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Abstract

High-throughput metabolomics using liquid chromatography and mass spectrometry (LC/MS) 

provide a useful method to identify biomarkers of disease and explore biological systems. 

However, the majority of metabolic features detected from untargeted metabolomics experiments 

have unknown ion signatures, making it critical that data should be thoroughly quality controlled 

to avoid analyzing false signals. Here we present a post-alignment method relying on intermittent 

pooled study samples to separate genuine metabolic features from potential measurement artifacts. 

We apply the method to lipid metabolite data from the PREDIMED (PREvención con DIeta 

MEDi-terránea) study to demonstrate clear removal of measurement artifacts. The method is 

publicly available as the R package MetProc, available on CRAN under the GPL-v2 license.
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INTRODUCTION

Generating metabolite profiles has been a useful strategy for identifying altered 

metabolic pathways associated with diseases, determining gene and protein function, and 

understanding biological systems.1 Generally, metabolomics experiments are divided into 

two main categories: targeted metabolomics and untargeted metabolomics.2 While targeted 

metabolomics generally produce higher quality signals, mass spectrometry-based untargeted 

metabolomics studies provide a mechanism to capture comprehensive metabolite profiles 

without being constrained to those with known ion signals.2–3 Given the lack of reference 
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ion signal for the majority of untargeted metabolic features, quality control procedures are 

critical to avoid analyzing measurement artifacts.

Many computational approaches and tools have been developed to improve the 

reproducibility of LC/MS methods and the quality of metabolite profiles. XCMS implements 

second derivative Gaussian filter for metabolic feature detection and noise removal, and 

aligns peaks across samples by feature binning in mass domain and kernel density 

estimator in chromatographic time domain.4 It also implements the centWave algorithm 

using wavelet transformation to better detect close-by and partially overlapping features 

to increase precision and recall rate.5 apLCMS makes several technical improvements 

like adaptive tolerance level searching and non-parametric intensity grouping.6 Based on 

previous algorithms, xMSanalyzer shows that variation of parameter settings for peak 

detection allows the detection of more features, and it provides a set of utilities to for sample 

quality and feature consistency evaluation.7 QCscreen offers many useful visualization tools 

to inspect basic quality-related parameters of predefined analytical features and evaluate 

multiple sample types.8 For large scale untargeted metabolomics studies, quality control 

(QC) samples are usually incorporated for quality assurance and quality control.9 However, 

these tools either neglect sample types or only calculate simple summary statistics for 

replicate samples or QC samples and did not fully utilize feature missingness pattern after 

feature alignment. In this paper, we propose a new method aiming to employ missingness 

pattern information to remove metabolomic feature artifact after feature detection and 

alignment.

Two types of quality control samples are typically available in untargeted metabolomics 

studies: pooled study samples consisting of same amounts of each study biological sample 

(PP samples in Figure 1a and Figure 1b and industry standard biofluids consisting of 

biological samples not in the study.10 These quality control samples are intermittently 

processed between blocks of biological samples and serve 3 main purposes: 1. Equilibrate 

the analytical platform, 2. Provide a quality assurance measure for each block of biological 

samples, and 3. Provide data for a signal correction between analytical blocks.10 We 

implement our new method in the R package MetProc and demonstrate the utility of our 

method using plasma metabolite data from the PREDIMED (PREvención con DIeta MEDi-

terránea) study (www.predimed.es). In the rest of the paper we use plasma samples as a 

demonstration, but our method is applicable to other types of biological samples with pooled 

study samples as QC reference.

EXPERIMENTAL SECTION

Study samples and metabolite profiling

Fasting blood samples were collected at baseline and yearly follow-up from PREDIMED 

participants by trained nurses. Plasma EDTA tubes were collected and aliquots were coded 

and kept refrigerated until they were stored at −80° after an overnight fast. All the samples 

were first randomly ordered and shipped on dry ice to the Broad Institute of Harvard and 

MIT for the metabolomics analyses.
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Liquid chromatography tandem mass spectrometry on a system comprised of Shimadzu 

Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Q Exactive hybrid 

quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA) were 

used to profile lipidomics data. Pooled plasma samples and industry standard biofluids 

were incorporated in the analytical queue for every 20 biological samples. The raw data 

were processed using TraceFinder software (Thermo Fisher Scientific; Waltham, MA) 

and Progenesis QI (Nonlinear Dynamics; Newcastle upon Tyne, UK). Details about study 

samples and mass spectrometry settings are available in a previous study.11

Statistical method

Our proposed method, MetProc, employs three metrics in a stepwise process to determine if 

a metabolic feature is a potential artifact. First, the missing rate of pooled plasma samples 

for each metabolic feature is computed. This value should be low for true metabolic feature 

as a metabolic feature present in biological samples is likely to be present in the pooled 

plasma and in all repeated replications (PP samples in Figure 1a and Figure 1b). Metabolic 

feature with high pooled plasma missing rates (default > 95%) are considered artifacts 

and removed. Metabolic feature with low pooled plasma missing rates (default ≤ 5%) are 

considered likely true metabolic feature and retained. While pooled plasma missing rates 

generally align with biological sample missing rates, some true metabolic feature may have 

low pooled plasma missing rates and high biological sample missing rates (Figure 2).

Metabolic features with pooled plasma missing rates between the two thresholds are 

separated into a designated number of groups (5 groups by default) based on evenly spaced 

pooled plasma missing rate categories (colored groups in Figure 2). For each group, two 

additional metrics are computed to identify metabolic features with structured missing data 

using a flexible threshold for each group. Structured patterns in missing data indicate 

that those metabolic features were present in only a few segments of the injection order. 

This phenomenon would have no biological interpretation because the study samples were 

randomly ordered before injection per standard lab practice. While a real metabolite should 

appear in most pooled plasma samples, it may only appear in a subset of the biological 

study samples across a random injection order. On the other hand, a technical batch effect 

producing metabolic artifacts should affect both the pooled plasma samples and their nearby 

study samples such that their missing pattern would have a high correlation or concordance 

rate.

For the first additional metric, the injection order of a metabolomics experiment can be 

broken into blocks as shown in Figure 1a. For each metabolic feature, a pooled plasma 

missing rate (0, 0.5 or 1) and biological sample missing rate (0 to 1) are computed in each 

block. We used the Pearson’s correlation of these missing rates across blocks to quantify the 

degree to which missing data is structured along the injection order. When the correlation 

metric is high, missing data appear in blocks across injection order. These metabolites 

should be removed as they are likely measurement artifacts. The default thresholds for each 

of the five groups of metabolites, respectively, are ≥0.6, ≥0.65, ≥0.65, ≥0.65, and ≥0.6.

For the second additional metric, the injection order can be separated into blocks as shown 

in Figure 1b. When the leading pooled plasma sample of a block is non-missing and the 
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following biological samples have a small missing rate (default of < 0.5), the block is 

considered to have data present. The longest consecutive run of blocks with data present 

can be calculated for each metabolic feature. Metabolic features displaying structure in their 

missing data across injection order generally have long runs. The default thresholds for each 

of the five groups of metabolic features, respectively, are no cutoff, ≥15, ≥15, ≥15, and 

no cutoff. The longest run metric is ineffective when most data are present or missing and 

therefore it is not applied to all groups of metabolic features.

RESULTS AND DISCUSSION

To illustrate this method, we use data generated for the PREDIMED study 

(www.predimed.es)12 for analyses of lipid metabolites.11, 13 The data consists of 6,359 

lipid metabolic features from 1,989 biological samples (with repeated measures of most 

participants at base-line and after 1 year follow-up) and 101 pooled plasma samples. 

Applying the MetProc process with default settings removes 1,074 of 6,359 metabolic 

features. Additionally, MetProc provides a variety of graphical tools for plotting patterns of 

missing data for removed and retained metabolites (see Figure 3a and Figure. 3b). Removed 

metabolic features demonstrate clear patterns in data missingness across the injection order, 

suggesting that they may be measurement artifacts due to technical batch effect. Conversely, 

retained metabolic features tend to contain data across the majority of samples, have random 

dispersion of missing data across the injection order, or have largely missing data for 

biological samples, but low missing rates in pooled plasma samples.

