible one and a finally resistant coun-
terpart (20). However, this gel-based technique easily misses hydrophobic proteins
(20); in addition, due to poor reproducibility, the limited dynamic range, and the
incompatibility of proteins separated by electrophoresis with mass spectrometry (MS),
it is difficult to make quantitative comparisons between samples on different gels (21).
Tandem mass tag (TMT) peptide labeling combined with liquid chromatography-tan-
dem MS (LC-MS/MS) quantitative proteomics can detect more proteins with higher re-
solution than current conventional methods (22, 23). In this study, we use this quanti-
tative proteomics technique to identify differentially expressed proteins (DEPs) among
the posttreatment isolates against the initial isolate (Ca1) collected prior to antifungal
therapy. We believe that an improved understanding of global protein changes in C.
albicans during the process of acquired drug resistance will help further the develop-
ment of strategies against this medically important pathogenic fungus.

RESULTS
Global proteomic comparison between Ca1 and serial strains (Ca2, -8, -14, and

17) in C. albicans. In total, 4,029 proteins were identified by proteomics analysis, of
which 3,766 proteins were quantified (see Data Set S1 in the supplemental material).
Quality control validations of mass spectrum data and three biological replicates were
performed for four comparison groups (Q1 [Ca2 versus Ca1], Q2 [Ca8 versus Ca1], Q3
[Ca14 versus Ca1], and Q4 [Ca17 versus Ca1]), as shown in Fig. S1 and S2. All quantifi-
able proteins with upregulated (.1.5-fold) and downregulated (,0.667-fold) expres-
sion levels are listed in Data Set S2 (P , 0.05). As shown in Table 1, Q2 induced 201
DEPs (63 upregulated and 138 downregulated), which was more than 3 times that of
Q3 (35 upregulated and 25 downregulated), 2 times that of Q4 (32 upregulated and 68
downregulated), and 1.8 times that of Q1 (23 upregulated and 86 downregulated). The
Q2 group revealed the most upregulated and downregulated proteins. The protein
expression levels of common determinants of azole resistance (TAC1, MRR1, UPC2,
CDR1, ERG11, ERG3, and HSP90) in these five strains are listed in Table 2. Of these, only
CDR1p is significantly upregulated in Q4, according to the proteomics results that we
have observed so far.

TABLE 1 Statistics of differentially expressed proteins

Group No. of upregulated DEPs (>1.5-fold) No. of downregulated DEPs (<0.667-fold)
Q1 23 86
Q2 63 138
Q3 35 25
Q4 32 68

TABLE 2 Protein expression levels of common determinants of azole resistance

UniProt protein
accession no. Gene name

Expression level

Ca2/Ca1 ratio Ca8/Ca1 ratio Ca14/Ca1 ratio Ca17/Ca1 ratioCa1 Ca2 Ca8 Ca14 Ca17
A0A1D8PN96 TAC1 0.993 0.892 0.920 1.005 1.200 0.898 0.927 1.013 1.209
Q5A4G2 MRR1 0.993 0.892 1.059 1.087 0.956 0.898 1.066 1.095 0.963
Q59QC7 UPC2 0.952 1.035 0.991 1.074 0.969 1.088 1.041 1.128 1.018
Q5ANA3 CDR1 0.555 0.547 0.571 0.664 2.570 0.986 1.028 1.196 4.627
P10613 ERG11 0.916 0.933 0.948 1.096 1.128 1.019 1.036 1.197 1.232
Q59VG6 ERG3 1.210 1.018 0.886 0.974 0.927 0.841 0.732 0.805 0.766
P46598 HSP90 1.027 1.096 1.007 0.923 0.945 1.068 0.981 0.899 0.921
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Functional characterization of differentially expressed proteins. To characterize
the functions and subcellular locations of the differentially expressed proteins in serial
isolates previously exposed to fluconazole, bioinformatic analyses of Gene Ontology
(GO) and subcellular functional annotations were carried out. Based on the GO analysis
tool, the biological functions affected by DEPs were classified into the cellular compo-
nent, molecular function, and biological process. The mainly affected biological functions
of DEPs among strains (Ca2, -8, -14, and 17) versus Ca1 are summarized in Table 3. The
results showed that the DEPs are mainly involved in the membrane, cell, organelle, cata-
lytic activity, binding, transporter activity, metabolic process, single-organism process,
and cellular process. These DEPs were classified according to their subcellular locations
(Fig. 1). The subcellular distribution of DEPs indicates that C. albicans resistance to fluco-
nazole mainly affects the cytoplasm, nucleus, plasma membrane (PM), and mitochondria.
For Q1, 30%, 29%, and 15% of DEPs are located in the nucleus, cytoplasm, and plasma
membrane, respectively. For Q2, 30%, 29%, and 13% of DEPs are located in the cyto-
plasm, nucleus, and mitochondria, respectively. For Q3, 38% of DEPs are located in the
cytoplasm, 25% are located in the nucleus, and 11% are located in the mitochondria. For
Q4, 33% of DEPs are located in the cytoplasm, 25% are located in the nucleus, and 16%
are located in the plasma membrane.

