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Abstract

Autism spectrum disorder (ASD) is associated with deficits in the processing of social information 

and difficulties in social interaction, and individuals with ASD exhibit atypical attention and gaze. 

Traditionally, gaze studies have relied upon precise and constrained means of monitoring attention 

using expensive equipment in laboratories. In this work we develop a low-cost off-the-shelf 

alternative for measuring attention that can be used in natural settings. The head and iris positions 

of 104 16–31 months children, an age range appropriate for ASD screening and diagnosis, 22 

of them diagnosed with ASD, were recorded using the front facing camera in an iPad while 

they watched on the device screen a movie displaying dynamic stimuli, social stimuli on the left 

and nonsocial stimuli on the right. The head and iris position were then automatically analyzed 

via computer vision algorithms to detect the direction of attention. Children in the ASD group 

paid less attention to the movie, showed less attention to the social as compared to the nonsocial 

stimuli, and often fixated their attention to one side of the screen. The proposed method provides 

a low-cost means of monitoring attention to properly designed stimuli, demonstrating that the 

integration of stimuli design and automatic response analysis results in the opportunity to use 

off-the-shelf cameras to assess behavioral biomarkers.
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1 INTRODUCTION

AUTISM spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

qualitative impairments in social interaction and the presence of restricted and repetitive 

behavior [1]. Studies of children in the first three years of life have shown that a failure to 

orient and lack of attentional preference for social information distinguishes children with 

ASD from those with typical development and other developmental delays [2], [3]. These 

atypical patterns of social attention are manifested early in life [4], [5], [6], and while not 

exclusive to ASD, are known to be strong candidates for ASD and developmental disorders 

biomarkers, even genetically influenced [7]. Thus, the development of feasible and reliable 

methods for assessing early-emerging differences in patterns of attention is of significant 

interest, with the goal of eventually developing scalable behavioral analysis tools for early 

screening, diagnosis, and treatment monitoring.

To further our understanding of the differences in social processing in children with ASD, 

researchers have utilized eye-gaze tracking to measure gaze responses to dynamic visual 

stimuli. Such measures have been shown to differentiate ASD from other populations 

starting at the age of 6 months [8], [9], [10], [11], [12]. It has been demonstrated 

that children with ASD show differential gaze patterns compared to typically developing 

children, characterized by a lack of attention preference for socially salient stimuli [13], 

[14]. Other studies have shown that children with autism are less likely to shift their 

attention throughout the stimuli and explore scenes containing both social and non-social 

components. [15]. These studies have used either expensive eye-tracking devices or 

advanced methods, such as dark pupil-corneal reflection video-oculography techniques. 

Such sensing and acquisition approaches are not scalable and are not readily applicable 

in natural environments. Furthermore, such studies tend to use a region-of-interest based 

approach for analysis in which the feature of interest is the amount of time fixating at a 

specific region of interest. This approach also often fails to capture the dynamic quality of 

attention, including important temporal patterns such as how attention shifts in response to 

the stimulus dynamics.

In the current work we present a framework that aims at confirming these previous results 

but with a significantly simpler and less expensive attention tracking method (related 

approaches are discussed later in the manuscript). A dynamic movie that contained salient 

social and nonsocial stimuli was used to investigate attention patterns. The capability of 

sensing and analysis tools, namely an off-the-shelf video camera and computer vision, were 

taken into consideration for designing that movie. The movie screen displayed a social 

stimulus that was looking toward and interacting with the viewer on the left side of the 

screen, and a nonsocial but visually interesting moving object on the right. This required 

only a right versus left attention discrimination to evaluate dynamic preference for social or 

nonsocial stimulus. Figure 2 shows screen shots of the designed movie. We presented this 

movie on an iPad to young children with ASD and to typically-developing children, and 

used the front camera in the iPad to film their responses. After automatically processing the 

recorded videos, we used to position of the pupils and the head angles to determine which 

part of the screen they were looking at.
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The first hypothesis we want to confirm within this framework is that children with ASD 

would exhibit a reduced amount of attention to the movie overall, as found in previous 

studies. This was tested by comparing the overall amount of time spent looking at the movie 

