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Abstract

Visual inspection of the cervix with acetic acid (VIA), though error prone, has long been used for 

screening women and to guide management for cervical cancer. The automated visual evaluation 

(AVE) technique, in which deep learning is used to predict precancer based on a digital image 

of the acetowhitened cervix, has demonstrated its promise as a low-cost method to improve 

on human performance. However, there are several challenges in moving AVE beyond proof-of-

concept and deploying it as a practical adjunct tool in visual screening. One of them is making 

AVE robust across images captured using different devices. We propose a new deep learning 

based clustering approach to investigate whether the images taken by three different devices (a 

common smartphone, a custom smartphone-based handheld device for cervical imaging, and a 

clinical colposcope equipped with SLR digital camera-based imaging capability) can be well 

distinguished from each other with respect to the visual appearance/content within their cervix 

regions. We argue that disparity in visual appearance of a cervix across devices could be a 

significant confounding factor in training and generalizing AVE performance. Our method consists 

of four components: cervix region detection, feature extraction, feature encoding, and clustering. 

Multiple experiments are conducted to demonstrate the effectiveness of each component and 

compare alternative methods in each component. Our proposed method achieves high clustering 

accuracy (97%) and significantly outperforms several representative deep clustering methods on 
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our dataset. The high clustering performance indicates the images taken from these three devices 

are different with respect to visual appearance. Our results and analysis establish a need for 

developing a method that minimizes such variance among the images acquired from different 

devices. It also recognizes the need for large number of training images from different sources for 

robust device-independent AVE performance worldwide.
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I. Introduction

Cervical cancer, a disease that is primarily caused by persistent infection from high risk 

types of human papillomavirus (HPV), is one of the most common cancers in women 

worldwide [1]. Its mortality and morbidity are especially high among women in low- and 

medium- resource countries or regions (LMIC), due to the shortage of medical personnel 

and the lack of sufficient access to effective screening and treatment programs. VIA (visual 

inspection with acetic acid), a method involves visually examining the cervix appearance 

without magnification after application of a weak (3%-5%) acetic acid solution, has served 

as a low-cost screening method that is commonly employed in LMIC. However, its accuracy 

is considered inadequate due to high inter- and intra-reader variability [2]. Since clinical 

colposcopes that are traditionally used to magnify and illuminate the cervix are expensive, 

medical practitioners and field workers in several screening programs have been equipped 

with relatively inexpensive and easy-to-use mobile colposcope and imaging devices [3,4]. 

Such programs mainly use digital images for the training of nurses or practitioners in VIA 

in combination with remote consultation with experienced colposcopists and, minimally, 

for documentation of clinical examination. More recently, researchers have employed 

machine learning techniques to automatically analyze the captured cervical images to 

identify abnormal cases [5,6]. Toward this, we recently reported on our deep learning-based 

technique called automatic visual evaluation (AVE) [7]. AVE was evaluated on a large 

Cervigram® image dataset collected using a now-obsolete film camera with ring flash 

and fixed focus during a multi-year longitudinal natural history study carried out two 

decades ago by the National Cancer Institute (NCI) in Guanacaste, Costa Rica [8]. The 

results obtained on that dataset demonstrated AVE can achieve performance significantly 

superior to human interpretation of the same images in identifying images with high 

grade cervical intraepithelial neoplasia (CIN). They suggested that AVE could become a 

meaningful adjunct screening tool. However, to use AVE in public health, a number of 

additional practical issues need to be addressed [9,10]. Among these, a primary challenge 

is acquisition of standardized “good-quality” images of the cervix in health and disease, 

and to study technical and physiologic influences on AVE decision-making. It is unclear 

how much the choice of imaging device affects AVE performance. Further, we need 

to know which imaging factors, such as light source and device ergonomics, affect the 

ease of capturing good quality images. Understanding these points would not only help 

balance the variability and consistency impacted by time-cost challenges that are often 

faced during medical data collecting, but also inform us on how image variety influences 
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AVE. To this end we conducted a study in Nigeria that used three devices to capture 

images of the cervix of human papillomavirus (HPV)-infected women during screening. The 

devices were a common smartphone, a custom smartphone-based mobile handheld device 

for cervical imaging, and a clinical colposcope equipped with SLR digital camera-based 

imaging capability. In this paper, we report our initial efforts to examine differences in 

visual characteristics in images captured using these devices. We aim to assess to what 

extent cervix images taken by one digital device are visually different from the images 

taken by another device based strictly on their appearance with no knowledge of any 

abnormality exhibited on them. Specifically, we present an unsupervised approach using 

only the intrinsic similarity within each data subset and the image source device information 

is only used in the algorithm evaluation. Our approach comprises several components: 

cervix extraction, feature extraction, feature encoding, and clustering. We integrate feature 

extraction, feature encoding and clustering into a single deep learning network following 

state-of-art clustering methods.