Enrichment-based clustering analysis of the DEPs. GO enrichment-based clustering
analysis of the DEPs was performed to classify the biological processes, molecular functions,
and cellular components (Fig. 2A to C and Fig. S3). The abundant upregulated proteins are
related to pyridoxal phosphate binding and lyase activity in Q1; imidazole-containing com-
pound metabolic process, histidine biosynthetic/metabolic process, cellular amino acid bio-
synthetic/metabolic process, and carboxylic acid metabolic/biosynthetic process in Q2 and
Q3; cofactor binding, catalytic activity, and oxidoreductase activity in Q2, Q3, and Q4; and fla-
vin mononucleotide (FMN) binding, electron carrier activity, ATPase activity coupled to trans-
membrane movement of substances, hydrolase activity acting on acid anhydrides catalyzing
the transmembrane movement of substances, and the response to toxic substance or chem-
icals in Q4. The downregulated proteins are mainly involved in peroxidase activity, lipid cata-
bolic process, cellular oxidant detoxification, and the response to oxidative stress in Q1 and
Q2; carbohydrate metabolic process and single-organism metabolic process in Q1, Q2, and
Q3; galactose metabolic process, hexose metabolic process, monosaccharide metabolic pro-
cess, and cellular carbohydrate metabolic/biosynthetic process in Q3; and iron ion trans-
membrane transport, high-affinity iron ion transmembrane transport, and metal ion trans-
membrane transporter activity in Q4.

The results of clustering analysis based on Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment are shown in Fig. 2D and Fig. S4. For all groups,
the upregulated DEPs are significantly enriched in the biosynthesis of amino acids and
antibiotics, while the downregulated DEPs are mainly related to secondary metabolite
biosynthesis and fatty acid degradation. For each group, the upregulated DEPs were
mainly associated with monobactam biosynthesis in Q2, steroid biosynthesis in Q3,

TABLE 3 Gene Ontology distribution of differentially expressed proteins

GO term level 1 GO term level 2

No. of proteins (%)

Q1 Q2 Q3 Q4
Biological process Metabolic process 45 (34) 87 (31) 30 (36) 36 (28)

Single-organism process 30 (23) 69 (24) 28 (33) 32 (25)
Cellular process 20 (15) 53 (19) 16 (19) 21 (16)

Cellular component Membrane 21 (38) 46 (36) 13 (46) 26 (37)
Cell 17 (31) 42 (32) 10 (36) 25 (35)
Organelle 6 (11) 18 (14) 1 (4) 9 (13)