(regardless of side) by children with ASD vs non-ASD children. The second hypothesis 

used for validation of the proposed framework was that ASD children would exhibit an 

attentional preference for the nonsocial stimulus (dynamic toy) as compared to the social 

stimulus (woman singing nursery rhymes while making eye contact), here tested once 

again by automatically computing the attention direction from the recorded video. The last 

hypothesis we tested was that children with ASD are more likely to fixate on one side of 

the screen, regardless of stimulus. For this we split the movie in time segments, with stimuli 

changing on the left or right (see Figure 2 in the Methods section), and then analyzed the 

attention for each one of these time segments.

Using the carefully designed stimuli with the standard RGB camera and simple computer 

vision algorithms to validate these predictions, we demonstrated that scalable tools can be 

used to measure the same type of eye gaze biomarkers that previously necessitated high-end 

eye-tracking devices. It is critical to note that contrary with the standard in the literature, 

where available video stimuli are used, here we stress the need to integrate the stimuli 

design with the available device (RGB consumer camera on a tablet in this case), task 

(distinguish between social an non-social for example), and algorithm design and robustness 

capabilities (region vs pixel accuracy for example). Therefore, while available databases, 

e.g., [16], can and should be used for algorithm validation in some cases (e.g., validating 

affect computation), they become less appropriate for new tasks and the integrated approach 

here pursued.

2 METHODS

2.1 Participants

Participants in this study were 104 toddlers between 16 and 31 months of age. This is 

the age range at which gold standard diagnostic methods have been validated. Twenty-two 

children were diagnosed with autism spectrum disorder (ASD). Diagnosis was based on 

both expert clinical judgment by a licensed clinical psychologist with expertise in ASD 

and the Autism Diagnostic Observation Scale-Toddler Module [17], which can be used 

with toddlers as young as 12 months of age (mean age =26.19 months, standard deviation 

σ=4.07 months). The remaining 82 toddlers were typically-developing (non-ASD) or had 

developmental delay (mean age of M=21.9; σ=3.78 months). Participants were recruited 

either from primary care pediatric clinics at Duke Health, directly by a research assistant 

or via referral from their physician, or by community advertisement. For the clinic’s 

recruitment, a research assistant approached participants at their 18- or 24-month well child 

visit, when all children in the clinic are screened for ASD with the Modified Checklist 

for Toddlers-Revised with Follow-up Questions (M-CHAT-R/F) [18]. Toddlers with known 

vision or hearing deficits were excluded. Toddlers were also excluded if they did not hear 

any English at home or if parents/guardians did not speak and read English sufficiently 

for informed consent. All parents/legal guardians of participants gave written, informed 
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consent, and the study’s protocol was approved by the Duke University School of Medicine 

Institutional Review Board.

The majority of children recruited into the study had already received screening with a 

digital version of the M-CHAT-R/F as part of a quality improvement study in the clinic [19]. 

Participants from community recruitment received ASD screening with the digital M-CHAT-

R/F prior to the tablet assessment reported in this work [20]. As part of their participation in 

the study, children who failed the M-CHAT-R/F or for whom parents/legal guardians or their 

physicians had concerns about possible ASD, underwent diagnostic and cognitive testing 

with a licensed psychologist or trained research-reliable examiner overseen by a licensed 

psychologist. Testing consisted of Autism Diagnostic Observation Schedule Toddler Module 

(ADOS-T) and Mullen Scales of Early Learning (MSEL) [21], [22]. Children who received 

a diagnosis of ASD based on the ADOS-T and clinician assessment were referred to early 

intervention services.

Children were enrolled consecutively and screened for ASD, resulting as expected in a 

greater number of typical children compared to those with ASD (there is a 1:59 prevalence 

of ASD in the US). For the goal of the work here presented, namely introducing a 

computational integrated stimulus-device-algorithm design for scalable attention analysis 

(here illustrated for ASD), this unbalance is not a concern. The size of each class is 

sufficient to illustrate the virtue of the proposed approach and to provide initial findings, to 

be fully statistically validated in subsequent studies (e.g., [23]).

