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Reconfigurable halide perovskite nanocrystal
memristors for neuromorphic computing
Rohit Abraham John 1,2,8✉, Yiğit Demirağ3,8, Yevhen Shynkarenko1,2, Yuliia Berezovska1,2,

Natacha Ohannessian 1,4, Melika Payvand 3, Peng Zeng 5, Maryna I. Bodnarchuk 1,2, Frank Krumeich 1,

Gökhan Kara 2, Ivan Shorubalko 2, Manu V. Nair6, Graham A. Cooke7, Thomas Lippert 1,4,

Giacomo Indiveri 3✉ & Maksym V. Kovalenko 1,2✉

Many in-memory computing frameworks demand electronic devices with specific switching

characteristics to achieve the desired level of computational complexity. Existing memristive

devices cannot be reconfigured to meet the diverse volatile and non-volatile switching

requirements, and hence rely on tailored material designs specific to the targeted application,

limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and

drift mechanisms could address these limitations, but they remain elusive. Here we present a

reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching

between diffusive/volatile and drift/non-volatile modes by controllable electrochemical

reactions. Judicious selection of the perovskite nanocrystals and organic capping ligands

enable state-of-the-art endurance performances in both modes – volatile (2 × 106 cycles) and

non-volatile (5.6 × 103 cycles). We demonstrate the relevance of such proof-of-concept

perovskite devices on a benchmark reservoir network with volatile recurrent and non-volatile

readout layers based on 19,900 measurements across 25 dynamically-configured devices.
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The human brain operating at petaflops consumes less than
20W, setting a precedent for scientists that real-time,
ultralow-power data processing in a small volume is pos-

sible. Inspired by the human brain, the field of neuromorphic
computing attempts to emulate various computational principles
of the biological substrate by engineering unique materials1–3 and
circuits4–6. In the context of hardware implementation of neural
networks, the discovery of memristors has been one of the main
driving forces for highly efficient in-memory realizations of
synaptic operations. Similar to evolution optimizing neurons and
synapses by exploiting stable and metastable molecular dynamics7,
memristive devices of various physical mechanisms8–10 have been
discovered and developed with different volatile and non-volatile
specifications. Since their inception, memristors have been utilized
to implement a wide gamut of applications11 such as stochastic
computing12, hyperdimensional computing13, spiking14 and arti-
ficial neural networks15. However, many of these frameworks
often demand very different hardware specifications16 (Fig. 1a).
To meet these specifications, the memristor fabrication processes

are often tediously engineered to reflect the requirements of tar-
geted neural network configurations (e.g., neural encoding,
synaptic precision, etc.). For example, the latest state-of-the-art
spiking neural network (SNN) models17,18 require memory ele-
ments operating at multiple timescales, with both volatile
and non-volatile properties (from tens of milliseconds to hours)19.
The current approach of optimizing memristive devices to a single
requirement hinders the possibility of implementing multiple
computational primitives in neural networks and precludes their
monolithic integration on the same hardware substrate.

In this regard, the realization of drift and diffusive memristors
have garnered significant attention. Drift memristors portraying
non-volatile memory characteristics are typically designed using
oxide dielectric materials with a soft-breakdown behaviour. In
combination with inert electrodes, the switching mechanism is
determined by filaments of oxygen vacancies (valence change
memory); whereas implementations with reactive electrodes rely
on electrochemical reactions to form conductive bridges (elec-
trochemical metallization memory)20. Such drift-based memris-
tors fit well for emulating synaptic weights that stay stable
between weight updates. In contrast, diffusive memristors are
often built with precisely embedded clusters of metallic ions with
low diffusion activation energy within a dielectric matrix10. The
large availability of such mobile ionic species and their low dif-
fusion activation energy facilitate spontaneous relaxation to the
insulating state upon removing power, resulting in volatile
threshold switching. Memristive devices with such short-term
volatility, are better suited to process temporally-encoded input
patterns21. Hence, the application determines the type of volati-
lity, bit-precision or endurance of the memristors, which are then
heavily tailored by tedious material design strategies to meet
these demands16. For example, deep neural network (DNN)
inference workloads require linear conductance response over a
wide dynamic range for optimal weight update and minimum
noise for gradient calculation15,22,23. Whereas SNNs often
demand richer and multiple synaptic dynamics simultaneously
e.g., short term conductance decay (to implement synaptic cleft
phenomena such Ca2+-dependent short-term plasticity (STP)
and CAMKII-related eligibility traces24), non-volatile device
states (to represent synaptic efficacy) and a probabilistic nature
(to mimic synaptic vesicle releases21) (Fig. 1a). However, opti-
mizing the active memristive material for each of these features
limits their feasibility to suit a wide range of computational fra-
meworks and ultimately increases the system complexity for most
demanding applications. Moreover, these diverse specifications
cannot always be implemented by combining different types of
memristors on a monolithic circuit e.g., volatile and non-volatile,
binary and analog, due to the incompatibility of the fabrication
processes. Therefore, the lack of universality of memristors that
realize not only one, but diverse computational primitives is an
unsolved challenge today.

