Skip to main content
. Author manuscript; available in PMC: 2022 Jun 1.
Published in final edited form as: J Biomed Inform. 2021 Apr 20;118:103788. doi: 10.1016/j.jbi.2021.103788

Table 5. Clustering solutions for mixed-type data with single and mixed distance metrics and 3 clustering algorithms.

Mixed distance metrics handle data mixtures by implementing multiple distance metrics targeted towards specific data types.

Dissimilarity Method Clustering Algorithm Distance Metric Data Type Target
Manhattan distance Hierarchical
clustering
PAM
SOM
Manhattan
distance (single)
Binary, categorical, continuous
Euclidean distance Hierarchical
clustering
PAM
SOM
Euclidean
distance (single)
Binary, categorical, continuous
DAISY Hierarchical
clustering
PAM
Gower coefficient
Euclidean
Categorical, binary
Continuous
Mercator Hierarchical
clustering
PAM
Jaccard
Sokal-Michener
Gower coefficient
Manhattan
Euclidean
Binary
Binary
Nominal
Ordinal
Continuous
Supersom SOM Manhattan
Euclidean
Categorical, binary
Continuous