2.2 Stimulus and measures

We asked the participants to sit on a caregiver’s lap while watching a movie on a tablet 

(iPad). Since we monitor the movement and position of the head as detailed below, seating 

on a lap, as it is common for protocols at this age (e.g., [24]), was not found to be a problem 

but can be considered a factor to be improved in the future. The tablet was placed on a 

stand approximately 3 feet away from the child to prevent her/him from touching the screen; 

see Figure 1. The brief movie displayed in landscape mode and split in two regions: on the 

left side a woman is singing to the child, and on the right side a moving toy making some 

noise to also try to draw the participant’s attention. The woman as well as the toy changed 

throughout the movie; see Figure 2. The entire movie was one minute. Parents were asked to 

attempt to keep the child seated on their lap, but to allow the child to get off their lap if they 

became too distressed to stay seated. The iPad’s front facing camera recorded the child’s 

face while they were watching the movie. This comprised all of the sensed data used by the 

automatic computer vision algorithm to measure attention.

The stimuli here used, Figure 2, are common in the ASD literature to represent social and 

non-social stimuli, e.g., [9], [24], [25], [26]. The social and non-social halves differ also 

in color and dynamics, and one may argue that this might influence the child’s attention 

as well (and not just the social or non-social aspects of the halves). This influence, even 

if it exists, is not affecting the computational approach here introduced, since the goal is 

to detect the direction the participant is looking at, regardless (at this stage) of the reason 

they are looking at it, and this is accomplished by the proposed algorithm described next. 

Moreover, regardless of the exact reason for the left-right attention preference, there is still a 
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fundamental difference between ASD and non-ASD groups, as we will show in subsequent 

sections, providing potential value as a behavioral biomarker, for example for screening.

2.3 Head position tracking

The children’s responses were recorded by the frontal camera of the tablet at 1280 by 720 

resolution and 30 frames per second; see Figure 1. We used the computer vision algorithm 

(CVA) detailed in [20] to automatically detect and track 51 facial landmarks on every child’s 

face, allowing for detection of head, mouth, and eye position [27]. These landmarks are used 

here and for subsequent steps of the proposed computational algorithm, and follow extensive 

work and validation, see [20], [27], [28]. Algorithms based on region and not pixel accuracy, 

as here proposed when integrated with properly designed stimuli, provide further robustness 

(accuracy needs to be region based on not pixel based). Any further improvement in the 

landmarks detection (see for example [29], [30]) can immediately be incorporated into the 

proposed framework since these are the inputs to our algorithms.

We estimated the head positions relative to the camera by computing the optimal rotation 

parameters between the detected landmarks and a 3D canonical face model [31].

2.4 Direction of attention tracking

We implemented an automatic method to track frame-by-frame the direction of the child’s 

attention from the data mentioned above. We also took into account the fact that the child 

might not be attending to the movie at all (see also [29], [30], [32], [33], [34] for alternative 

approaches to detect if the participant is attending the stimulus).

For detecting the direction of attention, we first used the value of the yaw angle obtained 

from the head position as described in the previous section (see Figure 3). For a given 

subject, we considered the midrange value of the yaw angle among all the frames in order to 

take into account the initial position of the head. Then we compared the difference between 

the yaw angle of each frame and the midrange value to the difference between the most 

extreme value for the same frame and the midrange value. If the difference between the 

yaw angle and the midrange value was at least 10% larger than the difference between the 

midrange value and the extreme value, then this was considered large enough for detection 

of attention direction (provided that it is not too large to indicate no-attention, see [20]), 

and we could easily conclude whether the child was looking at the left or the right side 

of the screen. If not, we exploited the landmarks (see Figure 1 and Figure 4). In this case, 

we compared the position of the iris to the edges of the eyes. We looked in particular at 

whether or not the distance between the iris and the center of the eye was larger than 1/3 

of the distance between the middle and either edge of the same eye. If both irises were 

close enough, according to this criterion, to the same edge of their respective eyes, then we 

once again assessed the direction of the attention (gaze). The results were found to be robust 

to the selection of 10% and 1/3, and these values can be modified if more or less robust 

measurements are desired. Note that these measurements are relative and per-child, adding 

robustness across participants and to the distance to the screen.