A reconfigurable memristive computing substrate that allows
active control over their ionic diffusive and drift dynamics can
offer a viable unifying solution but is hitherto undemonstrated.
Although dual-functional memory behaviour has been observed
previously, the dominance of one of the mechanisms often results
in poor switching performance for either one or both modes,
limiting the employability of such devices for demanding
applications25,26. To the best of our knowledge, there is no report
yet of a reconfigurable memristive material that can portray both
volatile diffusive and multi-state non-volatile drift kinetics,
exhibit facile switching between these two modes, and still pertain
excellent performance.

Here we report a reconfigurable memristor computing sub-
strate based on halide perovskite nanocrystals that achieves on-
demand switching between volatile and non-volatile modes by

Fig. 1 The reconfigurable perovskite memristor concept. a Different neural
network frameworks demand particular switching characteristics from in-
memory computing implementations. For example, delay systems53

(dynamical non-linear systems with delayed feedback such as virtual
reservoir networks), should exhibit only a fading memory to process the
inputs from the recent past. Such short-term dynamics are best
represented by volatile threshold-switching memristors46. SNNs often
demand both volatile and non-volatile dynamics, simultaneously. Synaptic
mechanisms requiring STP and eligibility traces65 can be implemented
using volatile memristors66,67 whereas synaptic efficacy requires either
efficient binary-switching68 or analog switching devices. Lastly, ANN
performances specifically benefit from non-volatile features such as multi-
level bit precision of weights and linear conductance response during the
training phase22,23. b A reconfigurable memristor with active control over
its diffusive and drift dynamics may be a feasible unifying solution.
Schematic of the reconfigurable halide perovskite nanocrystal memristor is
shown for reference. We utilize the same active switching material
(CsPbBr3 NCs capped with OGB ligands) to implement two distinct types of
computation in the RC framework. The volatile diffusive mode exhibiting
short-term memory is utilized as the reservoir layer while the non-volatile
drift mode exhibiting long-term memory serves as the readout layer.
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encompassing both diffusive and drift kinetics (Fig. 1b). Halide
perovskites are newcomer optoelectronic semiconducting mate-
rials that have enabled state-of-the-art solar cells27, solid state
light emitters28,29 and photodetectors30–32. Recently, these
materials have attracted significant attention as memory elements
due to their rich variety of charge transport physics that supports
memristive switching, such as modulatable ion migration33–35,
electrochemical metallization reactions with metal electrodes36

and localized interfacial doping with charge transport layers37.
While most reports are based on thin films or bulk crystals of
halide perovskites33–35,38, interestingly perovskite nanocrystal
(NC)-based formulations have been much less investigated till
date24,39. NCs in general are recently garnering significant
attention for artificial synaptic implementations because they
support a wide range of switching physics such as trapping and
release of photogenerated carriers at dangling bonds over a broad
spectral region40, and single-electron tunnelling41. They allow
low-energy (< fJ), high-speed (MHz) operation, and can support
scalable and CMOS-compatible fabrication processes. In the case
of perovskite NCs, however, existing implementations often uti-
lize NCs only as a charge trapping medium to modulate the
resistance states of another semiconductor, in flash-like config-
urations a.k.a synaptic transistor42–45. The memristive switching
capabilities and limits of the perovskite NC active matrix remains
unaddressed, entailing significant research in this direction.
Colloids of perovskite nanocrystals (NCs) are readily processable
into thin-film NC solids and they offer a modular approach to
impart mesoscale structures and electronic interfaces, tunable by
adjusting the NC composition, size and surface ligand capping.

