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Multiple sclerosis (MS) is the most common inflammatory neurological disease in young adults, with a high prevalence worldwide
(2.8 million people). To aid in the MS treatment, using VR tools in cognitive and motor rehabilitation of such disease has been
growing progressively in the last years. However, the role of VR as a rehabilitative tool in MS treatment is still under debate. .is
paper explores the effects of VR training using EMG activation in upper limb functionality. An experimental training protocol
using video games controlled using an MYO armband sensor was conducted in a sample of patients with MS. Results support the
use of EMG-commanded video games as a rehabilitative tool in patients with MS, obtaining favorable outcomes related to upper
limb functionality and satisfaction.

1. Introduction

Multiple sclerosis (MS) is a chronic immune-mediated in-
flammatory demyelinating illness of the central nervous
system of unknown etiology and multifactorial origin [1, 2].
MS is the most common cause of disability in younger
adults. Among these disabilities, dexterity and activities of
daily living (ADL) limitations on the upper limb (UL)
represent one of the most common problems in patients
with MS, usually affected by weakness or ataxia. Johansson
et al. [3] reported that up to 76% of patients presented with
any type of incapacity had UL impairment, and in at least
50% of patients, the severity of the dysfunction was mod-
erate. Kamm et al. [4] and Choi et al. [5] reported that, after
15 years of disease evolution, the majority of MS patients
report hand’s problems at the functional level, so patients
perform compensations or decrease UL functions [4, 5],

although its importance may be underrecognized relative to
walking impairment, which is the hallmark symptom of MS
[6].

Neurorehabilitation for UL in people with MS is aimed
at maintaining or improving function and quality of life [7].
It can be strengthened with technology, such as robotics,
virtual reality, or functional electrical stimulation, to in-
troduce the key elements of motor learning (feedback, in-
tensity, error-based learning, practice of functional tasks,
repetition, motivation, and attention) [8, 9]. However, the
costs of these devices are one of their main limitations, so
new research is needed to improve manual dexterity in
people with MS using technology, adding adherence and
motivation to this chronic illness.

In this paper, the feasibility of EMG-controlled video
games as a rehabilitation tool inMS treatment is studied. For
that purpose, a pilot study was conducted at a multiple
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sclerosis center with seven patients using a series of video
games commanded by the 8 EMG channels’ low-cost
armband sensor, such as MYO sensor, during a training
protocol defined by therapists.

2. Related Work

Currently, techniques based on electromyography (EMG)
reveal a potential clinical value in healthcare with a specific
focus on neurorehabilitation [10, 11]. .e EMG signals are
formed by the variations in states of skeletal muscles, which
are triggered by the human intention transferred from
neurons to corresponding limbs. .ese signals can be ac-
quired by invasive or noninvasive methods. Although the
invasive methods provide better signal quality and more
precision, this approach involves surgical procedures for
electrode implantation, which present some inconveniences
such as the risk of infectiousness, contingent rejection re-
action, discomfort, and other medical concerns.

On the other hand, the noninvasive approaches present a
lower quality of signal but are easy to use, and in commercial
terms, there exist different models depending on the final
applications. Devices capable of acquiring the superficial
electromyography (sEMG) signals can be commercially
founded in different forms, such as bands for measuring the
muscle activity in the arms or devices with separate elec-
trodes, with different communications protocols such as
wireless, Bluetooth, or cable and with different quality of
signals depending on the low-level filtering and the electrode
material quality. All these characteristics influence the price
of the device.

Different factors need to be considered in the sEMG
signals acquisition, for example, the skin factors such as the
sweat or the hair, the electrode location over the muscle, the
muscle fatigue, different noises produced by the muscles
moving, and the harmonics induced by the power line 50Hz
or 60Hz. Also, the signal amplitude is of the order of mV,
and it needs to be amplified before its use.

Usually, three steps of signal preprocessing are applied
before using the signal in different applications. .is pre-
processing consists of rectification, filtering, and signal
normalization. .e sEMG signal presents x-axis symmetry,
which makes its average value have low and insignificant
values. In this case, it is a good practice to rectify sEMG a
priori, considering only its absolute value. .is rectification
doubles the sEMG signal frequency. Signal filtering is
necessary for noise reduction. In general, a 60Hz band-pass
filter (50Hz in Europe) is used to remove noise charac-
teristics of the power line and with lower cutoff frequencies
between 5 and 20Hz to remove noise variation from the zero
line or motion artifacts. Signal normalization is an option to
prevent noise variation, and it does not influence the clas-
sification process. In this work, only the default MYO
armband filters are used. No additional filter and normal-
ization were implemented.

.e built-in proprietary system of the MYO armband is
limited to the recognition of 5 gestures. Moreover, when the
MYO armband is used in a user-independent scenario,
which means that it can be used by new users without prior

training, its recognition accuracy drops from 83.1% (user-
dependent) to 53.7% (user-independent) [12]. .us, cus-
tomized developments have been conducted in several fields.

MYO can communicate on real-time hand gesture
recognition using deep learning techniques with PCs via
Bluetooth, virtual environments, or other objectives such as
prosthesis [13], a steering assistance interface [14], an
augmented reality dance game designed to improve reha-
bilitation therapies in upper limb amputees while the hand
gestures are analyzed using EMG data collected by MYO
[15], or an EMG intention detection system based on the
MYO armband to control robotic hand orthosis [16]. It has
been recognized as a noninvasive, more user-friendly, and
time-saving device compared with conventional electrodes
[17].

To the best of our knowledge, very few studies have been
conducted with MYO armbands to treat dexterity dys-
functions in people with neurological disorders and none
with people with MS for treatment aims. Macintosh et al.
[18] recruited 19 people with cerebral palsy during a 4-week
home-based intervention with movement-controlled video
games with MYO. Lyu et al. [19] tested MYO in 2 patients
with chronic stroke to distinguish between the desired
movement strategy and unwanted alternatives, previously
tested in six healthy participants that practiced the task for
one session with a total of 144 trials. Sadeghi Esfahlani et al.
[20] determined accurately the range of motion and the
kinematic ability combining Kinect technology, MYO
sensor, and a FootPedal with a semi-immersive virtual
environment called ReHabGame in 10 healthy participants
and 2 poststroke patients, 2 traumatic brain injury patients,
and 9 with multiple sclerosis, as an inexpensive and home-
based assessment tool through of serious game that com-
prised four scenarios. Finally, Totty and Wade [21] per-
formed a study with 10 nondisabled individuals to remote
monitoring the physical activity using the MYO sensor in
order to assess the feasibility of classifying categories of
activities of daily living from the Functional Arm Activity
Behavioral Observation System (FAABOS) scale using
muscle activation and motion data.