Molecular function Catalytic activity 51 (59) 101 (57) 31 (58) 43 (50)
Binding 23 (27) 59 (33) 19 (36) 28 (33)
Transporter activity 6 (7) 11 (6) 2 (4) 9 (11)
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and glycerophospholipid metabolism in Q4, while the glycerophospholipid metabo-
lism pathway was significantly downregulated for Q1. Furthermore, the upregulated
DEPs are enriched in glycine, serine, and threonine metabolism for Q1, Q2, and Q3; cys-
teine and methionine metabolism in Q1, Q2, and Q4; histidine, phenylalanine, and ty-
rosine metabolism and the biosynthesis of lysine, phenylalanine, tyrosine, and trypto-
phan in Q2 and Q3; and 2-oxocarboxylic acid metabolism in Q2, Q3, and Q4. In terms
of the downregulated DEPs, these proteins are mainly significantly involved in the per-
oxisome and the longevity-regulating pathway in multiple species in Q1, Q2, and Q4;
pyruvate metabolism, glycolysis/gluconeogenesis, the biosynthesis of antibiotics, and
tyrosine metabolism in Q2, Q3, and Q4; and tryptophan metabolism, valine, leucine,
and isoleucine degradation, and beta-alanine metabolism in Q4.

The DEPs in all cases were also examined by clustering analysis based on protein do-
main enrichment analysis (Fig. 2E and Fig. S5). For all four groups, DEPs related to the
NADP-dependent oxidoreductase domain are upregulated, while other domains are
downregulated, including the NAD(P)-binding domain, the polyketide synthase and
enoyl reductase domain, the alcohol dehydrogenase N-terminal domain, the alcohol de-
hydrogenase C-terminal domain, and the GroES-like domain. Moreover, DEPs involved in
pyridoxal phosphate-dependent transferase are upregulated in Q1, Q2, and Q3, coupled
with the upregulation of the aldolase-type TIM barrel, NAD-dependent epimerase/dehy-
dratase, NADH:flavin oxidoreductase/NADH oxidase, and N-terminal NAD(P)-binding
domains in Q2, Q3, and Q4. The downregulated proteins consist of the glycoside hydro-
lase superfamily, acyl transferase/acyl hydrolase/lysophospholipase, and major facilitator
superfamily domains in Q1 and Q2. For each group, the upregulated DEPs are mainly
enriched in the alpha/beta-hydrolase fold in Q1, class I glutamine amidotransferase-like
and aminotransferase class I/class II in Q2 and Q3, and the HAD-like domain in Q4.
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However, the downregulated DEPs are mainly related to the flavoprotein-like domain
and flavodoxin/nitric oxide synthase in Q1; the acyl-CoA dehydrogenase/oxidase, thio-
lase, and thiolase-like domains in Q2; the galactose mutarotase-like domain in Q3; and
the zinc finger Cys2His2 (C2H2)-type/integrase DNA-binding domain in Q4.

Dynamic cluster analysis of protein expression patterns. A total of 1,734 proteins
were divided into 12 clusters using Mfuzz analysis, and proteins in the same cluster
represent similar expression transformation trends (Fig. 3). Here, we mainly describe
clusters showing a consistent or opposite acquired azole resistance tendency. Our
analyses indicated that proteins (n = 148) in cluster 8, including Ifu5p, Grp2p, Cdr1p,
Gpx1p, Pdr16p, Ifd3p, Ifd6p, and Gdh3p, have increased expression in isolates after
previous fluconazole exposure. On the contrary, in cluster 2, 148 proteins, including
Ald5p, Ino1p, and Pck1p, show a continuous decrease. Moreover, proteins (n = 104) in
cluster 4, including orf19.7166p, His7p, His1p, Gpd1p, Yhb1p, Aro8p, Atf1p, and Rhr2p,
are also increased in Ca1, Ca2, and Ca8 but slightly decreased in Ca14 and Ca17.