Our device comprises all-inorganic cesium lead bromide
(CsPbBr3) NCs capped with organic ligands as the active
switching matrix and silver (Ag) as the active electrode. The
design principle for realizing reconfigurable memristors revolves
around two main factors. (i) From a material selection perspec-
tive, the low activation energy of migration of Ag+ and Br−

allows easy formation of conductive filaments. The soft lattice of
the halide perovskite NCs facilitates diffusion of the mobile ions.
Moreover, the organic capping ligands help regulate the extent of
electrochemical reactions, resulting in high endurance and good
reconfigurability. (ii) From a peripheral circuit design perspective,
active control of the compliance control (Icc) determines the
magnitude of flux of the mobile ionic species and in turn allows
facile switching between volatile diffusive and multi-bit non-
volatile drift modes of operation.

The surface capping ligands are observed to play a vital role in
determining the switching characteristics and endurance perfor-
mance. CsPbBr3 NCs capped with didodecyldimethylammonium
bromide (DDAB) ligands display poor switching performance in
both volatile (10 cycles) and non-volatile (50 cycles) modes,
whereas NCs capped with oleylguanidinium bromide (OGB)
ligands exhibit record-high endurance performances in both
volatile (2 million cycles) as well as non-volatile switching (5655
cycles) modes37,46,47.

To validate our approach and demonstrate the advantages of
such reconfigurable memristive materials, we use a benchmark
model of a fully-memristive reservoir computing (RC) framework
interfaced to an artificial neural network (ANN)46. The reservoir
is modelled as a network of recurrently-connected units whose
dynamics act as short-term memory. Any temporal signal
entering the reservoir is subject to a high-dimensional nonlinear
transformation that enhances the separability of its temporal
features. A linear read-out ANN layer is then connected to the
reservoir units with all-to-all connections and trained to perform
classification based on the temporal information maintained in
the reservoir. Our RC implementation comprises perovskite
memristors that are configured as diffusion-based volatile

dynamic elements to implement the reservoir nodes and as drift-
based non-volatile weights to implement the readout ANN layer.
In their diffusive mode, the low activation energy of ion migration
of the mobile ionic species (Ag+ and Br−) enables volatile
threshold switching. The resulting short-term dynamics are
essential for capturing temporal correlations within the input data
stream. In the drift mode, stable conductive filaments formed by
the drift of the ionic species facilitate programming of non-
volatile synaptic weights in the readout layer for both training and
inference. Furthermore, the readout layer can be trained online
via active regulation of the compliance current (Icc) which allows
precise selection of the drift dynamics and enables multiple-bit
resolution in the low resistive state (LRS). Using neural firing
patterns, we show via both experiments and simulations that a
RC framework based on reconfigurable perovskite memristors
can accurately extract features in the temporal signals and classify
firing patterns.

Results
Diffusive mode of the perovskite reconfigurable memristor. We
investigate two systems for diffusive dynamics- didodecyldimethy-
lammonium bromide (DDAB) and oleylguanidinium bromide
(OGB)-capped CsPbBr3 NCs. The device structure comprises
indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene) poly-
styrene sulfonate (PEDOT:PSS), poly(N,N’-bis-4-butylphenyl-N,N’-
bisphenyl)benzidine (polyTPD), CsPbBr3 NCs and Ag as shown in
Figs. 2, 3 and Supplementary Notes 1–2, Supplementary Figs. 1–3
(see “Methods” section). With a compliance current (Icc) of 1 µA,
both material systems portray volatile threshold switching char-
acteristics with diffusive dynamics and spontaneous relaxation back
to the initial state, albeit with contrasting endurance. The DDAB-
capped perovskite NCs exhibit a poor on-off ratio (volatile memory
a.k.a. VM Ipower ON/ Ipower OFF ~ 10) and quick transition to a non-
volatile state, resulting in an inferior volatile endurance of ~ 10
cycles (Supplementary Note 2, Supplementary Fig. 3). On the
other hand, the OGB-capped perovskite NCs depict a highly
robust threshold switching behaviour with sub-1 V set voltages, VM
Ipower ON/ Ipower OFF ~ 103 and a record volatile endurance of 2 × 106

cycles (Fig. 3a). The volatile threshold switching behaviour can be
attributed to the redistribution of Ag+ and Br− ions under an
applied electric field, and their back-diffusion upon removing power
(Fig. 2a, Supplementary Note 2, Supplementary Fig. 4)35,48,49. It is
also important to note that both these devices exhibit a unidirec-
tional DC threshold switching behaviour (Supplementary Note 2,
Supplementary Fig. 5) with no switching occurring under reverse
bias (negative voltage on the Ag electrode). This can be correlated to
the dominant bipolar electrode effect over thermal-driven diffusion,
in alignment with literature50–52.