.e aim of this feasibility studywas to evaluate the effects of
EMG-controlled video game-based training, combined with
conventional rehabilitation, for improving the UL functionality
(grip muscle strength, coordination, dexterity, fatigue, and
quality of life) in patients with MS. Furthermore, a secondary
goal is to assess satisfaction, adherence, presence of cyber-
sickness, and workload perceived by participants on treatment.

3. Materials and Methods

.is paper studies the effects in UL functionality of a training
protocol based on conventional rehabilitation plus an ex-
perimental method using gaming technology. .e experi-
mental VR-based method consists in promoting the arm
muscle activation by commanding the video game actions
with EMG sensors..e system used as a rehabilitation tool is
made up of two subsystems: (1) the set of video games and
(2) the gesture recognition system. Both subsystems were
implemented in different development platforms due to
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their particular characteristics of them. .e results of the
gesture recognition block are sent to the video game through
TCP/IP protocol, being the video game on the server-side
and the gesture classifier on the client side. Figure 1 depicts
the components of the proposed system and describes the
minimum infrastructure employed in this study.

On the one hand, the serious games (SG) implemented
for this study aim to imitate movements included in con-
ventional physical therapy, such as pronation, supination,
grasping, and wrist deviations, but adding the motivational
effects of gaming technology. .is rehabilitation strategy
using SG is proposed for patients withMS but can be used by
people with limited mobility in order to restore their ability
to independently perform the activities of daily living (ADL)
or to recover a lost or diminished function. .e user can
interact with the video game using arm gestures, which are
detected by EMG sensors. .us, when the user performs a
hand gesture, an action is commanded in the video game.

On the other hand, the gesture recognition system is
based on a neural network classifier that identifies the EMG
muscle activation when a gesture is performed. .e muscle
activation is detected by anMYO sensor located in the user’s
forearm, and a flag bit is sent to the video game when a
gesture is successfully identified. .us, the user can interact
with the video game naturally since the sensor does not
interfere when gesture performing.

As illustrated in Figure 1, both the video game and the
gesture recognition block are executed on a single PC or
laptop; however, they require different SW conditions. .e
video games are installed in the operating system, so they
work in a standalone manner. .e gesture recognition
system requires its native development software to be
running. Consequently, a method for information trans-
ferring is needed. In this case, a server-client method was
implemented to communicate the video games and the
gesture recognition block.

Additionally, two data types are gathered automatically
during the video game performing: (1) the video game scoring
and game settings and (2) the raw data of EMG muscle acti-
vation..is information can be used in further analysis to better
understand the patient’s performance and the relationship with
the game conditions (difficulty, type, repetitions, etc.).

3.1. Development Tools

3.1.1. Hardware Tools. .e MYO armband (.almic Labs,
Kitchener, ON, Canada) sensor was used to detect forearm
muscle activity. .is sensor is a gesture recognition band
that could work without extra batteries and transfer data
wirelessly with adequate sample frequency and accuracy
[22]. Specifically, the MYO armband is comprised of eight
dry sEMG sensors and one 9 degrees of freedom (DOF)
IMU. Each EMG sensor is sampled at a frequency of 200Hz
and outputs an eight-bit unitless integer value that ranges
from − 128 to 127 representing the level of activation of the
muscle being sensed. .e 9 DOF IMU contains a three-axis
accelerometer, a three-axis gyroscope, and a three-axis
magnetometer, each one sampled at a frequency of 50Hz.

3.1.2. Software Tools. .e video games were developed using
the Unity 3D game engine and C# programming for the
game scripts. .is open-source engine allows the video
games created to be accessible and free. Additionally, the
MATLAB software was used to implement the gesture
recognition system based on the Neural Network Toolbox.
.eMYO Connect application was used to capture and send
the EMG signals to MATLAB software. .e MYO Connect
application receives via Bluetooth the raw data sent by the
MYO armband.

4. System Description

As previously mentioned, the proposed system consists of
two main subcomponents: (1) the set of video games
commanded by EMG activation and (2) the gesture rec-
ognition system that identifies the movements performed by
the user’s arm. .e two subcomponents are described in
deep as follows.

4.1. Video Games for the MYO Sensor. A total of four video
games were implemented for this pilot trial (Figure 2),
namely, the MYO-Gesture, the MYO-Arkanoid, the MYO-
Space Invaders, and the MYO-Cooking. A set of eight hand
gestures are used to command the actions in the games; six
of them are detected by the MYO armband based on the
EMG activation..e remaining two gestures (pronation and
supination movements) are detected using the inertial
measurement unit (IMU) of the MYO sensor.

.e video games share several functions like patient
record management, gestures mapping, secure login, au-
tomatic data storage, and feedback to the patient. However,
the gameplay and particular functionalities of each game are
described in detail as follows.

4.1.1. MYO-Gesture Game. .e MYO-Gesture game (see
Figure 2(a)) imitates the mechanics of the well-known
”Guitar Hero” video game. In this case, a series of colored
rings are sequentially falling in different columns along the
screen width. Each column is assigned to a specific hand
gesture, and the player must imitate the gesture shown in the
column in which the ring falls. .ere are five positions/
columns implemented for training five gestures at a time and
in order to do not reduce the icon’s size. However, the
therapist can choose whether or not all the gestures will be
used. Prior to starting the game, the therapist can choose
from one to five gestures to be used in the round game in
order to intensify the activation of a specific muscle group.

Similar to the Guitar Hero game, the goal of this game is
to complete the music by properly replicating the hand
gestures required by each ring. When the player imitates
correctly the gesture required, a point is given, and a part of
the music is reproduced. Contrary, when the gesture re-
quired is not performed, a gap in the music is obtained, and
the music will be incomplete. .us, the purpose of the audio
feedback is to provide the user with an immediate quanti-
tative evaluation of how well they performed the gestures
during gameplay.
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.is video game offers several options to customize the
difficulty level according to the patient needs, such as the
game duration time, the game style (autocompleted or
playback soundtrack), the ring spawn time, the ring falling
speed, the music theme, and gesture mapping. .is last
option allows for choosing the hand gestures to be trained. It
is because only five gestures can be displayed on the screen,
but a set of eight gestures is available.