DISCUSSION

Drug resistance in fungi is often gradual and incremental by nature, and various re-
sistance strategies may come into being and then fade away over the course of anti-
fungal treatment (16, 24–26). The centerpiece of our study is a series of five isogenic
isolates that showed progressively increasing MIC values within a time span of 2 years. It is
well known that proteins are the most relevant elements associated with the physiology
of microbes (27). Using TMT-labeling and LC-MS/MS methods, we first identify the dynam-
ics of proteomic adaptation at the different stages of the evolution of drug resistance.
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Proteome responses in isolate Ca2. The key factors in isolate Ca2 (MIC = 1 mg �
mL21) are proteins with lyase activity, pyridoxal phosphate binding, and alpha/beta-hy-
drolase, which include two uncharacterized proteins encoded by orf19.4612 and
orf19.7166. Recently, the latter protein has been identified as a Tac1p target that was
upregulated in an azole-resistant strain that overexpressed MDR1 (1, 28). Pyridoxal-59-
phosphate (PLP) acts as a cofactor for more than 160 different catalytic functions, and
PLP-dependent enzymes are widely involved in cellular processes, principally the bio-
synthesis of amino acids and amino-acid-derived metabolites (29, 30). KEGG pathway
analysis showed that the abundances of proteins involved in glycine, serine, and threo-
nine metabolism and cysteine and methionine metabolism were increased in Ca2.
Glycine is the precursor of L-serine and, eventually, cysteine (31). Current evidence indi-
cates that changes in cysteine biosynthesis affect the susceptibility of yeast to various
antifungal agents. While glycine is decreased in fluconazole-treated C. albicans cells, it
is probably mediated in part by oxidative damage owing to the reduced synthesis of
intracellular glutathione (32, 33). Moreover, methionine metabolism is also associated
with antifungal efficiency. Methionine is a precursor of S-adenosyl methionine (SAM)
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(34) that is involved in a number of chemically diverse reactions, such as methylation
in ergosterol biosynthesis and aminopropyl donation in polyamine synthesis (35).
Increased spermidine and spermine, two predominant polyamines, in eukaryotes can
protect C. albicans cells from antifungal killing, which may be related to the attenuated
accumulation of reactive oxygen species (ROS) (36, 37). The downregulated proteins
related to the peroxisome, fatty acid degradation, and the longevity-regulating
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pathway are markedly inhibited in Ca2. The peroxisome plays a crucial role in the met-
abolic activities of eukaryotic cells, including the b-oxidation of fatty acids and the
detoxification of hydrogen peroxide (38). Moreover, we observe that the flavoprotein-
like domain and the flavodoxin/nitric oxide synthase domain, namely, Pst1p and Pst2p,
involved in the oxidative stress response, are also decreased in Ca2. In C. albicans, fla-
vodoxin-like proteins (FLPs) are critical for survival in the host, as a quadruple mutant
lacking all four FLPs (pst1D pst2D pst3D ycp4D) was more susceptible to various oxi-
dants and became avirulent in a mouse model of systemic candidiasis under conditions
where infection with wild-type C. albicans was fatal (39). However, the NADP-dependent
oxidoreductase domain is enriched in upregulated DEPs. The coenzyme NADPH/NADP1

transports electrons in NADP-dependent oxidoreductase-catalyzed reactions (40), and
the reduced form, NADPH, is required for maintaining redox balance under oxidative
stress (31, 41). Moreover, the ERG11 enzyme from C. albicans has been shown to need
NADPH-P450 reductase for its functional activity that catalyzes the oxidative removal
reaction of the 14a-methyl group from the lanostane frame (42).