Drift mode of the perovskite reconfigurable memristor. Upon
increasing the Icc to 1 mA, both the DDAB and OGB-capped
CsPbBr3 NC memristors portray typical non-volatile bipolar
resistive switching characteristics, once again with contrasting
endurance (Figs. 2, 3, Supplementary Note 2, Supplementary
Fig. 6). Both systems depict forming-free operations and similar
on-off ratios (≥103). However, the DDAB-capped perovskite NCs
quickly transit to a non-erasable non-volatile state, resulting in an
inferior non-volatile endurance of ~50 cycles (Supplementary
Note 2, Supplementary Fig. 7). On the other hand, the OGB-
capped perovskite NC-based memristor portrays a highly robust
switching behaviour with sub-1 V set voltages, and record-high
non-volatile endurance and retention of 5655 cycles and 105 s,
respectively (Fig. 3b, Supplementary Note 2, Supplementary
Fig. 8). Similar to the volatile threshold switching mechanism,
the non-volatile resistive switching can also be attributed to
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redistribution of ions, and electrochemical reactions under an
applied electric field33,34. The larger Icc of 1 mA results in per-
manent and thicker conductive filamentary pathways, and the
switching dynamics is now dominated by the drift kinetics of the
mobile ion species Ag+ and Br−, rather than diffusion.

In the case of DDAB-capped CsPbBr3 NCs, the inferior volatile
endurance, quick transition to a non-volatile state and mediocre
non-volatile endurance indicates poor control of the underlying
electrochemical processes and formation of permanent conduc-
tive filaments even at low compliance currents. On the other

hand, capping CsPbBr3 NCs with OGB ligands enables better
regulation of the electrochemical processes, resulting in superior
on-off ratio, volatile endurance as well as non-volatile endurance.
Scanning Electron Microscope (SEM) images indicate similar film
thickness in both devices, ruling out dependence on the active
material thickness (Fig. 3 and Supplementary Note 2, Supple-
mentary Fig. 9). Transmission Electron Microscopy (TEM) and
Atomic Force Microscopy (AFM) images reveal similar nano-
crystal size (~10 nm) and surface roughness for both films,
dismissing variations in crystal size and morphology as possible

Fig. 2 Reconfigurable halide perovskite memristor. The device structure comprises ITO (100 nm), PEDOT:PSS (30 nm), polyTPD (20 nm), OGB-capped
CsPbBr3 NCs (20 nm) and Ag (150 nm). a Diffusive mode- illustration of the proposed volatile diffusive switching mechanism. b Drift mode- illustration of
the proposed non-volatile drift switching mechanism. Additional note: The thickness of the individual layers in the device schematic are not drawn to scale
to match the experimentally-measured thicknesses. The perovskite layer is not a bulk semiconductor, but 1–2 layers of nanocrystals (NCs). The schematic
is drawn for simplicity, to illustrate the formation and rupture of conductive filaments (CFs) of Ag through the device structure.

Fig. 3 Reconfigurable halide perovskite memristor. The device structure comprises ITO (100 nm), PEDOT:PSS (30 nm), polyTPD (20 nm), OGB-capped
CsPbBr3 NCs (20 nm) and Ag (150 nm) as shown in the SEM cross-section. Thickness of the individual layers were confirmed by AFM (Supplementary
Note 2, Supplementary Fig. 13). The TEM image reveals NCs with an average diameter of ~10 nm. a Diffusive mode- evolution of the device conductance
upon applying DC sweep voltages (0 V→ 2 V→ 0 V) with an Icc= 1 µA (top), endurance performance (bottom). b Drift mode- evolution of the device
conductance upon applying DC sweep voltages (0 V→+ 5 V→ 0 V→− 7 V→ 0 V) with an Icc= 1 mA during SET operation (top), endurance
performance (bottom).
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differentiating reasons (Fig. 3 and Supplementary Note 2,
Supplementary Figs. 10–11). While the exact mechanism is still
unknown, the larger size of the OGB ligands compared to DDAB
(2.3 nm vs. 1.7 nm) could intuitively provide better isolation
to the CsPbBr3 NCs and prevent excess electrochemical
redox reactions of Ag+ and Br−, modulating the formation and
rupture of conductive filaments (Supplementary Note 1). This
comparison is further supported by photoluminescence measure-
ments, pointing to a larger drop of luminescence quantum yield
in the films of DDAB-capped NCs, arising from the stronger
excitonic diffusion and trapping (Supplementary Note 2, Supple-
mentary Fig. 12).