4.1.2. MYO-Arkanoid. .e MYO-Arkanoid game (see
Figure 2(b)) implements the mechanics of the arcade game
with the same name. In this game, the user takes control of a
paddle at the bottom of the screen andmust use it to deflect a

ball into rows of blocks at the top of the screen, thus
destroying them and eventually clearing the screen. Each
block destroyed by the ball is equivalent to one or five points
if it is a golden block. .e game ends when the player
destroys all the blocks or loses all lives. By default, the player
has three lives, and it loses one when the ball falls at the
bottom of the screen.

For this game, the following options were included to
personalize the difficulty level: short or large paddle size,
game mode (a single or three balls simultaneously), paddle
displacement speed, ball speed, and gesture mapping. .is
last allows for choosing the hand gestures to command the
paddle motion. Due to the paddle can move horizontally,
only two hand gestures can be used in this game.

(a) (b)

(c) (d)

Figure 2: Proposed framework for EMG-based upper limb rehabilitation. (a) MYO-Gesture. (b) MYO-Arkanoid. (c) MYO-Space Invaders.
(d) MYO-Cooking.
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PC/Laptop

User
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Figure 1: Proposed framework for EMG-based upper limb rehabilitation.
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4.1.3. MYO-Space Invaders. .is is a fixed shooter in which
the player moves a laser cannon horizontally across the
bottom of the screen and fires at aliens overhead. .e aliens
begin as three rows of ten that move left and right as a group,
shifting downward each time they reach a screen edge (see
Figure 2(c)). .e aliens attempt to destroy the player’s
cannon by firing projectiles. .e game mechanics lies in
dodging the alien attacks by using two gestures to move the
spaceship laterally and to destroy all of the aliens by shooting
them using a third gesture. .us, three gestures can be used
in this video game.

.e player’s cannon is partially protected by stationary
defense bunkers, which are gradually destroyed from the top
by the aliens and, if the player fires when beneath one, the
bottom.

For theMYO-Space Invaders, the following options were
included to personalize the difficulty level: number of lives,
rate of alien attacks, firing speed, spaceship speed, spaceship
tracking (focusing the aliens’ attacks on the spaceship), and
gesture mapping. For this game, this option allows choosing
the hand gestures to command the spaceship motion and
laser firing. Consequently, only three hand gestures can be
used in this game.

4.1.4. MYO-Cooking. In this game, players get to be the chef,
and they have to prepare a dish by following the steps in-
cluded in a recipe (see Figure 2(d)). Firstly, the therapist has
to create a recipe indicating the ingredients and steps to
prepare the dish. A recipe is composed of several steps with
different ingredients. In each step to create the dish, the
therapist must associate various hand gestures with a par-
ticular ingredient. Each dish step involves a sequence of
hand gestures. For example, Figure 2(d) illustrates a se-
quence of hand opening, grasping, and hand opening again
to crack the egg.

.us, the gameplay is to imitate the gesture sequence
shown on the screen to complete the proposed recipe step.
.e recipe step is completed when the player performs all the
gestures associated with it, and the game ends when the
player fulfills all the recipe steps. .e maximum number of
gestures associated with a recipe step is five.

.e customization options of MYO-Cooking are dif-
ferent from previously described games since it requires the
recipe’s creation by the therapist prior to intervention. .e
video game offers a friendly menu-based interface to create
recipes, add a new ingredient, and edit or import a recipe.
Additionally, in each recipe step, the therapist can include a
description of the task to help the patient understand the
required task. In order to create a recipe, the therapist can
expend various minutes depending on the recipe extension
(number of recipe steps, number of gestures used, de-
scription of steps, etc.).

4.2. Gesture Recognition System. .e MYO armband is
provided with a real-time hand gesture recognition algo-
rithm for fist (hand closed), wave in (wrist flexion), wave out
(wrist extension), and fingers spread (hand open). Also, the
double-tap (accomplished by tapping the thumb to the

forefingers twice in quick succession) is used to lock/unlock
the device. In this work, according to the rehabilitation
therapy, the developed application needs to identify the
following gestures: relax, grip, extended, wrist flexion, wrist
extension, and pinching (see Figure 3), to which the
movement of pronation and supination from the IMU
signals is added.

.e developed application uses the sEMG signals pro-
vided by the 8 MYO armband sensors, rectified, filtered, and
normalized. Only the rectification process was implemented
in this work because the signals were filtered and normalized
by the Myo SDK [23]. An example of these sEMG signals
levels according to the proposed gesture recognition is
presented in Figure 4(a). .is represents an average level of
1000 samples for each of the eight electrodes for each
proposed gesture. After sEMG acquisition, the adjacent
segmentation technique was used, where the sEMG signals
are split into adjacent windows. According to Oskoei andHu
[24], a real-time classification is considered when the length
of the segment does not exceed 300ms, but the longer the
segment, the more accurate the gesture classification. For
this reason, segments were fragmented into windows with a
fixed length of 300ms. In each window, time-domain fea-
tures were calculated: (1) mean average value (MAV), (2)
root mean square (RMS), (3) variance (VAR), (4) signal
strength indicator (SSI), (5) zero crossings (ZC), (6) wavelet
transform (WL), and (7) side scatter (SSC). In total, 56 values
that represent the 7 features are extracted from each window,
that is, from 1 to 8, the first feature, mean average value for
each electrode (8 electrodes), from 9 to 16, the second
feature, root means square for each electrode, and so on.
.ese characteristics for each proposed gesture recognition
can be seen in Figure 4(b). Although some features have very
low values (close to 0), they have a significant influence on
the classification of gestures.

.e time-domain features used in this work are detailed
as follows:

(i) MAV. Detect the muscle contraction levels. It is
calculated by taking the mean of the absolute value
of the signal xi in the segment i that is N samples
long and is expressed by (1) [25]:

MAVi �
1
N

􏽘

N

k�1
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, for i � 1, 2, . . . , I, (1)

where xk is the k th sample of the segment i and I is
the number of segments.