Proteome responses in two isolates, Ca8 and Ca14. In two isolates, Ca8 (MIC = 8 mg �
mL21) and Ca14 (MIC = 32 mg � mL21), other reduced activities appear, including the
lipid catabolic process, cellular oxidant detoxification, and the response to oxidative
stress. In addition, carbohydrate metabolic activities and glycolysis/gluconeogenesis
are decreased. The ability of the fungus to efficiently assimilate nutrients available
within host niches is a crucial attribute for any microbial pathogen (43–45). C. albicans
is flexible in metabolism and can adapt to the microenvironment of different anatomi-
cal sites. While physiologically relevant sugars, including glucose, fructose, and galac-
tose, exist only at low levels and are even absent in many host niches, other nonfer-
mentable carbon sources, such as amino acids and organic acids, are necessary to
support the growth and metabolism of yeast in vivo (46). Thus, we presume that when
the metabolic activity of C. albicans cells is disrupted by fluconazole, globally
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downregulated central carbon metabolism may trigger transformation to a growth
form that needs less energy (46). Similarly, the biosynthesis of lysine and aromatic
amino acids (phenylalanine, tyrosine, and tryptophan) and histidine, phenylalanine,
and tyrosine metabolism are also enhanced in Ca8 and Ca14. The utilization of amino
acids as nitrogen sources depends on the respective transaminases in human-patho-
genic fungal cells such as upregulated Aro8p noted in this study. This protein is
undoubtedly the most versatile aminotransferase in C. albicans, which participates in
the degradation of histidine, lysine, and aromatic amino acids as well as in lysine, phe-
nylalanine, and tyrosine biosynthesis (47). Remarkably, enzymes for histidine biosyn-
thesis (His1p, His4p, His5p, and His7p) are upregulated. Indeed, some evidence indi-
cates that His4p and His7p could be potential antifungal targets, as the biosynthetic
steps are absent in mammalian hosts (48, 49). In addition to energy sources, amino
acids are also major building blocks for proteins and important intermediates in some
metabolic pathways (50). For example, the intermediate chorismic acid and the prod-
uct tryptophan of the aromatic amino acid biosynthesis pathway are precursors for
ubiquinone and nicotinamide, respectively, which largely participate in the respiratory
chain and cellular redox potential (35).

We note that sterol biosynthesis in Ca14, but without sterol uptake control protein
2 (Upc2p), is upregulated. In this case, while fluconazole targets membrane sterol bio-
synthesis, intact Upc2p activates the transcriptional factor responsible for ergosterol
biosynthesis and restores appropriate sterol levels in order to counter the effect of the
azole (51, 52). Moreover, it is known that any imbalance of plasma membrane (PM)
lipid constituents such as ergosterol and sphingolipids (SLs) contributes to the devel-
opment of drug resistance in yeast cells (53–55). Any change in ergosterol biosynthesis
by the disruption of ERG genes or a change in the SL composition by the disruption of
its biosynthetic genes results in the improper localization of CaCdr1p (belonging to
the ABC drug efflux transporters) within lipid rafts (56–58).

Proteome responses in isolate Ca17. Fluconazole resistance development, fatty
acid degradation, pyruvate metabolism, and glycolysis/gluconeogenesis continue to
be suppressed, but amino acid metabolism is less disturbed in isolate Ca17 (MIC .

64 mg � mL21). For energy metabolism and stress responses, electron carrier activities
in mitochondria, ATPase activity coupled to the transmembrane movement of substan-
ces, and the response to toxic substances are all upregulated. Despite its well-known
role as a main energy generator, the mitochondrion is crucial for many secondary proc-
esses such as cellular growth, apoptosis, virulence, and, most importantly here, the
activation of drug efflux pumps causing enhanced azole resistance (59–61). Analysis of
sterol synthesis mutants of Saccharomyces cerevisiae revealed that respiratory develop-
ment is influenced by the sterol composition (62). Moreover, a previous study showed
that ergosterol biosynthesis plays an essential role in maintaining the mitochondrial
morphology of S. cerevisiae (63). In addition, the glycerophospholipid metabolism
pathway is significantly enhanced, notably orf19.7166 and glycerol-3-phosphate dehy-
drogenase (Gpd1p). Lipids are viewed as the most adaptable molecules in response to
environmental changes and are therefore considered the most suitable targets for stress
adaptation (64), such as glycerol against hyperosmotic pressure (65). Accordingly, the
haloacid dehalogenase (HAD)-like domain was significantly enriched with upregulated
proteins in Ca17, including glycerol-1-phosphatase (Rhr2p) related to glycerol biosynthe-
sis and a P1-type ATPase copper transporter (Crp1p) involved in copper detoxification
(66, 67). However, Aqy1p, a water channel in the plasma membrane (68), was downregu-
lated in this study. These results are consistent with the fact that C. albicans cells often
secrete glycerin and arabitol when they are confronted with osmotic, temperature, and
oxidative stresses (69, 70).