Using this method we were able to label most of the frames either as ‘L’ (for attending to 

the left) or ‘R’ (for attending to the right). In some frames the computer vision algorithm 

Bovery et al. Page 5

IEEE Trans Affect Comput. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



failed to properly track the landmarks due to the child not facing the camera. The algorithm 

would then output non-numerical data and we labeled those frames with the standard ‘NaN’ 

(for ‘Not a Number’). In addition, in some cases, neither the value of the yaw angle nor the 

positions of the irises within the eyes were sufficient to conclude the direction of attention. 

We then simply assumed that the child was looking somewhere in the middle of the screen 

and labeled those frames ‘C’ (for ‘Center’). We could have also ignored these frames, since 

overall at 30 frames per second and one minute of recording, we had ample data to work 

for analyses. Indeed, within the frames where a participant was paying attention (frames 

labelled either ‘L’, ‘R,’ or ‘C’), only about 0.5% of them are labelled ‘C.’ Overall, 90.8% 

of the study frames were labeled ‘L’ or ‘R.’ It is important once again to stress that with 

the joint-design of stimulus, sensing, and analysis, the fact that we were going to have 

inconclusive frame labeling was taken into account.

2.5 Temporal block analysis

In addition to measuring attention and direction of attention, we also studied fixation and the 

attention responses to changes in the stimuli. As mentioned before, both the woman (social 

stimulus) and the toy (nonsocial stimulus) are changing multiple times throughout the video, 

Figure 2. In other words, there are several women each with a different rhyme and several 

toys each with different characteristics. As a proxy to fixation, we tracked the participant’s 

attention shifts to those changes in stimulus. Hence, we split our data into temporal blocks 

such that we distinguish when there was a change in either the social or the nonsocial 

stimulus (both do not always change simultaneously). In other words, the boundaries of each 

temporal block were given by a dynamic change of the toy (nonsocial), the woman (social), 

or both. With this approach, we created nine time blocks of different lengths (see captions 

in Figure 2), over which we integrated the previously described perframe results (based on 

a simple majority). We therefore obtained for each participant nine labels, one per temporal 

block, categorized as ‘L’, ‘R’, ‘C,’ and ‘NaN’. We used this to examine whether the child’s 

attention shifted when to the novel stimulus when there was a change.

We should note that we also experimented merging the short intervals with the consecutive 

longer ones, obtaining a total of 6 temporal blocks of approximately equal length. Since the 

same qualitative results were obtained, we kept the original 9 temporal blocks to incorporate 

the short transitions as well in the analysis.

3 RESULTS

The overall difference of attention between the ASD and the control groups is considered 

first, shown in Figure 5. We defined attention frames as the frames labeled either ‘L,’ ‘R,’ or 

‘C.’

For the ASD group, the mean value was M=1,406 frames, and the standard deviation 

σ=460.3 frames. In comparison, M=1,717 frames and σ=228.3 frames for the control group. 

The number of participants who were paying attention to fewer than 1,000 frames is 18.2% 

for the ASD group, whereas it was only 1% for the control group. About 74.4% of the 

control participants were paying attention to the whole movie, while about 68.2% of the 

participants with ASD were not attending at some point of the movie.
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Next, we studied the attentional preferences of each participant by dividing the screen into 

two halves (social versus nonsocial). As illustrated in Figure 4, we examined the proportion 

(%) of frames during which the participant was looking right (nonsocial), as a function of 

the proportion (%) of frames during which the participant was looking left (social stimulus). 