(ii) RMS. It is related to the constant force and non-
fatigued contraction of the muscle. It refers to the
standard deviation, and it is expressed by (2) [24]:

RMS �

�������

1
N

􏽘

N

i�1
x
2
i

􏽶
􏽴

. (2)

(iii) VAR. Starting in the late 1970s, the EMG signal was
modeled as amplitude-modulated Gaussian noise
whose variance is related to the force developed by
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(a) (b) (c)

(d) (e) (f)

Figure 3: Set of gestures identified for the sEMG recognition system. (a) Relaxed hand. (b) Extended hand. (c) Handgrip. (d) Wrist flexion.
(e) Wrist extension. (f ) Pinching.
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Figure 4: EMG signal levels for different gestures. (a).e amplitude of the EMG signals for different gestures. (b).e features amplitude for
different gestures.
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the muscle [26, 27]. .e variance (or second-order
moment) of the EMG signal forms another pa-
rameter related to the power of the EMG signal..e
variance is classically defined as an average of the
deviation of the signal from the mean at each point.
As the EMG signal usually has a mean very close to
0, its variance is usually expressed as

VAR �
1

N − 1
􏽘

N

i�1
xi − M( 􏼁

2
, (3)

where M is the mean value of the EMG signal [28].
(iv) SSI. SSI forms an index on the energy of the signal.

It is defined mathematically as [29]

SSI � 􏽘
N

i�1
x
2
i . (4)

(v) ZC. It is the number of times that the signal passes
through zero or the number of times that the signal
changes the sign in a given segment [30]. It provides
an estimate of the frequency. An amplitude
threshold must be included to avoid zero crossings
produced by signal noise. ZC increment the count,
if xk > 0 and xk+1 < 0 or xk < 0 and xk+1 > 0 and
|xk − xk+1|≥ threshold [25].
.e threshold is included to reduce noise, and xk

and xk+1 are consecutive samples. .is parameter
provides a rough estimate of the frequency domain
properties.

(vi) WL. WL is the cumulative length of the waveform
over the time segment.

l0 � 􏽘
N

n�1
Δ Xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (5)

where ΔXn � Xn − Xn− 1, the difference between
two consecutive samples..e resulting values give a
measure of the amplitude, frequency, and duration
of the signal shape, all within a single parameter
[25].

(vii) SSC. It is the sign change of the slope of the signal
and provides a measure of the frequency of the
measured signal. Given three consecutive samples
Xn− 1, Xn, and Xn+1, the sign change of the slope of
the signal will be increased if

SSC � 􏽘
N

i�3
sgn − − xi − xi− 1( 􏼁 xi− 1 − xi− 2( 􏼁􏼂 , (6)

where sgn(x) � 1 when x> 0 and 0 otherwise.

.e all process of the gesture classification implemented
in the application consists of three steps: data acquisition,
neural network training, and validation. After validation, the
gesture recognition application can connect to Unity to start
a new game. Data acquisition consists in creating a new
dataset with 100 samples (sEMG features) for each gesture,

in total 600 samples. After the MYO armband was posi-
tioned over the forearm and was synchronized with the
computer, the user is asked to imitate the six gestures during
which the acquisition of sEMG signals is made, and the
characteristics are extracted. .e features are stored in the
dataset with the name of each gesture.

.e second step consists in processing the data stored in
the dataset to be used in neural network training. .is is a
predefined feedforward neural network with 56 inputs (the
sEMG features), 2 layers of 8 and 6 neurons with a log-
sigmoid activation function. .e output of the neural net-
work is represented by a 6-position vector, where each
position represents a gesture recognition with a value be-
tween 0 and 1: 0 indicates that the gesture is not recognized,
and 1 indicates that the gesture is recognized 100%. .e
neural network architecture used in this work can be seen in
Figure 5.

.e proposed interface to automate the process of data
acquisition, NN training, gesture verification, and connec-
tion to the Unity video games can be seen in Figure 6. .e
interface permits creating a personalized dataset with pre-
defined gestures for each user and training the NN archi-
tecture. Compared to the literature, the proposed method is
to personalize the dataset according to the patient and do not
use a dataset that contains samples from different subjects.
With this point of view, a personalized dataset offers more
accuracy but increments the setup time necessary for data
acquisition and NN training.

.e right side buttons from the interface (framed in red
dotted line in Figure 6) represent the predefined gestures and
are used for data acquisition. .e user is asked to replicate
the selected gesture (the gestures will be selected one by one),
and the application automatically stores 100 samples with
the name of this gesture in the dataset. Once the dataset was
created with all the gestures (600 samples), the button lo-
cated in the central zone (framed in mauve dotted line)
permitted the NN training. A script automatically concat-
enates all samples, generating two matrices with the input
and output data (target data) for the supervised learning
algorithm, with which the NN is trained. All processes from
the data acquisition to the validation for a new user,
depending on the user and the computer power, may take
between 3 and 5minutes. .e validation process (the framed
in green dotted line from Figure 6) can be activated with a
switch button and consists of lighting the LEDs depending
on the detected gesture: yellow light if the validation process
is off, green if the gesture has been recognized, and red if the
gesture has not been recognized.

At the bottom of the application, the pronation-supi-
nation angle coming from the IMU sensor is represented by
a semicircular gauge between − 120 and 120 degrees. Also,
during the validation process, the NN output is stored in a
column vector of six positions with values between 0 and 1,
where the maximum value represents the recognized ges-
ture. .is vector is increased with three positions, repre-
senting the normalized Tait-Bryan angles (yaw, pitch, and
roll), and is sent to the Unity program to manage the game
movements. .ese angles are obtained from the rotation
matrix provided by the Myo SDK [23]. .ese are values
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between − 180 and 180 degrees, and for their normalization,
it was divided by 180, obtaining a value between − 1 and 1.
For the roll angle, from − 1 to 0 represent the pronation
movement and from 0 to 1 the supination movement. .e
control of the video game is according to threshold ex-
ceeding in order to include a dead zone for a central/neutral
movement. For example, if the angle is less than − 0.3, a
pronation action is detected and if greater than 0.3 a su-
pination action is identified. However, while the arm keeps
between the range of − 0.3 to 0.3, neither pronation nor
supination actions are identified. .is threshold can be
adapted for changing the difficulty level in the game.

4.2.1. Neural Network Performances. A new dataset with 600
samples was stored for a new user. .is dataset contains 100
samples of each movement, where in each sample, a vector of
56 positions was saved, which represent the 7 characteristics.
.ese characteristics were extracted from the MYO armband
sEMG signal (8 electrodes) during each 300ms. For the neural
network training, the whole dataset was divided randomly into
70%, 15%, and 15%. 70% of data were used for training, 15%
were used for validation, and another 15% were used for
network testing. .e training algorithm was based on the
Levenberg–Marquardt algorithm, and the performance was

measured with the Mean Squared Error (MSE). After network
training and its validation with the aid of the application, a new
dataset was storedwith the same gestures, but in this case, at the
same time, the response of the trained neural network. .ese
new values from the NN output were used for evaluating the
NN performance..e target data were plotted according to the
NN output in the confusion matrix (see Figure 7), where the
rows correspond to the predicted class (output class, gesture
recognized by theNN), and the columns correspond to the true
class (target class, gesture made by the user).