There are a number of deep learning based clustering methods that have been developed 

in recent years [11–14]. Most of the existing deep clustering methods use an autoencoder 

architecture and comprise two main components: 1) embedded representation generation, 

and 2) feature clustering. The training phase of these methods consists of two stages: 

a pretraining stage and fine-tuning stage. In the pretraining stage, only the autoencoder 

is trained and the k-means technique is used to cluster the features embedded by the 

pretrained autoencoder. In the fine-tuning stage, the encoder or autoencoder (where weights 

are initialized by the pretrained autoencoder) and the clustering layer (where weights are 

initialized by the k-means cluster centroids) are jointly tuned. Methods are varied based on 

the architecture of the autoencoder and the loss functions used (viz., clustering loss and 

reconstruction loss). For a more comprehensive survey or list of deep clustering methods, 

please refer to [14]. We compare our method with several state of the art deep clustering 

networks, viz. DEC [11], DCEC [12], and DynAE [13] using our data. One significant 

difference between above three networks and our network is the way in which features 

are extracted. In our approach, the images are input to an ImageNet pretrained model 

before sending to an autoencoder, while in all other networks, the images are input to 

an autoencoder directly for extracting features. Our approach achieves a high clustering 

performance (accuracy of ~97%) on our dataset which is significantly superior to the results 

obtained from the three selected deep clustering methods. We also examine and compare 

several alternative choices in each component, e.g., features from different ImageNet 

pretrained classification networks, features encoded with different lengths, conventional 

or network layer based clustering methods, and different ways of training for clustering 

networks. Experiments for analyzing the effectiveness of feature encoding and clustering 

network are also conducted.

The high clustering accuracy indicates that images taken by the three imaging devices are 

highly distinguishable across devices, which further emphasizes the need of investigating 

the robustness of AVE across multiple devices. Our work on comparing the differences of 

devices on AVE performance is ongoing, and we will report that result to the community 

when it is done. In the following, we first describe the datasets and the imaging devices used 

in this research in Section 2. Then in Section 3, we present our method and elucidate the 
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algorithms in each component in detail. We evaluate the performance, compare the different 

choices, and discuss the results in Section 4. Section 5 concludes the paper and provides 

directions for future work.

II. Datasets and Imaging Devices

In order to evaluate use of new technologies, such as AVE, to serve as reliable adjuncts to 

VIA, NCI has recently initiated several studies for triage of women testing HPV-positive. 

Among the several research goals of this effort, one is to evaluate AVE performance and 

robustness across images acquired using different devices. To this end, three imaging 

devices were used in the study conducted in Nigeria shown in Fig. 1, viz., Samsung 

Galaxy® S8 cellphone, MobileODT EVA®, and Zeiss® colposcope with Nikon® camera. 

The MobileODT EVA device is a hand-held colposcope built around a low-cost Android 

smartphone. It has additional hardware for magnification and illumination, i.e., optical lens 

and oriented polarized lighting source, as well as customized software for patient record 

management and expert consulting/collaboration. The Zeiss® colposcope is a standard 

device commonly used in colposcopy clinics. To obtain digital images through the Zeiss® 

colposcope, an adaptor is used to mount a Nikon® D700 SLR camera on the colposcope top.