Those proportions were calculated by dividing the number of frames during which the 

participant was looking at the given stimulus by the total amount of frames during which the 

child was paying attention.

The pattern shown in Figure 6 suggests that children with ASD and non-ASD children 

were attending to the movie in very similar ways. The means and standard deviations for 

attention to social stimulus were M=52%, σ=35% for the ASD group and M=55%, σ=29% 

for the control group. For the nonsocial stimulus, results were M =48%, σ=35% for the 

ASD group and M=44%, σ=29% for the control group. However, when we examined the 

extreme values, an interesting pattern emerged, revealing a feature that distinguished ASD 

from non-ASD children. First, the proportion of participants who paid attention to the social 

stimulus for greater than 95% of frames was similar across groups, 18% for the ASD group 

and 15% for the control group. In contrast, the proportion of participants who paid attention 

to the nonsocial stimulus for greater than 90% of frames was 18% for the ASD group 

compared to only 2% for the control group, indicating that it is very rare for non-ASD 

participants to spend most of their attention time on the nonsocial stimulus. Some points in 

Figure 6 are not on the diagonal, indicating that those participants are looking at the center 

of the stimuli for a significant number of frames. Almost 95% of the children devoted less 

than 1% of their attention to the center of the stimuli. Out of the 5% that did not, all were 

within the control group.

Next, we studied the temporal pattern of attention direction taking into account the temporal 

block data, i.e., changes in the stimuli. We computed two 3D-histograms (one for each 

group, ASD and control) reflecting the proportion of the attention toward either side of the 

screen (Figure 7). Each value in the histogram position (i,j) (i,j=1..9) represents the percent 

of participants in the group that spent i temporal blocks attending to the left and j blocks 

attending to the right.

Examining the control group, we can see that about 60% of the points are on the diagonal 

(points that add to 9, the total number of temporal blocks), which means those non-ASD 

children have their nine blocks labeled either ‘L’ or ‘R.’ Alongside the diagonal, the points 

are uniformly distributed, if not for two spikes. The one on right corresponds to the 15.8% 

participants that have all their blocks labeled ‘L.’ The other one in the center corresponds 

to the 11% of the participants that have 4 blocks labeled ‘L’ and 5 blocks labeled ‘R.’ The 

mean value for the number of temporal blocks spent looking at the social stimuli is M=4.7 

blocks and the standard deviation σ=2.8 blocks. For the number of blocks spent looking at 

the nonsocial stimuli, M=3.2 blocks and σ=2.7 blocks.

For the ASD group, only 28% of the points are located on the diagonal (meaning only 28% 

are fully attending). More than 36.4% of the participants have at least 8 out of their 9 blocks 

labeled either ‘L’ or ‘R,’ and 77% of them have less than two blocks labeled ‘R’ or less than 

two blocks labeled ‘L’. Moreover, 59% of the children with ASD have less than one block 
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labeled ‘R’ or less than one block labeled ‘L.’ All these results indicated a very one-sided 

attention orientation. The mean number of blocks spent looking at the social stimulus was 

M=3.3 blocks and the standard deviation σ=3.2 blocks. The mean number of blocks spent 

looking at the nonsocial stimulus was M=3.1 blocks and σ=3.3 blocks.

We now illustrate how the proposed computational tool opens the door to further granularity, 

investigating the actual dynamic pattern of attention when the stimulus changes, see Figure 

8. As we see from Figure 2, the left/social part of the stimulus changes 4 times (intervals 

2–3, 4–5, 5–6, 7–8), while the right/non-social changes 5 times (intervals 1–2, 3–4, 5–6, 

6–7, 8–9); these are indicated in the horizontal axis of each one of the subfigures in Figure 

8. We then compute how the attention switches when such stimulus changes occur. For 

illustration of the details in the sub-figures, we will assume as a running example that 

the change is happening on the left part of the stimulus. The first subfigure (a) shows 

the percent of participants that shifted their attention toward the side where the change 

is happening, normalized by all the participants. Considering the running example, this is 