It is well known that iron availability affects various cellular processes such as mito-
chondrial respiration, electron transport, DNA synthesis and repair, oxygen transport,
and other central metabolic pathways (58, 71). ERG11 and ERG5, two key enzymes in
ergosterol biosynthesis, are heme-containing enzymes, and iron is essential for heme
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metabolism (72). Therefore, disrupting iron metabolism can affect the level of ergos-
terol in yeast and thus affect its sensitivity to azoles. High iron availability has recently
been shown to increase b-1,3-glucan levels, which in turn increase the resistance of C.
albicans to antifungal drugs (73). In seeming contradiction to the needs of higher mito-
chondrial respiration, iron transmembrane transporters are downregulated. This could
be part of the stress adaptation to restrict iron availability since iron can be toxic by
catalyzing the production of reactive free oxygen radicals that severely damage cellular
components (74, 75). Along with the suppression of glycolysis and amino acid metabo-
lism, zinc finger Cys2His2(C2H2)-type/integrase DNA-binding domain transcription fac-
tors such as Stp2p and the pH response transcription factor Rim101p/PacC are downre-
gulated in Ca17. In C. albicans, Stp2p is required to utilize and catabolize amino acids
as carbon sources and produces ammonia extrusion, resulting in an increased environ-
mental pH (76, 77). As the central mediators of alkaline adaptation, the Rim101p/PacC
transcription factors are activated by a proteolytic cleavage event at neutral-to-alkaline
pH (76). Zinc finger proteins (ZFPs) are classified into various families according to zinc-
binding motifs (78, 79). The C2H2 family consists of hundreds of ZFPs that are found in
eukaryotes ranging from yeast to humans (79). In contrast, members of the zinc cluster
protein family [or Zn(II)2Cys6 (Zn2C6) proteins] are strictly fungal. For example, gain-of-
function (GOF) mutations in the transcription factors TAC1, MRR1, and UPC2 are
thought to account for the majority of fluconazole resistance in C. albicans (80).
However, no significant up- or downregulation of Zn2C6 proteins was observed in all
four groups, suggesting that they may not have played a major role in the serial
isolates.

Conclusions. In this study, for the first time, we performed a comprehensive pro-
teomic analysis of serial C. albicans isolates representing the acquisition of fluconazole
resistance. As a consequence of the development of fluconazole resistance, carbohy-
drate and lipid catabolism are all significantly suppressed in Ca2, -8, -14, and 17 com-
pared with isolate Ca1. However, the metabolisms of certain essential amino acids that
cannot be synthesized by mammals are upregulated in Ca8 and Ca14. While oxidative
stress and peroxidase activity were downregulated in all four subsequent isolates, re-
sistance to osmotic pressure and copper and iron toxicity were upregulated in Ca17,
along with mitochondrial respiration that may provide energy for drug efflux pumps.
Obviously, the changes in energy metabolism and stress responses under fluconazole
represent an adaptation strategy for C. albicans survival in the host, but they may also
lead to new strategies for the prevention and treatment of resistant C. albicans infec-
tions by directly attacking or even reversing such an adaptation.