The data used in this study was collected on HPV positive women at the colposcopy clinic of 

the Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC) in Nigeria. The 

study was approved by National Cancer Institute (NCI) and OAUTHC ethical Institutional 

Review Boards. The study participants were presented with and provided written consent 

for the data to be used for research and subsequent machine learning studies. The details 

of the methods are described in [15]. For each participating woman, multiple images of the 

cervix were captured using each device. All the images of the same patient were taken by 

the same provider. The images were taken at least one minute after the application of the 

acetic acid. Acetic acid could be re-applied during the process if it was deemed necessary 

by the provider. Judgement as to whether the quality of the images was satisfactory was 

at the discretion of the care provider, who followed the operational guidelines developed 

by the team after some testing in a pilot experiment. Examples of these guidelines include: 

for stability, the S8 cellphone was screwed on a tripod stand, and EVA was mounted on 

a MobileODT provided stand; the light on the back of the S8 cellphone was kept on for 

illumination; to avoid motion blur effect of clicking while capturing the image, “Open 

Camera” application which collects three snaps of the images after one click was used 

on S8 cellphone, hand-wave feature for image capture was used on EVA, and “Case Air 

Wi-Fi tethering system” application for image capture was used on colposcope. All of the 

images and related patient data were recorded and managed using the software application 

developed by MobileODT.

The dataset used in our analysis consists of patient data collected from December 2018 

to November 2019. It contains 988 patients. The total number of images is 13792, among 

which the number of images from cellphone, EVA, and colposcope are 6113, 3594, and 

4085, respectively. The sizes (width × height) of cellphone images, EVA images and 

colposcope images are around 3000 × 4000 (or 4000 × 3000), 3100 × 4100, and 6000 

× 4000, respectively. There is a large visual variety in image content not only due to the 
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differences in the appearance of the cervix related to the woman’s age, parity, and cervix 

anatomy and condition, but also due to non-disease or non-cervix related factors such as 

illumination, focus, specular reflection, presence of clinical instruments, and variable zoom 

and angle to the cervix. Several example images from each device are shown in Fig. 2. 

Based on the histology results, the numbers of patients having precancer or cancer versus 

normal or signs of HPV infection are 54 and 934, respectively. Since there are not enough 

cases (precancer+) in the current dataset for training an AVE model, we aim to use an 

unsupervised method to investigate the (in)homogeneity of image appearances across these 

devices.

III. Methods

The proposed method consists of four main components: cervix extraction, feature 

extraction, feature encoding and clustering, as shown in Fig. 3. Since it is the characteristic 

of cervix that is of interest, our first step is to localize the cervix region in order to reduce the 

influence by the area outside the cervix. In previous work, we developed a cervix detector 

that was based on the object detection deep learning network, Faster RCNN. The cervix 

detector was trained with around 1600 images in a different set of cervix images (that is, 

not the Nigeria images used in this current work). Several examples of cervix extraction 

results for each device are shown in Fig. 4. The cervix region in each image is then cropped 

out and resized to a uniform size (224 × 224). We use resized cervix images as the input 

for the subsequent components. Given that we have a limited number of images, we decide 

to use representative deep learning classification networks that have achieved cornerstone 

performance on the ImageNet dataset to extract features, in order to take advantage of the 

technique of transfer learning. To this end, we use and compare two well-known ImageNet 

pretrained networks: ResNet50 and Vgg16. As we demonstrate later, features obtained from 

both networks are very effective for our data and contribute significantly to the clustering 

performance that outperforms recent deep clustering networks, even when we use a simple 

conventional clustering method. For ResNet50, the features are extracted from the average 

pooling layer (feature vector length is 2048). For Vgg16, the features are extracted from 

the first fully connected layer (feature vector length is 4096). As shown in the t-SNE 

(t-distributed stochastic neighbor embedding) plots in Fig. 5, the features of images of the 

three devices extracted from both networks could be separated very well by a clustering 

method. This demonstrates the effectiveness of the technique of transfer learning and the 

strength of deep learning models trained with a dataset of millions of images (ImageNet). 

Although the t-SNE plots suggest the ResNet50 and Vgg16 features are good sets of 

features for separating images from different devices, the feature vector dimensions are 

relatively high with respect to the number of images in the dataset. This implies that the 

clustering may encounter difficulties due to the curse of dimensionality problem. So we 

apply an autoencoder to reduce their dimensionality. Compared to the architectures of the 

autoencoders used in state-of-art deep clustering networks, our autoencoder has a very 

simple architecture. It consists of only one hidden layer and the number of nodes in the 

hidden layer is set to be much less than that of the input layer (e.g., only 100 nodes). The 

output of the hidden layer, the encoded feature vector, is then sent to be the input of a 

clustering method. The ablation experiments in Section 4 indicate the encoded features by 
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the autoencoder can improve the clustering performance by a significant margin for both 

ResNet50 and Vgg16 features.