In Figure 7, the numbers from 1 to 6 represent the 6
gestures, and the diagonal cells (in green) correspond to
observations/gestures that are correctly classified. .e off-
diagonal cells correspond to incorrectly classified observa-
tions. In this example, as can be observed, gesture recog-
nition is 94.5% accurate. .e predicted percentage of each
gesture is presented in the last row, and the columns cor-
respond to the true class (target class). .e weakest pre-
dictions (last row) are in the relax gesture (83.3% accuracy)
and pinch gesture (87.9% accuracy). .e 83.3% of accuracy
for the relax gesture is due to the fact that 20 samples of this
class were classified in the relax class. It should be noted that
the pinch gesture was stored by not exerting too much force
between the thumb and index finger; otherwise, confusion
will occur between the extension and pinch gesture. Also, the
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Figure 5: Architecture of neural networks.

Figure 6: GUI for system’s connection.
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87.9% of accuracy for the pinch gesture prediction is influenced
by the 7 samples from the wrist extension class and 4 samples
from the extended hand class, wrong classified in the pinch
class. .e last column represents the percentage of the true
class, where, for example, 80% of the samples from the pinch
gesture class were well classified, similarly, 93% for the wrist
extension, 98% for the wrist flexion, 96% for the extended
hand, and 100% for the handgrip and relax gesture.

4.3. System Connection. In Figure 6, the switch button “Unity
connection” (framed in blue dotted line zone) permits con-
necting the gesture recognition application with theUnity video
games when the verification button also is on..e data are sent
by TCP/IP protocol, where the gesture application is a client
who connects with the server, Unity video games. .e client
sends to the server the gestures vector of 9 positions repre-
senting the 6 gestures and the 3 normalized Tait-Bryan angles.

5. Feasibility Study

A case series study was conducted following the CARE report
guidelines [31] as a feasibility study. Nonprobabilistic sampling
of consecutive cases was used. All interventions were per-
formed at the Leganés Association of Multiple Sclerosis
(ALEM) in Madrid, Spain. Informed consent was obtained
from all participants included in this study. .is research was
approved by a local ethical committee (reference 26/12).

5.1. Participants. .e initial sample consisted of 9 patients.
However, 2 of them were excluded because they could not
attend the association twice per week to receive treatment.
.us, the final sample consisted of 7 patients (6 men and 1
woman), 3 of them with secondary progressive MS, 3 with

Relapsing-remitting MS, and 1 patient with primary pro-
gressive MS. Four patients had greater involvement on the
left side and three on the right side. .e age of the patients
ranged between 29 and 56 years (mean 46.57 ± 9.71 years).
Regarding the EDSS scale score, the sample ranged between
3.0 and 7.0 (5.43 ± 1.43). .e mean time of evolution of the
disease was 14.43 ± 9.5 years. All descriptive sociodemo-
graphic data are shown in Table 1.

All patients fulfilled these inclusion criteria: a confirmed
diagnosis of MS between 3.0 and 7.0 on the Kurtzke Expanded
Disability Status Scale (EDSS); stable medical treatment during
at least the six months prior to the experimental intervention;
modified Ashworth Scale ≤2 points in the upper limbs; a score
≥24 points in the Mini-Mental Test.

.e exclusion criteria were a diagnosis of other neu-
rological illnesses different to MS; suffering an outbreak in
the prior three months to the present research; having re-
ceived a cycle of steroids six months prior to the experi-
mental protocol and during the study; having received
treatment with botulinum toxin in the six months prior to
the beginning of the research; perceptual and visual disor-
ders no corrected by optical devices.

5.2. Intervention. All patients received conventional reha-
bilitation for the UL by 1 physical therapist betweenMay and
July of 2021. .e conventional protocol was 45minutes, 2
sessions per week, based on gross and fine motor coordi-
nation, mobilization, strengthening and stretching tech-
niques, and practice of dexterity and daily living tasks based
on prior studies [14, 15].

Additionally, an experimental protocol was conducted
based on serious games designed for the MYO sensor.
Experimental treatment was scheduled from 12 to
20minutes per session, twice per week over an eight-week
period (16 sessions for all patients). Each session was focused
on one upper limb alternatively (more affected side one
session and less affected side the next one).

5.3. Experimental Protocol. .e video games attempt to
exercise a full range of motion in the UL, as well as promote
repetitive movements in a friendly manner. .e movements
involved are relaxed hand, extended hand, handgrip, wrist
flexion, wrist extension, pinch, forearm pronation, and
supination.

Prior to performing a training session, the set of gestures
must be calibrated for the particular conditions of each
participant. .e calibration process uses MATLAB software
to feed sEMG data from the MYO armband sensor (placed
on the forearm) wirelessly into the neural network classifier.
Every time the MYO is switched on, a new movement
calibration must be performed to ensure correct hand
gesture detection. .e process takes approximately 4-
5minutes overall, and it has to be done every time a new user
interacts with the system. After that calibration, the par-
ticipant can command the video games using the EMG
generated when a gesture is performed.

.e experimental protocol consisted of the application of
the four video games, increasing the game intensity and
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Figure 7: Confusion matrix for gesture recognition.
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modifying the gesture mapping on each game. Gesture
mapping of each game was assigned by the therapist
according to the treatment evolution. .us, the protocol
programmed for the participants in this study is shown in
Table 2. Note that the experimental protocol was performed
with the more and less affected arm at each therapy session.

5.4.OutcomeMeasures. In order to evaluate the effectiveness
of treatment, three assessment stages were conducted:
previous to intervention (baseline), at the end of treatment
(final), and two weeks after treatment (follow-up). All as-
sessments were performed by the same two raters trained in
the use of the measures, blinded to the interventions. .e
following outcome measures were used.

A hydraulic hand dynamometer (Jamar®) was used to
assess grip strength. All the patients performed three grip
movements, and the mean values were recorded. Hand
dynamometry is recommended by the American Society of
Hand .erapists and by the Brazilian Society of Hand
.erapists [16]. .e data were recorded in kilograms for
both sides.

.e Box and Block Test (BBT) was performed to measure
coordination, speed of movements, and gross dexterity for
both sides. Patients are instructed to move as fast as possible
the maximum number of blocks from one side to another
side of a box within one minute. .e BBT is a quick, simple,
and reliable assessment. Its administration and its validity
have been shown in subjects with upper limb disability
[17, 18].