MATERIALS ANDMETHODS
Strains and culture. Strains Ca1, Ca2, Ca8, Ca14, and Ca17 were obtained from T. C. White (School

of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO, USA). All five of these strains
were retrieved from an AIDS patient who suffered from recurrent oropharyngeal candidiasis over a pe-
riod of 2 years (81). The sensitivity of each strain to fluconazole and the established drug resistance
mechanism are shown in Table 4. In this series, fluconazole resistance was considered to be gradually
acquired in vivo and was related to the doses given to the patient. Moreover, molecular analyses con-
firmed that these isolates represent a single C. albicans strain and that the resistance levels were stable
over 600 generations (81, 82). Five C. albicans isolates were grown at 28°C overnight in yeast extract-
peptone-dextrose (YPD) medium with constant shaking at 220 rpm and used as seed cultures. Next,
10 mL of the seed culture was inoculated into 100 mL of fresh YPD liquid medium and then cultured at
28°C for 4 h (220 rpm) until the optical density at 600 nm (OD600) reached 0.8. The cultured cells were
centrifuged at 6,000 rpm for 10 min (4°C) and washed twice with cold phosphate-buffered saline (PBS).
Each treatment was performed in triplicate.

Protein extraction and digestion. Samples were ground with liquid nitrogen into a cell powder
and then transferred to a 5-mL centrifuge tube. After that, 4 volumes of lysis buffer (8 M urea, 1% Triton
X-100, 10 mM dithiothreitol, and 1% protease inhibitor cocktail) were added to each cell powder. Next,
samples were sonicated three times on ice using a high-intensity ultrasonic processor (Scientz). The
remaining debris was removed by centrifugation at 20,000 � g for 10 min (4°C). Finally, the protein was
precipitated with cold 20% trichloroacetic acid (TCA) for 2 h (220°C). After centrifugation at 12,000 � g
for 10 min (4°C), the supernatant was discarded. The remaining precipitate was washed 3 times with
cold acetone. The protein was redissolved in 8 M urea, and the protein concentration was measured
with a bicinchoninic acid (BCA) kit according to the manufacturer’s instructions.
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For digestion, the protein solution was reduced at 56°C for 30 min with 5 mM dithiothreitol and alky-
lated for 15 min with 11 mM iodoacetamide at room temperature in the dark. The protein sample was
then diluted by adding 100 mM tetraethylammonium bromide (TEAB) to a urea concentration of ,2 M.
Finally, trypsin was added at a trypsin-to-protein mass ratio of 1:50 for the first digestion overnight and
at a trypsin-to-protein mass ratio of 1:100 for a second 4-h digestion.

TMT labeling. After the trypsin was digested, the peptide was desalted by using a Strata X C18 SPE
column (Phenomenex) and vacuum dried. The peptide was reconstituted in 0.5 M TEAB and processed
according to the manufacturer’s protocol for the TMT-6plex kit. In brief, 1 U of TMT reagent was thawed
and reconstituted in acetonitrile. The peptide mixtures were then incubated at room temperature for
2 h, pooled, desalted, and dried by vacuum centrifugation.

HPLC fractionation. The tryptic peptides were fractionated into fractions by high-pH reverse-phase
high-performance liquid chromatography (HPLC) using an Agilent 300Extend C18 column (5-mm par-
ticles, 4.6-mm internal diameter [ID], and 250-mm length). In short, peptides were first separated into 60
fractions with a gradient of 8 to 32% acetonitrile (pH 9.0) over 60 min. The peptides were then combined
into 18 fractions and dried by vacuum centrifugation.

