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Abstract

A mild visible-light-induced Pd-catalyzed one-pot three-component alkyl-carbamoylation and 

cyanation of alkenes was developed. This general transformation, which proceeds via the in situ 

formation of a reactive ketenimine intermediate, allows for a rapid construction of a broad range 

of valuable amides and nitriles from readily available alkenes, alkyl iodides, and isocyanides. An 

efficient synthesis of tetrazole and amidine via this approach was also demonstrated.
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The multicomponent 1,2-difunctionalization of alkenes is a valuable synthetic strategy 

that allows for an efficient construction of complex molecules in a single step from 

easily accessible and commercially available starting materials (Scheme 1a).1 Particularly 

attractive could be the 1,2-alkyl carbamoylation of alkenes, which would enable access to 

synthetically important amides, the prevalent structural motifs found in pharmaceuticals, 

biological molecules, and polymeric materials.2 Along this line, the two-component 

intramolecular annulative approach of alkyl-carbamoylation has been reported,3 but the 

process is substantially limited to carbamoyl-tethered alkenes, furnishing cyclic amides 

(Scheme 1b). To the best of our knowledge, no general methodology for the overall three-

component alkyl carbamoylation has been developed. Herein, we report a one-pot mild 

visible-light-induced Pd-catalyzed three-component 1,2-alkyl carbamoylation and cyanation 

of alkenes, which proceeds via the in situ generation of ketenimines A (Scheme 1c).

On the basis of the highly reactive nature of ketenimine functionality and its facile 

subsequent transformations,4 we envisioned a strategy for the in situ generation/hydrolysis 

of ketenimine intermediate to achieve the formal carbamoylation of alkenes. Traditionally, 

ketenimine can be prepared through cross coupling between isocyanides and carbenes 

or metal-locarbenes,5 α-halophosphonates,6 allyl carbonates,7 α-haloketones,8 and diazo 

compounds.9 Moreover, the synthesis of ketenimines via a radical addition to isocyanides 

was also demonstrated.10

Recently, visible-light-induced palladium catalysis has become an emerging field of 

study.11 We and others demonstrated that hybrid palladium C(sp3)-centered radical 

species, generated through the cleavage of C–X (X = halide, CO2NPhth) bonds in the 

presence of a photoexcited Pd(0) complex, enable desaturation,12 alkyl Heck,13 and other 

transformations.14

Inspired by the synthesis of ketenimines via free radical additions to isocyanides10 and 

a new mild and general visible-light-induced method for generation of radical species,11 

we hypothesized an approach to ketenimines via an addition of hybrid palladium C(sp3)-

centered radical species to isocyanides.

The initial two-component proof-of-concept experiments were performed between 

unactivated alkyl iodides and tert-butyl isocyanide (t-BuNC), under our standard 

palladium(II) acetate/Xantphos system.13a,c,d The following acidic hydrolysis of the in 

situ generated ketenimines (Scheme 2) was expected to provide the alkyl carbamoylation 

product. To our delight, the intended amide products 4a–4c were obtained in good yields, 

thus supporting the feasibility of the proposed strategy.

Encouraged by these promising results and the previously developed alkyl Heck-type 

reactions,13a,c,d,j we turned our attention to more desirable three-component couplings of 

alkenes, alkyl iodides, and isocyanides. We hypothesized that the radical intermediate B 
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formed via an addition of hybrid alkyl Pd radical species across an alkene would undergo a 

fast trapping with isocyanide, thus outcompeting an undesired premature β-H elimination, to 

produce the imidoyl radical C (Scheme 1c). The anticipated ketenimine intermediate would 

be delivered upon a β-H elimination from the latter.

To this end, we examined a model reaction between styrene 1a, (trimethylsilyl)methyl iodide 

2a, and t-BuNC 3a, followed by a subsequent acidic hydrolysis of the in situ forming 

ketenimine (Table 1). We realized that the success of this three-component coupling reaction 

hinges on suppressing an undesired premature Heck reaction leading to product 6 and a 

direct trapping of an alkyl radical with isocyanide to give 4d. After an extensive screening 

of reaction parameters,15 we found conditions that allowed for obtaining the desired alkyl-

carbamoylation product 5a in 65% yield, using Pd G3 as the precatalyst, Xantphos as the 

ligand, pivalic acid as an additive, and benzene/1,4-dioxane as the cosolvent (Table 1, entry 

1). The reaction was less efficient when Pd(OAc)2 was used (entry 2). Pivalic acid further 

promoted the reaction efficiency, which was consistent with the reported literature (entries 

1 & 3).16 Control experiments proved the importance of Pd catalyst and Xantphos (entry 3) 

and light (entries 4 & 5) for this transformation.

With the optimized conditions in hand, the scope of alkenes was examined first (Table 2). A 

diverse array of styrenes, possessing electron-withdrawing and -donating groups at the para- 
or meta-positions, smoothly reacted with alkyl iodide and isocyanide to give the desired 

products 5a–5s in moderate yields. Notably, 2-vinylnaphthalene and vinyl heteroarenes were 

fully compatible with this protocol, affording products 5t–5w. We were pleased to find that 

this reaction can work in a more complex setting, producing estrone derivative 5x, thus 

highlighting the broad applicability of this multicomponent coupling protocol.