Nine Hole Peg Test (NHPT) was used. It is a hand
function test, which consists of a plastic pegboard with nine
holes and nine pegs. .e patient is instructed to put the nine
pegs in the pegboard as fast as possible and then remove
them again for both sides. .e time is recorded as an
outcome measure in seconds (seg.) [19].

.e ABILHAND is a measure of 23 bimanual activities
for adults with upper limb impairments [32]. .e scale
measures a person’s ability to manage daily activities that
require the use of the upper limbs, whatever the strategies
involved. .e questionnaire is downloaded from the website
and one of the 10 random orders of questions..ese are read
to the patient and scored as either “impossible,” “difficult,”
or “easy.” If a task has not been attempted in the last
3months, then it is marked as N/A.

.e Fatigue Severity Scale (FSS) is a 9-item scale, which
measures the severity of fatigue and its effect on a person’s
activities and lifestyle in patients with a variety of disorders
[33]. It was originally devised for people with multiple
sclerosis or systemic lupus erythematosus. .e subject is

asked to read each statement and circle a number from 1 to
7, depending on how appropriate they felt the statement
applied to them over the preceding week. A low value in-
dicates that the statement is not very appropriate, whereas a
high value indicates agreement.

Quality of life was assessed by the Multiple Sclerosis
Impact Scale (MSIS-29). It presents two dimensions:
physical and psychological well-being. It is conformed by 29
questions. Items are scored from 1 to 5, with 5 being a worse
quality of life perceived..e maximum score on the physical
part is 100 points and 45 points for the psychological well-
being part [20, 21].

Satisfaction was assessed with the Client Satisfaction
Questionnaire (CSQ-8) and a specific questionnaire that
evaluated satisfaction with technology for all patients
recruited. CSQ-8 consists of eight dimensions that assess the
satisfaction with the care and treatment received. .e total
score is 32 points, with higher scores meaning higher sat-
isfaction [34]. Satisfaction with technology and with the
MYO treatment program was also assessed with a ques-
tionnaire previously designed and used by our research team
[35]. .e dimensions considered are technical quality and
operation of the equipment; ease of the video game to be
played; program compliance and satisfaction in relation to
the treatment performed; general degree of satisfaction. Each
dimension is scored from 1 to 5, with 5 being very satisfied. A
total score is also calculated as a percentage (%).

.e System Usability Scale (SUS) also was used. It is a
reliable tool for measuring the usability and consists of a 10-
item questionnaire with five response options for respon-
dents, from strongly agree to strongly disagree [36]. Orig-
inally created by John Brooke in 1986, it allows you to
evaluate a wide variety of products and services, including
hardware, software, mobile devices, websites, and applica-
tions. .e best way to interpret your results involves
“normalizing” the scores to produce a percentile ranking.

.e Short Symptoms Checklist (SSC) comprises
symptoms (two taken from each of the SSQ subscales of
nausea, oculomotor, and disorientation) [37]. Participants
are asked to rate the severity of each symptom on a five-point
scale (“not at all,” “slightly,” “moderately,” “definitely,” and
“severely”) up to 45minutes after immersion. Although it
has not been validated yet as an independent measure, the
SSQ provided convenient profiling of symptoms experi-
enced during immersion.

NASA-Task Load Index (NASA) scale was used to assess
perceived workload. It is divided into six parts (mental
demand, physical demand, temporal demand, performance,
effort, and frustration). Each part is analyzed in a percent
value (%), and a total score is also calculated [38].

Table 1: Sociodemographic data of participants.

Age (years) Evolution period (years) EDSS score Attendance (%)
Average 46.57 14.43 5.43 92.93
Median 49.00 17.00 6.00 100.00
SD 9.71 9.50 1.43 13.71
Minimum 29.00 1.00 3.00 62.50
Maximum 56.00 27.00 7.00 100.00
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Additionally, we recorded the attendance rate (%) for
therapy sessions (compliance).

5.5. Statistical Analysis. SPSS statistical software system
(version 28.0) was used. A descriptive analysis was con-
ducted. .e Shapiro–Wilk test was used for normality
analysis (n< 50). .e use of nonparametric statistical tests
was considered adequate because the data did not follow a
normal distribution (n< 30). Friedman test for related
samples was used to compare variables. Moreover, the
Wilcoxon test for paired samples was used to compare
variables throughout the measurements. A 95% confidence
level was assumed. P values< 0.05 were considered signifi-
cant. In addition, the correction of the type I error in the
Wilcoxon test was taken into account.

6. Results

.e efficacy of MYO-controlled video game-based training
in MS treatment was estimated in terms of handgrip
strength, both gross and fine manual dexterity, performance
in the ADL, quality of life, and satisfaction. .ere was not a
discontinuity in the patient’s tracking (all the participants
were assessed in all stages). .e results obtained by the
outcome measures are summarized as follows.

.e scores of the Jamar handgrip dynamometer for each
participant are shown in Table 3. .e measurements yielded
a result of clinical improvement on handgrip strength on
both sides across the measurements, but no statistical sig-
nificance was achieved.

Regarding the gross manual dexterity estimated by the
BBT, a notable clinical improvement was observed in the

Table 2: Intervention: experimental protocol.

Game and duration Gesture sequence

Week 1
12minutes

3 minutes per game
MYO-Gesture Flexion/extension/pinch/grip/relax
Arkanoid Flexion/extension

MYO-Space Flexion/extension + grip
MYO-Cooking All gestures†

Week 2
12minutes

3 minutes per game
MYO-Gesture Flexion/extension/pinch/grip/extend
Arkanoid Pronation/supination

MYO-Space Flexion/extension + grip
MYO-Cooking All gestures†

Week 3
15minutes

3′45″ minutes per game
MYO-Gesture Flexion/extension/pinch/grip/relax
Arkanoid Pronation/supination

MYO-Space Flexion/extension + grip
MYO-Cooking All gestures†

Week 4
15minutes

3′45″ minutes per game
MYO-Gesture Flexion/extension/pinch/grip/extended
Arkanoid Flexion/extension

MYO-Space Flexion/extension + grip
MYO-Cooking All gestures†

Week 5
18minutes

4′30″ minutes per game
MYO-Gesture Flexion/extension/pinch/grip/extended
Arkanoid Pronation/supination

MYO-Space Pronation/supination + pinch
MYO-Cooking All gestures†

Week 6
18minutes

4′30″ minutes per game
MYO-Gesture Flexion/extension/pinch/grip/extended
Arkanoid Flexion/extension

MYO-Space Pronation/supination + pinch
MYO-Cooking All gestures†

Week 7
20minutes

5 minutes per game
MYO-Gesture Flexion/extension/pinch/grip/relax
Arkanoid Pronation/supination

MYO-Space Pronation/supination + pinch
MYO-Cooking All gestures†

Week 8
20minutes

5 minutes per game
MYO-Gesture Flexion/extension/pinch/grip/extended
Arkanoid Flexion/extension

MYO-Space Pronation/supination + pinch
MYO-Cooking All gestures†

†Flexion/extension/pronation/supination/pinch/grip/relax/extended.
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measurements presented in Table 4. In addition, statistical
significance was obtained in the Friedman test (more af-
fected p� 0.042; less affected p� 0.034). For this reason, the
Wilcoxon test was done, but in this case, no significance was
obtained.