(participants that were looking R and then looked L)/(all participants). This is repeated in 

the next subfigure (b), now normalized by the participants that were looking in the direction 

opposite to where the change happened. In the running example, this is (participant that 

were looking R but then looked L)/(participants that were looking R). The third subfigure 

(c) shows the percent of participants that were looking where the change happened and that 

shifted their attention away from it, normalized by the participants that were looking where 

the change happened. In the running example, this is (participant that were looking L but 

then looked R)/(participants that were looking L). Finally, the last subfigure (d) shows the 

percent of participants that shifted their attention to where the change happened, but then 

shifted their attention back away from it, normalized by the participants that shifted their 

attention to the side where the change happened. In the running example, this is (participant 

that were looking R and then looked L and then looked R again)/(participants that were 

looking R and then looked L). While the total number per class/stimulus switch is relatively 

small (indicated by the numbers in each bar) to perform full statistical analysis, we start 

seeing an interesting pattern depending on what side, left/social or right/non-social changed. 

More importantly, this example further illustrates that the tool here developed can provide 

information about granular and dynamic shifts of attention, all with an off-the-shelf camera 

and an algorithm tuned to the presented and carefully designed active sensing.

4 DISCUSSION

4.1 Deficit in overall attention

We first evaluated whether children with ASD differ from non-ASD children in terms of 

their overall attention to the presented movie. We automatically computed, frame by frame, 

whether or not the participant was looking at the iPad screen, and then we compared the 

number of frames during which the child was looking at the screen across the two groups 

(Figure 5). We confirmed the hypothesis that children with ASD exhibited reduced attention 

to the movie overall. This was further supported with the block analysis (Figure 7), where 

we can see that the density of points close to the origin is significantly higher for the ASD 

group than it is for the control group. Those points are indicating that the child had most of 
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their blocks labeled ‘NaN,’ which means that the child was not attending to the screen over 

multiple periods of time.

These results demonstrate the usefulness of low cost ubiquitous devices, consumer cameras 

available on tables or mobile phones, to measure attention. This method is in sharp contrast 

with the high-end and expensive hardware that is common in most ASD studies. Secondly, 

these results can be informative as one feature that could contribute to an algorithm/scoring 

for ASD screening. For example, we could consider that a participant paying attention to 

less than a certain percentage of frames would be one feature more commonly associated 

with ASD. For our data, for example, considering 1,000 frames, the values of the precision, 

recall and F1-score are P=0.8, R=1, and F1=0.89, respectively. These results are only a first 

step, and their statistical power needs to be investigated with larger populations. In addition, 

lack of attention is not an ASD exclusive behavior, and as such it should be considered 

as one of many scores in a full evaluation, similarly to the current standard of care which 

includes the observation of multiple behaviors.

4.2 Attention to social versus nonsocial stimuli

Within our scalable framework, we also tested whether the ASD group attended more to the 

nonsocial than the social stimulus as compared to the control group. We tracked attention 

on a frame-by-frame basis. We then examined the proportion of frames spent looking at 

the right, where the nonsocial part of the stimulus was displayed, versus the proportion of 

frames spent looking at the left, where the social part of the stimulus was displayed (figures 

1 and 4).

Our first analyses simply comparing the average number of frames looking at the social 

versus nonsocial stimuli did not yield group differences. However, our analyses could be 

further improved by splitting the stimulus regions, e.g., in 4 sub-regions instead of just 2, 

and looking within the social stimulus to test if the ASD participants are less likely to look 

at the face of the woman (top part of the left side), as suggested by earlier studies [35], [36], 

[8]. Our preliminary work indicates that we can further obtain such increased accuracy with 

the type of sensors and computer vision tools here considered.

Looking at the extreme values with respect to how attention was distributed across the social 

and nonsocial stimuli revealed compelling results. We observed that when a participant with 

ASD paid the majority of their attention to only one side of the screen, it was equally 

likely to be toward the social or nonsocial side. On the other hand, if a control participant 

exhibited the same behavior of attending mostly one side of the screen, it was seven times 

more likely that the child was looking at the side of the screen displaying the social stimulus. 