The performance of clustering depends on the effectiveness of both the features and the 

method of clustering. For the clustering, we first apply the k-means method. Specifically, 

we run k-means with 20 different random centroid seeds and select the best result based 

on the value of inertia (within-cluster sum-of-squares criterion). We find this simple method 

achieves very good performance on both the original and the encoded features. We then 

adopt a clustering layer [11] to see if it can further improve the performance. Different 

from k-means, it can also be combined with the feature extractor and encoder to make the 

entire approach a deep neural network that can be trained end-to-end. The clustering layer is 

connected to the encoded layer of the autoencoder. The cluster centroids μj, j = 1, 2, 3 , are 

the trainable parameters (weights) of the clustering layer and the probability of the encoded 

feature vector of each image fi belonging to a cluster j (soft assignments qij) is calculated 

using Student’s t-distribution:

qij = 1 + fi − μj
2 −1

/∑
j

1 + fi − μj
2 −1

(1)

The loss for the clustering layer is a KL divergence loss between the soft assignments qij and 

the predefined target distribution pij of soft assignments:

Lc = KL P ∥ Q = ∑
i

∑
j

pij log pij
qij

(2)

pij =
qij2 /∑i qij

∑j qij2 /∑iqij
(3)

To evaluate the performance, two most commonly used metrics are the clustering accuracy 

(ACC) and the normalized mutual information (NMI). ACC is defined as

ACC yt, cp = maxM
∑i = 1

N 1 yt i = M cp i
N

(4)

where M is a mapping function representing all possible one-to-one mappings between 

cluster assignments and ground truth labels. ACC finds the best matching between cluster 

assignments cp and ground truth labels yt using the Hungarian algorithm. NMI is defined as

NMI yt, cp = 2I yt, cp / H yt + H cp (5)

where I and H denote the mutual information and entropy function respectively.
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IV. Experimental Results and Discussion

We carry out several ablation experiments to compare and analyze the effectiveness of 

the methods used in feature extraction, feature encoding, and clustering. In existing deep 

clustering literature, the majority of the reported results are on the whole set (such as 

MNIST-full). Although the methods do not use the ground truth labels explicitly in the 

network, the parameter tuning process of the training of the clustering network could be 

influenced unintentionally by the evaluation metrics that are calculated using the ground 

truth label information. In our experiments, we are careful to not use any supervisory 

information to guide the parameter tuning process, for example, we use the loss value, 

intra-cluster distance, and inter-cluster distance as guidance, rather than the performance 

value in terms of ACC and NMI. Nonetheless, it is desirable not only to examine the 

clustering capability of the method with its seen data, but also to evaluate the method with 

unseen data. Therefore, we divide the dataset into a training set and a hold-out set using the 

ratio of 80/20 for images of each device. The training set is used to train the autoencoder, the 

clustering methods (k-means, clustering layer), or the combined network of the encoder and 

clustering layer, and the hold-out set is used to check how the fixed model performs on an 

unseen set. The algorithm is implemented using Python and Keras, and the experiments are 

run on a Lambda GPU server with 8 GPU cards.

A. The advantage of using autoencoder

As indicated by the t-SNE plots in Fig. 5, both the ResNet50 and Vgg16 features could 

be used to distinguish images from different devices very well. However, when applying 

the k-means to cluster these features, we observe that ResNet50 features outperform Vgg16 

features significantly (ACC 0.934 vs 0.901). One reason could be that the dimension of 

Vgg16 features (4096) is much higher than that of the ResNet50 features (2048) with respect 

to the size of the dataset. Therefore, as discussed in Section 3, we use an autoencoder with 

only one hidden layer to reduce the feature length. We set the number of nodes in the hidden 

layer (also the length of the encoded feature) to be 100. The activation functions used in 

both the hidden layer and output layer of the autoencoder are the sigmoid function. The loss 

function of the model is mean squared error and the model is trained using the optimization 

algorithm Adam with a learning rate of 0.001 and default values for other parameters of 

Adam. The batch size is 256 for ResNet50 features and is 16 for Vgg16 features. The 

number of epochs is 1000. The t-SNE plots of the encoded features are given in Fig.6 and 

they indicate that, like the original features, these encoded features can distinguish images 

of three devices pretty well. We first apply k-means to cluster the original ResNet50/Vgg16 

features and the encoded ResNet50/Vgg16 features. The k-means implementation of the 

scikit-learn package is used. It runs with 20 different centroid seeds and the best result 

is selected in terms of inertia. The corresponding ACC and NMI values for each type 

of features are listed in Table I respectively. As indicated there, the performance of the 

encoded features is significantly higher than that of the original features for both types 

of features (e.g., ACC is from 0.911 to 0.951 for Vgg16, and from 0.937 to 0.975 for 

ResNet50, for hold-out set), while the ResNet50 features outperform the Vgg16 features. 