LC-MS/MS analysis. The tryptic peptides were dissolved in 0.1% formic acid (solvent A), directly
loaded onto a homemade reversed-phase analytical column (15-cm length and 75-mm ID). The gradient
was comprised of an increase from 7% to 25% solvent B (0.1% formic acid in 90% acetonitrile) over
24 min and an increase from 25% to 40% solvent B in 8 min, with climbing to 80% in 4 min and then
holding at 80% for the last 4 min, all at a constant flow rate of 350 nL/min, on an EASY-nLC 1000 ultra-
performance liquid chromatography (UPLC) system. The peptides were subjected to an nanospray ion
(NSI) source followed by tandem mass spectrometry (MS/MS) in a Q Exactive Plus system (Thermo)
coupled online to the UPLC system. The electrospray voltage applied was 2.0 kV. For full scans, the m/z
scan range was 350 to 1,800, and intact peptides were detected in the Orbitrap instrument at a resolution
of 70,000. Peptides were then selected for MS/MS using the normalized collision energy (NCE) setting at 20,
and the fragments were detected in the Orbitrap instrument at a resolution of 17,500. A data-dependent
procedure that alternated between 1 MS scan and 20 MS/MS scans with 30.0 s of dynamic exclusion was
used. The automatic gain control (AGC) was set at 5E4. The fixed first mass was set at 100m/z.

Database search. The resulting MS/MS data were processed using the MaxQuant search engine
(v.1.5.2.8). Tandem mass spectra were searched against the UniProt Candida albicans database (17,719
sequences) concatenated with a reverse decoy database. Trypsin/P was specified as the cleavage
enzyme, allowing up to 2 missed cleavages. The mass tolerances for precursor ions were set at 20 ppm
in the first search and 5 ppm in the main search, and the mass tolerance for fragment ions was set at
0.02 Da. Carbamidomethyl on Cys was specified as a fixed modification, and oxidation on Met was speci-
fied as a variable modification. The false discovery rate (FDR) was adjusted to ,1%, and the minimum
score for peptides was set at .40.

Bioinformatics analyses. (i) Annotation methods. Gene Ontology (GO) proteome annotation was
derived from the UniProt-GOA database (http://www.ebi.ac.uk/GOA/) based on three categories: biologi-
cal process, cellular component, and molecular function. wolfpsort soft was used to predict subcellular
localization.

(ii) Functional enrichment analysis. Two-tailed Fisher’s exact test was employed to test the enrich-
ment of the differentially expressed proteins against all identified proteins. The GO annotations, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, and protein domains with a corrected P value of
,0.05 were considered significant.

(iii) Enrichment-based clustering. Enrichment-based clustering analysis was performed using the
heatmap.2 function of the gplots R package.

(iv) Dynamic cluster analysis. For dynamic cluster analysis, the relative expression quantitative data
between the different comparison groups were combined according to the protein identification, to
form a protein expression level data matrix. Next, the obtained data matrix was transformed by log2 and
then normalized so that the expression level of each protein between different comparison groups was
a group of numbers with 0 as the mean value and 1 as the standard deviation. Finally, the Mfuzz toolset

TABLE 4 Antifungal profiles of serial C. albicans isolates

Strain
Fluconazole dose
(mg�day21)

Previously reported
MICa (mg �mL21)

MIC in our studyb

(mg �mL21) Previously described resistance mechanism(s) Reference(s)
Ca1 100 0.25 0.5
Ca2 100 1 2 GOF mutations in MRR1; transient LOH events occurred on

chromosome R; overexpression of MDR1
83–85

Ca8 100 8 8 Transient ploidy changes 84
Ca14 400 32 32 Overexpression of ERG11; loss of allelic variation in ERG11;

R467K mutation in ERG11
85, 86

Ca17 800 .64 128 GOF mutations in MRR1, TAC1, and UPC2; mitotic recombination
on chromosome 5 left arm; overexpression of ERG11, MDR1,
CDR1, and CDR2; loss of allelic variation in ERG11; R467K
mutation in ERG11

12, 13, 83–87

aThis MIC value was measured by White in 1997 (81) by a microdilution adaptation of the reference method (88).
bAntifungal susceptibility testing was performed using a broth microdilution method according to CLSI (Clinical and Laboratory Standards Institute) document M27-E4d (89).
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was used on the normalized data set to perform cluster analysis. Analysis parameters included the fol-
lowing: the cluster number, “c,” was 4, and clustering ambiguity, “m,” was 2.

Data availability. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD031774.
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