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To the Editor,

Loglio and colleagues[1], reported a unique hepatitis D virus (HDV) RNA kinetic case 

study under entry-inhibitor Bulevirtide (BLV) monotherapy in 3 patients. Historically, 

mathematical modeling of viral hepatitis kinetics predicts a monophasic viral decline under 

antiviral treatment that blocks virus infection. Modeling suggests that the monophasic 

decline is driven by the rate of virus productive-infected cells loss/death(parameter δ, 

Fig.1a). Indeed, assuming that BLV’s only mode of action(MOA) is blocking HDV entry/

infection(assuming η~100%, Fig.1a)[2], the model(Fig.1a) fits well the measured HDV data 

in patients 2 and 3(Fig.S1), but not in patient 1 in whom a transient viral increase was seen 

during the first 4 weeks of treatment, consisting of a 0.4 log increase from pretreatment 

HDV-RNA level at week 2, followed by a monophasic HDV decline onwards(Fig.1b). 

Such a transient viral increase can also be noticed in several hepatitis B virus (HBV) 

mono-infected patients treated with BLV 10 mg/day[3], suggesting that this transient viral 

increase may occur in some patients treated with BLV for both HBV and HDV. The nature 

of this early transient viral increase phenomenon under BLV treatment is not known.

Conceivably, the transient viral increase can be explained if one assumes that in addition 

to blocking of virus infection, BLV also enhances viral production(parameter κp, Fig.1a) or 

reduces viral clearance from circulation(parameter θ, Fig.1a). The latter two theoretical BLV 
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MOAs can fit data from patient 1 well, with BLV enhancing viral production by κp~3.5-

fold(Fig.1b) or reducing viral clearance by θ~66%(Fig.1b). It is unlikely that BLV enhances 

viral production since BLV blocks the binding site of the human sodium taurocholate 

co-transporting polypeptide on the HBV envelope, thereby inhibiting the entry of the virus 

into hepatocytes[2]. However, reducing viral clearance by BLV may be a more plausible 

MOA if virus clearance from the circulation is interrupted by BLV blocking virus entry into 

hepatocytes. In that case, it is possible that there was a modest effect on patients 2 and 3 that 

was not recognized due to infrequent sampling(Fig.S2). We recently showed for hepatitis C 

virus (HCV) that in some patients the liver not only produces virus but also clears virus from 

circulation[4], supporting the notion that blocking viral entry could reduce viral clearance 

by the liver in patient 1. In patients 2 and 3 other mechanism of viral clearance (e.g., 

adaptive-immune response) may play a major role in viral clearance that were not affected 

by BLV.

Reminiscent of the notion of predicting the duration of anti-HCV treatment needed to reach 

<1 virus copy in a patient’s total extracellular-body fluid (BF)[5], modeling predicts <1 

HDV copy per BF after 75, 50 and 90 weeks of 10 mg/day BLV in patients 1, 2 and 3, 

respectively(Fig.S3). Thus, modeling may explain, retrospectively, why patient 1 had viral 

rebound after 52 weeks of BLV and suggests that patients 2 and 3 who were treated for 144 

weeks already reached HDV clearance in BF.

We further investigated in-silico the predicted effect of BLV slowing HDV viral clearance 

from circulation in combination with other drugs that are predicted to block HDV viral 

production, i.e, parameter ε in Fig.1a (e.g., interferon-α, lonafarnib, and nucleic-acid 

polymers, Fig.1c) that we have previously shown to cause a biphasic HDV decline[6–8]. 

Mathematical modeling suggests that the first phase is driven by the rate of HDV clearance 

from circulation (parameter c, Fig.1b), which based on prior work we set to have t1/2=1.6 

days[6–8]. The second phase is driven by parameter δ[6–8]. Modeling predicts that in 

patients in whom BLV will slow HDV clearance (θ~66%), BLV combined with drugs that 

block viral production (ε≥95%[6–8]) will lead to a slower viral decline (Fig.1c) compared to 

BLV monotherapy (Fig.1c). However, BLV plus drugs with low efficacy (ε=50%) will first 

lead to a slower viral decline during the first phase compared to BLV monotherapy(Fig.1d), 

but later (~11 weeks, Fig.1d) BLV-based therapy will cause a higher suppression of HDV 

compared to therapy that blocks viral production without BLV. In patients in whom BLV 

will not or moderately slow HDV clearance(θ~20%), modeling predicts an enhancement in 

viral decline under combination therapy compared to BLV monotherapy(Fig.S4), indicating 

the importance of including BLV in future anti-HDV regimens.

Studies in experimentally tractable in-vivo systems might be able to dissect the mechanism 

underlying the apparent increases in HDV and HBV viremia under BLV and to ultimately 

gain an in-depth understanding of BLV’s MOA[9]. Previously, BLV efficiently limited HDV 

spread in serially-transplanted humanized mice[10]. Future BLV perturbation experiments 

and theoretical modeling during HBV/HDV chronic infection are needed.

In conclusion, the monophasic HDV decline observed in two patients is consistent with the 

known MOA of BLV as an entry inhibitor. The transient increase in HDV in a third patient 
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with initiation of BLV raises the possibility that blocking HDV entry into the liver has a 

secondary effect of reducing viral clearance by the liver.
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Fig. 1. 
(a) Schematic and model equations (Eq. 1) of HDV infection and treatment. Target cells, 

T0, become HDV-infected cells, I, at rate β. Infected cells are then lost or die at rate δ. 

Infected cells also produce virions, V, at rate p. Virions in circulation are cleared at rate 

c. Bulevirtide (BLV) known mode of action (MOA) in blocking entry/infection is shown 

using solid green line (parameter η) and theoretical MOA are shown using dashed green 

lines (parameters θ representing reduced viral clearance and κp representing increase of viral 

production). Blocking HDV production by interferon-α (IFN), lonafarnib (LNF) or nucleic 

acid polymer (NAP) is shown using red symbols (parameter ε). (b) Model fitting, using 

Python version 3.7.4 and Scipy version 1.3.1, with measured HDV kinetics from patient 1 

in [1] (symbols) assuming BLV MOA is blocking only viral infection (η~100%) does not 

fit the data well (dotted line). Assuming that in additional to BLV η~100%, viral clearance 

decreases (θ=66%, dashed line) or viral production increases (κp=3.5, solid line) fits the data 

well. Fixed parameters were c=0.42 day−1, p=10 virions/infected cell/day, and β=1e-7 mL 

·virions−1·day−1. Initial conditions were set such that V0 equaled its value at the first data 

point, and I0 and T0 were set by steady state conditions as done in [6]. (c) Model simulations 

of HDV decline under antivirals that block HDV production (ε=95%, solid line) alone or 

in combination with BLV (ε=95%, η~100%) assuming a BLV-induced decrease in viral 

clearance of θ=66% (dashed line). We fixed δ=0.042 day−1 with other model parameters 

fixed as described in (b). (d) Same as (c) but with ε=50%.

Shekhtman et al. Page 4

J Hepatol. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	References
	Fig. 1.