The corresponding confusion matrices of the encoded ResNet50 feature are listed in Table 

II.
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B. Performance using the clustering layer

As demonstrated in Table I, k-means, a well-known, conventional, simple clustering method, 

can achieve very good clustering results (ACC above 90% for all features and ACC about 

97% for encoded ResNet50 features) for our application. This is most likely because of the 

strong representativeness of the features we selected and generated. However, it is desirable 

to use a clustering layer since it can be integrated with the layers for feature extraction 

and feature encoding, which makes all three components function together as one neural 

network. We first freeze the encoder layer and only train the clustering layer. We train the 

clustering layer with the weights (the cluster centroids) initialized randomly or initialized by 

the results of k-means. K-means doesn’t have tunable hyperparameters once the number of 

clusters is set. On the contrary, there are multiple hyperparameters for the clustering layer. 

We use two measures in addition to loss to help choose the values of hyperparameters: 

inertia, and Dunn index (the ratio of the minimum of inter-cluster distances and maximum 

of intra-cluster distances). The smaller the value of inertia and the larger the value of Dunn 

index, the better. We also fine-tune the encoder and the clustering layer jointly. Table III 

lists the results obtained for the encoded ResNet50 features. As it shows, the performance is 

slightly better than that of k-means when fine-tuning the encoder and clustering layer jointly 

(ACC is almost the same and NMI is 2% higher for the hold out set). For jointly fine-tuning 

the encoder and the clustering layer, the parameters used are Adam optimizer with default 

parameters (learning rate = 0.001), convergence threshold = 0.001, update interval = 100, 

batch size = 256, and maximal iteration = 50K. These results indicate that, for our highly 

representative features, a conventional k-means that has less training time and complexity 

can achieve a close performance compared to a clustering network.

C. Comparison with other deep clustering methods

We test three representative deep clustering networks on our dataset: DEC [11], DCEC [12] 

and a very recent architecture DynAE [13]. They all use an autoencoder and a clustering 

layer and consist of two stages: 1) the pretraining stage in which the autoencoder is 

trained for the initialization of the encoder, and 2) the fine-tuning stage in which the 

autoencoder/encoder and the clustering layer are then jointly fine-tuned. According to the 

publications cited above, of the two stages, the pretraining stage contributes considerably 

more to achieving high performance. DEC uses a stacked autoencoder (the encoder network 

dimensions are set to be d–500–500–2000–10 for all datasets, where d is the input data 

dimension, e.g. 784 for the MNIST dataset) and all layers are fully connected. In DEC, 

the encoder and clustering layer are jointly fine-tuned using the KL divergence loss. DCEC 

uses a convolutional autoencoder (containing several convolutional layers, deconvolutional 

layers and a fully connected layer in between) to incorporate the spatial relationship of 

pixels. DCEC keeps the decoder in the network fine-tuning stage and uses a combination 

of reconstruction loss and clustering loss to fine-tune the encoder. DynAE proposes a new 

autoencoder called dynamic autoencoder to tackle the trade-off between reconstruction 

loss and clustering loss. It adopts the same autoencoder architecture as DEC but in 

the pretraining stage, it uses both data augmentation and an adversarially constrained 

interpolation. This pretraining method increases the performance by a considerable margin 

(ACC from 0.861 to 0.971) on the MNIST dataset, while the additional gain of using 

fine-tuning with dynamic loss function is much less significant (< 0.02). This demonstrates 
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that the performance of a deep clustering network heavily depends on the features as 

well as the importance of feature learning in the pretraining stage. Although all of these 

deep clustering networks achieved high performance, especially DynAE, on benchmark 

datasets like MNIST, none of them obtain comparable performance to our approach on our 

dataset. We believe performance disparity occurs largely because of the way the features are 

extracted/learned before the fine-tuning stage (in which the clustering layer is involved). Fig. 