This feature could also potentially be used as an additional risk marker for ASD as part 

of an off-the-shelf device and a simple test. As discussed in the previous section, the 

statistical power of this measurement as a risk factor for ASD deserves future study in large 

populations.

Finally, these results and data also showed that a very high percent of participants with 

ASD focus almost solely on a single side of the screen and were less likely to switch their 

attentional focus from one side to the other. This aspect of fixation is further discussed next.
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4.3 Attention shifting

We also used this recording and analysis framework to study fixation behavior, that is, the 

degree to which the child shifts their attention from right to left throughout the movie. 

We split the data into temporal blocks corresponding to different social or nonsocial 

stimuli, Figure 1. We then determined the most popular label over each temporal block 

and computed the corresponding per-block frequencies (Figure 5). We are here looking at 

the participants that are paying attention to most of the stimulus, that is, the points that are 

close to the diagonal in the 3D histograms.

We can clearly distinguish different patterns between the ASD and the control groups. The 

non-ASD children followed two main patterns: while some of the children spent most of 

the time attending the social stimulus, most distributed their attention between both the 

social and the nonsocial ones. The vast majority of the children with ASD, on the other 

hand, attended almost solely at either the left or the right part of the screen, supporting the 

previous conclusions and further demonstrating we can use this framework to understand 

attention shifting. Future work should include also switching the social/nonsocial stimuli to 

be displayed on both sides of the screen to understand more fully what evokes attention 

shifts. This is partially discussed next.

Finally, we demonstrated how to use the developed tool to carefully study the attention 

dynamics, and studied the patterns of attention shift as a result of stimulus changes, 

Figure 6. While the actual population is relatively small, differences are starting to appear 

depending on the stimulus region that is actually changing (social or non-social).

5 CONCLUSIONS

By replicating the type of attention patterns for children with ASD previously reported in 

the literature, we validated the possibility of using scalable tools to measure this important 

biomarker. Contrary to the common use of high-end devices to measure attention, this work 

exploited ordinary cameras available in tablets and mobile phones, integrating from the start 

the stimulus design with the sensing and analysis. The statistical power of the reported 

results, initially as a screening tool, need to be investigated with larger populations, part of 

our ongoing activity at the NIH Autism Center of Excellence [23], where these techniques 

will be tested in thousands of participants.

We validated our framework based on three hypotheses previously derived from studies 

using state-of-the-art eye-tracking technology. First, we monitored the attention of both the 

ASD and the control group and showed that the ASD participants were more likely to have 

reduced attention to the movie overall. We next examined differences between social and 

nonsocial attention. We found that, whereas it was very rare for a child without ASD to 

focus the majority of their attention on the nonsocial stimuli, this occurred much more often 

among the children with ASD. Thus, this biomarker has potential strong sensitivity as a 

risk marker for ASD. Finally, we took into account the temporal changes in the stimulus 

to investigate patterns of fixation and shifting of attention. We showed that participants 

with ASD are more likely to fixate on either part of the movies (stimulus social/non-social 

regions) than the non-ASD children, providing yet an additional potential biomarker.
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While the work here presented concentrated on ASD, using stimuli and validation paradigms 

from the ASD research literature, there is extensive literature supporting the fact that 

attention as a biomarker is critical in a wide range of neuropsychiatric conditions beyond 

ASD, such as attention deficit hyperactivity disorder (ADHD) and anxiety. The direction of 

attention, and not just attention to the stimulus itself, can also be of use for intervention, 

e.g., [32], [33]. Furthermore, this framework here presented can be integrated with robots 

as described in [34]. Note that contrary with the tool exploited there, namely [29], here 

we co-design stimulus and computation. Our initial experience, e.g., [28], [37], indicates 

that such active sensing and integrated approach is more robust and engaging, over 85% of 

usable frames vs. only about 50% reported in [34] (although for different environments and 

protocols).