With additional experimental data, we confirmed the removed features are indeed 

measurement artifacts. Figure 4 shows the extracted ion chromatograms for an example 

metabolic feature removed by MetProc and supports that the measurement artifact was due 

to technical reasons.

In order to further validate MetProc’s accuracy, we randomly took twenty metabolites 

MetProc had determined to reject, and inserted those m/z and retention times into a 

targeted software program called Trace Finder (Thermo Fisher Scientific; Waltham, MA). 

We were able to visually inspect every PREDIMED sample and confirm the abundance 

of each rejected metabolite, in comparison to MetProc (Figures S1, panel 1–20, Table 

S1). We observed presence and absence calls that aligned with what MetProc had 

determined. In three instances (QI975, QI1869, QI2502), we could correlate the absence 

of a metabolite due to poor retention time alignment between 2 columns, by the non-

targeted software, Progenesis, QI (Nonlinear Dynamics; Newcastle upon Tyne, UK). In 

four instances (QI6050, QI3827, QI2543, QI2675), we observed background values which 

visual inspection would have rejected, so MetProc chose correctly to remove those putative 

metabolites as well. In one instance (QI2116), QI was not able to detect a peak but visual 

inspection using TraceFinder showed a peak. The remaining 12 features showed the same 

missingness pattern as discovered by MetProc and visual inspection confirmed that the peak 

area was not sufficient to be called a real peak in one of the sample being compared. Manual 

inspections confirmed that all 20 features should have been removed and MetProc correctly 

identified them.
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CONCLUSION

Pooled QC samples in large scale untargeted metabolomics studies make it possible to detect 

batch effect and further remove unreliable metabolic features after feature detection and 

alignment. The application of MetProc to the PREDIMED metabolomics data demonstrates 

its ability to isolate metabolic features with structured missingness that is likely due to 

technical batch effects. It is important to note that randomization of injection order is a 

key assumption of the proposed method and critical for all real large scale study to avoid 

batch effects confounding the biological effect of interest. While the default parameters for 

separating metabolites were developed based on this specific data, the MetProc package 

provides flexible functions that can be adjusted to reflect a user’s particular situation and 

should have wide application. For application to other untargeted metabolomics data sets 

with pooled plasma samples, users can either use the default parameters of MetProc or tune 

the parameters based on the default values and visually inspect the missing data patterns 

with the tools provided in MetProc so that only removed metabolic features show similar 

structured missing data pattern as is illustrated in Figure 3a. Users could also select a 

handful of typical features being removed to manually validate that they are problematic by 

visualization in targeted software such as TraceFinder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Block designation for (a) the missing rate correlation metric and (b) the longest consecutive 

run metric. PPi indicates a pooled plasma sample and Biological Samplesi indicates a block 

of biological samples.
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Figure 2. 
Correspondence of pooled plasma missing rate and biological sample missing rate across 

6,359 lipid metabolites from the PREDIMED study. Colored sections correspond to the 5 

splits of metabolites based on pooled plasma missing rate. Grey metabolites are above the 

top threshold of pooled plasma missing rates and removed and black samples are below 

the bottom threshold for pooled plasma missing rates and retained. Additional criteria are 

applied to the remaining 5 groups of metabolites to detect structure in their missing data.
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Figure 3. 
Missing data patterns of metabolites across injection order are visualized in (a) the removed 

metabolites and (b) the retained metabolites using lipid data from the PREDIMED study. 

Each row represents a metabolite and each column is a sample, sorted by injection order. 

Black marks represent present data and white marks represent missing data. Metabolites 

are clustered using hierarchical clustering to better illustrate block structure. In both cases 

only metabolic features with overall missing rates greater than 0.001 are included to avoid 

plotting metabolic features with completely present data.
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Figure 4. 
Example of a removed metabolic feature. (a) Total ion chromatograms and (b) extracted 

ion chromatograms of a metabolite removed by MetProc at pooled plasma run 52 and 

pooled plasma run 53. These pooled plasma samples are found on the boundary of a column 

switch in the metabolomics platform. While the total ion chromatogram looks similar at both 

pooled plasma run 52 and pooled plasma run 53, there is a clear removal of the peak at m/z 

356.3522 and RT 4.37 corresponding directly with the column switch.
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