7 shows the t-SNE plots of the features obtained in the pretraining stage of DEC, DCEC, and 

DynAE respectively. Compared to Fig. 5 and Fig. 6, it is evident that the features from the 

ImageNet pretrained classification models has clear advantage. For these three networks, the 

images are the direct input of the autoencoder and the autoencoder needs to be trained from 

scratch with our limited dataset. We could focus on finding a better autoencoder architecture 

for those deep clustering methods, but with our limited number of images, we have opted 

to take advantage of transfer learning with a simple conventional autoencoder which has 

demonstrated high effectiveness and representative capability on our dataset. We would also 

fine tune our network using different loss functions (like the dynamic loss developed by 

DynAE) to further improve the current performance. However, our main goal of this work 

is to analyze the appearance difference between images of different imaging devices, and 

our simple method has demonstrated that they are well distinguishable across these three 

devices.

V. Conclusions

Although automated visual evaluation (AVE) utilizing deep learning technique has 

demonstrated its promise as an effective adjunct for the screening of cervical cancer on 

a multi-year population-based dataset, there are multiple critical challenges needed to be 

addressed to pave the way for real-world deployment, such as image quality control, 

network explanation and interpretation, and algorithm robustness across imaging devices. 

In this paper, we report our first step towards the analysis and improvement of AVE for 

multiple devices. Specifically, we carry out a study in Nigeria to collect cervix images using 

three representative imaging devices and examine whether the appearance of images taken 

by different devices are different from each other. We develop an approach to clustering 

the cervix extracted from the images. Given the limited number of images in our dataset, 

we propose a simple method for feature extraction and encoding but it still achieves high 

clustering accuracy because of the very good representativeness of the features. The high 

clustering performance indicates that images from different devices look differently from 

each other and can be well distinguished. This emphasizes the need to find the balance 

between the variance among the images and the number of images to be collected for the 

training of the AVE algorithm in order to achieve good generalization if different imaging 

devices are used. It also emphasizes the importance of understanding whether AVE makes 

the correct classification decision based on the right information, i.e., the fundamental 

clinical appearance difference that separates the normal from the abnormal, particularly 

when multiple devices are used.
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Fig. 1. 
The three imaging devices. (a) Samsung Galaxy S8 on tripod; (b) MobileODT EVA (from its 

website); (c) Zeiss colposcope (from its website).
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Fig. 2. 
Example images from the three imaging devices (1st row: cellphone; 2nd row: EVA; 3rd row: 

colposcope).
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Fig. 3. 
The diagram of the proposed method.
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Fig. 4. 
Examples of cervix extraction (1st row: cellphone; 2nd row: EVA; 3rd row: colposcope)
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Fig. 5. 
T-SNE plots of ResNet50/Vgg16 features of all the images in the dataset.
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Fig. 6. 
T-SNE plots of the encoded ResNet50 and Vgg16 features (length = 100) of the images in 

the training set
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Fig. 7. 
T-SNE plots of embedded features obtained from the autoencoder pretraining stage of 

existing deep clustering methods.
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Table I.

Clustering Performance with or without Autoencoder

Method
Training set Hold-out set

ACC NMI ACC NMI

ResNet50 + k-means 0.934 0.757 0.937 0.762

ResNet50 + encoder + k-means 0.977 0.889 0.975 0.882

Vgg16 + k-means 0.901 0.704 0.911 0.729

Vgg16 + encoder + k-means 0.958 0.818 0.951 0.793
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Table II.

Confusion Matrix for “ResNet50 + Encoder + K-means”

Training set Hold-out set

Cell EVA Colpo Cell EVA Colpo

Cell 4713 8 25 Cell 1171 0 9

EVA 51 2848 35 EVA 26 713 9

Colpo 126 19 3208 Colpo 26 6 799
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Table III.

Clustering Performance with Clustering Layer

Encoded ResNet50 feature
Training set Hold-out set

ACC NMI ACC NMI

Train clustering layer only (random init.) 0.953 0.806 0.949 0.799

Train clustering layer only (k-means init.) 0.953 0.806 0.949 0.799

Fine-tune encoder and clustering layer jointly (k-means init.) 0.977 0.894 0.979 0.904
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