.ere were no clinical changes in fine manual dexterity
throughout the initial measurement and measurement at the
end of treatment for both sides, according to the NHPT
measurements shown in Table 5. However, there was a slight
worsening in the follow-up after treatment. No statistical
significance was recorded throughout the measurements.

.e data related to the FSS (52 points on average) and the
ABILHAND (40 points on average) remained stable over
time, without obtaining statistically significant changes in
the paired comparisons. .e results regarding the quality of
life measured through the MSIS-29 showed a clinical
worsening, which was greater in the physical dimension than
in the cognitive one. Despite these data, no significant
changes were recorded. A summary of the above scores and
the statistical analysis are shown in Table 6, including the
previous outcome measure results.

Satisfaction with technology and MYO treatment ob-
tained an average score of 70.29 ± 7.13 out of 100 points
(see Table 7). .e medium CSQ-8 score was 80.35 ± 10.93
out of 100 points.

.emean score obtained in SUS was 74.64 ± 8.47 out of
100. .e mean score relative to the SSQ scale on symptoms
of distress was 11.22 ± 9.66 points and 21.62 ± 10.55
points at NASA-Task Load Index on a 100-point scale.

.e percentage of registered attendance had an average
of 92.93% ± 13.7 to the experimental protocol sessions
proposed.

7. Discussion

Despite the fact that previous studies combining video
games and EMG muscle activation have shown potential
clinical benefits [39], EMG systems were not routinely
utilized for intervention following neurologic injury.

Limited time and resources were identified by clinicians as
key barriers to implementing new clinical practices. Hence,
new perspectives on the design of EMG-based system are
needed for streamlined, intuitive, and clinically effective
applications [39].

In this line, the goal of this study was to evaluate the
effectiveness of a combined rehabilitation protocol focused
on the UL in MS treatment. .e rehabilitation protocol was
based on conventional therapy plus an experimental pro-
tocol based on video games controlled by EMG activation.
Results of the pilot trial indicate that sEMG-based video
game treatment is feasible to improve the UL functional
capacity in patients with MS but does not cover all the
functional spectrum. Namely, gross manual dexterity and
handgrip strength were improved according to the outcome
measures of the BBT and Jamar dynamometer, respectively.
However, fine manual dexterity measured by the NHPT
presented no functional changes.

Nevertheless, our results must be interpreted with caution
because a combined rehabilitation (conventional rehabil-
itation +EMG-commanded video games) was received for
each participant. Future studies should be conducted com-
paring the effects of our experimental protocol versus con-
ventional rehabilitation for UL in patients with MS.

Furthermore, it must be considered that these results
cannot be generalized since a small sample size was recruited
in this feasibility study. Note that this study is a case series,
and the results might be influenced by factors such as the
small sample size, the season when the intervention was
performed (in summer or hot weather, MS patients get worse
[40]), or the typical symptomatic variability of MS. However,
it can be highlighted that no adverse effects were identified
nor reported by participants, supporting the use of EMG
video games on the UL functionality in patients with MS.

Another positive factor is the low scores obtained by SSQ
and NASA-Task Load scales because it indicates that dis-
comfort symptoms (dizziness, nausea, among others) and
mental workload remained low, respectively. Visually in-
duced effects or possible unpleasant sensations of virtual
reality applications are a general concern. Hence, these fa-
vorable results regarding cybersickness are promising for the
acceptance of using VR inMS treatment. While it is true that
no immersive devices were used in this study, the developed
video games are compatible with a VR headset. .us, future
work can compare the user experience using an either or not
immersive setup, extending the target population.

Additionally, the experience using the EMG-controlled
video games has been excellently rated by participants
according to the satisfaction questionnaires. .is aspect is
very relevant in chronic pathologies such as MS, where the
traditional treatments may seem repetitive and monoto-
nous. Also, the utility and playability of the games have
been highlighted by the users and clinicians. However,
certain games have been difficult to perform, and the
therapist’s assistance was required. In most of the cases, the
problem was that the gesture performed was different from
the gesture calibrated. .us, the therapist had to remember
the patient to perform gestures as similar as possible to the
ones calibrated.

Table 3: Jamar Handgrip dynamometer scoring in pounds (lb).

More affected side Less affected side

Baseline Final Follow-
up Baseline Final Follow-

up
Participant
1 33 30 34 39 41 39

Participant
2 25 15 10 36 18 13

Participant
3 42 36 42 39 42 44

Participant
4 46 42 49 56 51 59

Participant
5 41 38 40 36 39 38

Participant
6 21 21 25 25 24 26

Participant
7 28 36 35 38 40 43

Median 33 36 35 38 40 39
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Table 4: Box and Block Test scoring.

More affected side Less affected side
Baseline Final Follow-up Baseline Final Follow-up

Participant 1 45 50 48 39 42 45
Participant 2 50 52 51 61 57 68
Participant 3 40 52 53 51 60 63
Participant 4 60 56 63 59 64 64
Participant 5 34 40 40 30 26 33
Participant 6 36 41 36 36 42 41
Participant 7 51 54 51 54 62 58
Median 45 52 51 51 57 58

Table 5: Nine Hole Peg Test scoring.

More affected side Less affected side
Baseline Final Follow-up Baseline Final Follow-up

Participant 1 27.58 27.58 29.74 34.28 33.09 25.69
Participant 2 24.40 29.37 24.49 22.24 23.11 19.41
Participant 3 27.03 27.47 23.36 27.40 27.74 24.87
Participant 4 25.01 25.20 25.07 21.42 25.67 24.71
Participant 5 50.83 37.15 41.55 78.03 49.06 53.19
Participant 6 58.76 60.28 140.52 35.50 30.72 37.67
Participant 7 28.04 21.04 20.18 26.77 19.97 17.78
Median 28 28 25 27 28 25

Table 6: Statistical analysis results.