Next, the scope of alkyl iodides was evaluated. In general, primary and secondary alkyl 

iodides proceeded smoothly to give products 5y–5z and 5aa–5ah in moderate to good 

yields. Importantly, primary alkyl iodides bearing α-germyl and γ-chloride functionalities 

were also amenable to this process. Moreover, saturated heterocyclic derivatives, such as 

tetrahy-dropyran (5ai) and piperidine (5aj) as well as (−)-menthol-derivative (5ak) can also 

be employed. Among isocyanides, all tested tertiary isocyanides, such as 1-adamantyl and 

1,1,3,3-tetramethylbutyl isocyanides, readily participated in this reaction, furnishing diverse 

alkylated amides 5al and 5am. Finally, it was shown that the synthesized N-tert-butyl amide 

5y can routinely be transformed into unprotected amide17 7 and carboxylic acid18 8 in 

respectable yields (eq 1).

Motivated by the successfully developed alkyl-carbamoylation of alkenes, we sought 

to expand this protocol to an alkyl cyanation, which would provide one-pot access to 

organonitriles, versatile synthetic synthons,19 and common functional groups found in 

natural products and bioactive molecules.20 Thus, we tested the cleavage of the N–C bond 

in the formed ketenimine by BF3·Et2O (Table 3).9b It was found that this protocol allows 

for the synthesis of a range of benzyl nitriles that possess primary and secondary alkyl 

substituents at a side chain (9a–9e), differently substituted styrenes (9f–9h), and m-vinyl 

pyridine (9i).
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It was also shown that other nitrogen-containing compounds, such as unprotected 

benzyl tetrazole 10 and amidine 11, can easily be synthesized by combining this three-

component coupling strategy coupled with a hydroazidation/[3 + 2] cycloaddition with 

tetramethylsuccinonitrile (TMSN3) (Scheme 3, eq 1) or a nucleophilic addition of aniline 

(Scheme 3, eq 2).

(1)

Next, a series of mechanistic tests were performed. The radical nature of this transformation 

was unambiguously confirmed by radical clock and radical trap experiments (Scheme 

4). Thus, the reaction of styrene 1a and t-BuNC with alkyl iodide 2o, possessing a 

cyclopropyl substituent,21 produced terminal alkene 12, as a result of the ring opening of 

methylenecyclopropyl radical (Scheme 4a). Likewise, the latter, generated from a radical 

addition onto alkene 1y, regioselectively rearranged into a benzylic radical, which was 

trapped by t-BuNC, producing a stereoisomeric mixture of trisubstituted alkene 13 in 43% 

yield. Moreover, the employment of alkenyl halide 2p led to the product 5ab, possessing a 

cyclic substituent, which resulted from an initial 5-exo-trig radical cyclization (Scheme 4b). 

Finally, the reaction in the presence of radical scavengers such as TEMPO, led to trapping 

product 15 in 61% yield (Scheme 4c).

On the basis of the above mechanistic studies and literature reports,13a,c,j the following 

plausible mechanism was proposed (Scheme 5). First, the hybrid alkyl Pd(I)-radical species 

D is generated from the single electron transfer (SET) of photoexcited Pd(0) complex to 

alkyl iodide. Next, a radical addition to alkene takes place, leading to the hybrid benzylic 

radical B, which is rapidly trapped by isocyanide to give imidoyl radical C. A subsequent 

β-H elimination from the latter furnishes the reactive ketenimine intermediate A with the 

concomitant regeneration of Pd catalyst. With a quench, the ketenimine A under acidic 

conditions is hydrolyzed into amide 5 or, upon treatment with Lewis acid, is transformed 

into nitrile 9.

In conclusion, we developed a visible-light-induced Pd-catalyzed protocol for three-

component 1,2-alkyl functionalization of alkenes with alkyl iodides and isocyanides. It 

features the formation of a reactive ketenimine intermediate, which under one-pot conditions 

is transformed into various useful synthetic synthons, such as amides, nitriles, tetrazoles, 

and amidines. This mild multicomponent coupling reaction, which utilizes easily accessible 

reaction partners, exhibits a wide functional group tolerance. It is anticipated that this mild 

visible-light-induced approach will find applications in synthesis and will stimulate the 

development of new 1,2-difunctionalization methods.
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Scheme 1. 
1,2-Difunctionalization of Alkenesa

a(a) Three-component 1,2-difunationalization of alkenes. (b) Intramolecular annulative 

carbocarbamoylation of alkenes. (c) This work: three-component alkyl carbamoylation/

cyanation of alkenes.
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Scheme 2. 
Aminocarbonylation of Unactivated Alkyl Iodidesa

a2 (0.2 mmol), 3a (0.4 mmol); isolated yields. bNMR yield.
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Scheme 3. 
Synthesis of Tetrazole and Amidine
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Scheme 4. 
Mechanistic Studiesa

a(a) Radical rearrangement experiments. (b) Radical cyclization. (c) Radical trapping 

experiment.
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Scheme 5. 
Proposed Mechanism
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Table 1.

Reaction Optimization
a

entry deviation from standard conditions 5a:6:4d
b yield of 5a, %

1 none 90:9:1 65(61
c
)

2 Pd(OAc)2 instead of Pd G3 88:10:2 47

3 without PivOH 88:11:1 40

4 without Pd/Xantphos 0:0:0 0

5 rt, dark 0:0:0 0

6 80 °C, dark 0:0:100 0

a
Yields of 1a (0.1 mmol), 2a (0.3 mmol), and 3a (0.2 mmol) were determined by gas GC/MS using pentadecane as an internal standard. Pd G3: 

[(4,5-bis(diphenylphosphino)-9,9-dimethylxanthene)-2-(2′-amino-1,1′-biphenyl)]palladium(II) methanesulfonate.

b
The ratios were determined by GC/MS.

c
0.3 mmol scale, isolated yield.
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Table 3.

Alkyl Cyanation of Alkenes
a

a
0.3 mmol scale, isolated yields.
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