While attention is a very important behavioral feature in ASD screening, diagnosis, and 

symptoms monitoring, it should be considered together with other measurements, from body 

posture and affect to audio. Each different behavior will provide information in the complex 

and diverse structure of ASD, and all should be sensed with scalable and engaging protocols, 

e.g., [28], [34], [37], [38].

The stimulus and paradigms used in this work relied on measurements of attention to the 

right or left side of the screen. Our initial work [39], [40] indicates that we are able to further 

split the screen into more sub-regions, allowing for greater flexibility in stimuli design 

and measurement of behavioral biomarkers. Regardless, as here demonstrated, in order to 

achieve true scalability, we must use off-the-shelf sensors and for that, stimuli design needs 

to be integrated with sensing and analysis capabilities from inception.
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Fig. 1. 
Screenshot of the recorded video from the front facing tablet’s camera (left), and example 

of automatic facial landmarks used for attention detection (right). The child (1) is sitting on 

the caregiver’s (2) lap, while the practitioner (3) is standing behind in this example. The six 

outlined automatically detected landmarks (in black) are the ones used for measuring the 

direction of the attention.
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Fig. 2. 
Screen shots of the designed stimulus. The movie showed a social stimulus on the left 

(singing women) and a nonsocial on the right (toys), top figure. Both halves changed during 

the 60 seconds, as further detailed in the bottom figure, defining a total of 9 temporal 

blocks. The movie was carefully designed in an integrated fashion, considering not only the 

type of stimulus but also the used sensing device (a regular camera) and capabilities of the 

automatic analysis algorithm.
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Fig. 3. 
Illustration of the first component of the attention tracking method. We use the extreme 

yaw angles values (in blue) to determine the midrange yaw angle value (in red). Then, we 

define two thresholds (in green) by adding or subtracting 10% of the difference between the 

midrange value and the extreme values to the midrange value. With those thresholds, we 

determine wheter the partcipant is looking at the left part of the stimuli (‘L’), at the right part 

of the stimuli (‘R’), or if the yaw angle value was not large enough to conclude (‘?’). In this 

last case, we used the landmarks to make a decision (see Figure 4 and text for more details).
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Fig. 4. 
Zoom on the eye’s landmarks (see Figure 1 for more details) to illustrate the second 

component of the attention tracking method. We use the landmarks at the edges of the 

eye (bold landmarks) to estimate the position of the middle of the eye and the distance 

between this middle and both edges (D). Then, we check wheter or not the pupil’s landmark 

(pink landmark) is close enough to one of the edges to conclude the attention direction. We 

considered it ‘close enough’ if the distance between the pupil’s landmark and the center of 

the eye is greater than D/3. If not, we assume that the participant is looking somewhere in 

the middle of the stimuli (‘C’), as is the case in this example. We use this method on both 

eyes.
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Fig. 5. 
Proportion (vertical axis) of ASD (in blue) and control (in red) participants paying attention 

to the total number of movie frames indicated in the horizontal axes.
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Fig. 6. 
We plot the ratio between social and nonsocial attention, each participant being a circle, with 

ASD group in blue and control group in red.
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Fig. 7. 
Histograms of temporal attention direction for the 9 different temporal blocks resulting 

from the stimulus changing (see Figure 2). The 3D histograms indicate how the different 

participants spent their attention for each one of the 9 time blocks in the stimulus, meaning 

each entry (i,j) represents the proportion of participants spending i blocks attending to the 

left and j blocks attending to the right
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Fig. 8. 
Illustration of use of the proposed computational approach for monitoring the dynamic 

change in attention, as a response to changing stimulus. The figures show percent of 

participants performing certain dynamic pattern of shift of attention between the social 

and the non-social halves of the stimulus; see caption above each figure and text for the 

particular pattern. The total number of subjects per class/stimulus switch is indicated by the 

numbers in each bar. These results need to be further studied in large populations for their 

statistical power. See text for details and Figure 1 for larger stimulus frames.
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