Outcome measure
Median (interquartile range)

P value (Friedman)
P value (Wilcoxon paired)

Baseline Final Follow-up Bas.-fin. Fin.-fol. Bas.-fol.
Jamar MA † 33 (17) 36 (17) 35 (17) 0.223
Jamar LA ‡ 38 (3) 40 (18) 39 (18) 0.396
BBT MA 45 (15) 52 (13) 51 (13) 0.042∗ 0,189 1,584 0,126
BBT LA 51 (23) 57 (20) 58 (23) 0.034∗ 0,384 0,744 0,054
NHPT MA 27.58 (25.82) 27.58 (11.95) 25.07 (18.19) 0.717
NHPT LA 27.40 (13.26) 27.74 (9.98) 24.87 (18.26) 0.368
FSS 52 (11) 51 (16) 53 (14) 0.042∗ 0,879 0,327 0,528
ABILHAND 40 (19) 40 (11) 41 (19) 0.582
MSIS-29 physical 47.50 (60) 58.75 (22.50) 80 (47.50) 0.446
MSIS-29 cognitive 38.88 (16.67) 52.77 (30.55) 44.44 (61.11) 0.540
†MA: more affected side; ‡LA: less affected side; ∗significant.

Table 7: Results of the satisfaction questionnaires.

Strongly disagree Disagree Neither agreement nor disagreement Agree Strongly agree
Q1 Accessibility (facilities) 3 4
Q2 Ease to use 1 3 3
Q3 Fun games 4 3
Q4 Graphic design and music in games 1 3 3
Q5 Proper training protocol duration 1 4 2
Q6 Proper training session duration 2 1 3 1
Q7 Understanding of games mechanics 1 3 3
Q8 Aim-result of games 2 5
Q9 Proper increasing difficulty in games 5 2
Q10 Proper number of interactive sessions 3 4
Q11 Duration of interactive sessions 4 2 1
Q12 Accessibility and intuitiveness 2 1 2 2
Q13 Attendance flexibility 3 4
Q14 Support of therapist 2 5
Q15 Clear instructions by therapist 2 5
Q16 Personalized service 2 5
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On account of the above, one issue to be improved is the
time spent in gesture calibration, since the time of treatment
could be higher if the calibration procedure was faster.
Currently, gesture calibration time takes around 5minutes if
all the gesture set is trained. However, the GUI can help the
therapist to calibrate each gesture individually, allowing to
fix only the gesture that is not properly recognized. Future
work must consider additional methods, such as artificial
intelligence or self-learning, in order to reduce the gesture
calibration time and make the use of video games auton-
omously towards home treatment programs easy.

Regarding metrics acquired by the system, in addition to
the games scores, it is possible to register automatically the
muscle activation during the games’ performance for further
analysis. Literature highlights the potential of sEMG in
prognosticating recovery, providing specific quantitative
evidence for decision-making about treatments, and pro-
viding secondary information about the user’s performance
[39]. .erefore, an advantage of the proposed framework is
the generation of richer information about the therapy
session, and based on such information, other pathologies
such as fatigue can be identified and measured..is requires
further research and testing to validate this approach.

Finally, it can be noted that the current study has some
limitations. Firstly, it lacks a control group, and the sample size
was small, making it difficult to obtain statistical significance.
Future studies should be conducted withmore participants and
a control group following a conventional rehabilitation pro-
gram in order to compare the performance. Moreover, the
obtained results cannot be generalized to all patients with MS,
so these findings should be interpreted with caution. Further
research and large-scale randomized controlled trials are es-
sential before such novel rehabilitation techniques can be in-
corporated into clinical practice.

8. Conclusions

.e results presented in this paper support the use of video
games controlled by EMG sensors as a rehabilitative tool in
patients withMS. In this study, an improvement in handgrip
strength and gross manual dexterity was measured after a
training protocol based on EMG-commanded video games.
Although the number of patients is not sufficiently repre-
sentative to give a statistical significance to the obtained
results, it is nevertheless convincing about the effectiveness
of the use of these games for a double function as a com-
plementary rehabilitation instrument and an evaluation
method to extract additional indicators about the user’s
performance. Treating patients with neurological damage in

a practical and efficient way remains a challenge to achieve in
terms of adherence. .e development of this type of game
aims to facilitate the administration of therapies to achieve
better levels of adherence and therefore more intensive use
and better outcomes.

Despite the positive results in this study, various issues
must be solved in order to obtain full acceptance in clinical
practice. A relevant aspect to improve is reducing the time
spent in gesture calibration in order to increase the time
available for therapy. For that purpose, the potential of the
unity environment for including the gesture recognition
system into the video game can be a promising research line
towards simplifying the software tools required (Matlab
would no longer be needed).
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er2Walk “Sistema Robótico para Propiciar la Marcha en
Niños Pequeños con Parálisis Cerebral” under Grant
PID2019-105110RB-C32/AEI/10.13039/501100011033. .is
paper was part of the R&D and the authors’ project
PLEC2021-007819 funded by MCIN/AEI/10.13039/
501100011033 and by the European Union NextGener-
ationEU/PRTR.

Table 7: Continued.

Strongly disagree Disagree Neither agreement nor disagreement Agree Strongly agree
Q17 Attendance at care center 2 5
Q18 Schedule flexibility 3 4
Q19 Objective scores in games 2 5
Q20 Transferring gains to the ADL 2 3 2
Q21 Expectations were satisfied 1 2 4
Q22 Satisfaction level with protocol 1 1 5

14 Computational Intelligence and Neuroscience



References

[1] World Health Organization and Multiple Sclerosis Interna-
tional Federation, Atlas: Multiple Sclerosis Resources In &e
World 2008, World Health Organization, Geneva, Switzer-
land, 2008.

[2] W. I. McDonald, A. Compston, G. Edan et al., “Recom-
mended diagnostic criteria for multiple sclerosis: guidelines
from the international panel on the diagnosis of multiple
sclerosis,” Annals of Neurology, vol. 50, no. 1, pp. 121–127,
2001.

[3] S. Johansson, C. Ytterberg, I. M. Claesson et al., “High
concurrent presence of disability in multiple sclerosis,”
Journal of Neurology, vol. 254, no. 6, pp. 767–773, 2007.

[4] C. P. Kamm, M. R. Heldner, T. Vanbellingen, H. P. Mattle,
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