To probe the mechanism further, devices with Au as the top
electrode were fabricated, but did not show any resistive
switching behaviour (Supplementary Note 2, Supplementary
Fig. 14). The devices do not reach the compliance current of
1 mA during the set process and do not portray the sudden
increase in current, typical of filamentary memristors. This
indicates that Ag is crucial for resistive switching and also proves
that Br- ions play a trivial role in our devices if any. Control
experiments on PEDOT:PSS only and PEDOT:PSS+ pTPD
devices further reiterate importance of the perovskite NC thin
film as an active matrix for reliable and robust Ag filament
formation and rupture (Supplementary Note 2, Supplementary
Figs. 15–16). Secondary ion mass spectrometry (SIMS) profiling
reveals a clear difference in the 107Ag cross section profile when
comparing an ON and OFF device. An increase of the 107Ag
count is observed at the interface between the halide perovskite
and the organic layers for the device in the ON state, as shown in
Supplementary Note 2, Supplementary Fig. 17. Temperature-
dependent measurements further confirm the theory of migration
of Ag+ ions through the perovskite matrix (Supplementary
Note 2, Supplementary Fig. 18). The conclusions in this study are
observed to be independent of the NC layer thickness, NC size
and dispersity as shown in Supplementary Note 2, Supplementary
Figs 19–21.

Reservoir computing with perovskite memristors. To demon-
strate the advantages of the reconfigurability features of our
perovskite memristors, we model a fully-memristive RC frame-
work with dynamically-configured layer of virtual volatile reser-
voir nodes and a readout ANN layer with non-volatile weights in
simulation. In particular, we address three distinct forms of
computational requirements using the reconfigurability of the
proposed device: an accumulating/decaying short-term memory
for the temporal processing in the reservoir; a stable long-term
memory for retaining trained weights in the readout layer, and a
circuit methodology for accessing analog states from binary
devices to enhance the training performance.

Diffusive perovskite memristors as reservoir elements. To
implement the reservoir layer with the fabricated memristor
devices, we utilize the virtual node concept originally proposed by
Appeltant et al.53. Instead of conventional transforming of the
input signal to a high-dimensional reservoir state by processing
over many non-linear units, the virtual node concept employs the
idea of delayed feedback on a single physical device exhibiting
strong short-term effects. Under the influence of a sequential
input, the dynamical device state goes through a non-linear
transient response, which is recorded with fixed timesteps to
create a set of virtual nodes representing the reservoir state.
Hence, the transient device non-linearity constitutes temporal
processing, and the delay system forms the high dimensional
representation in the reservoir.

Elements of a reservoir layer should ideally possess a fading
memory (sometimes called short-term memory or echo state
property) and non-linear internal dynamics54. The fading
memory effect plays a key role in extracting features in the
temporal domain of the input data stream, while the non-linear
internal dynamics enable projection of temporal features to a
high-dimensional state with good separability55. Response of the
OGB-capped CsPbBr3 NC memristors to low-voltage electrical
spikes reveal short-term/fading diffusive dynamics with a
relaxation time ≥5 ms for an input pulse duration= 20 ms and
amplitude= 1 V. Non-linear internal dynamics are evident in 4
formats- (i) from the transient evolution of the device
conductance during the stimulations; and from the final device
conductance as a function of the applied pulse (ii) amplitude, (iii)
width and (iv) number (Supplementary Note 3, Supplementary
Fig. 22). An additional test of the echo state property reveals that
the present device state is reflective of the input temporal features
in the recent past (<23 ms) but not the far past, enabling efficient
capture of short-term dependencies in the input data stream
(Supplementary Note 3, Supplementary Fig. 23). Stimulation of
pulse streams with different temporal features results in distinct
temporal dynamics of memristor states (Supplementary Note 3,
Supplementary Fig. 24)

Drift perovskite memristors as readout elements. Storing the
weight of the fully-connected readout layer of the ANN requires
non-volatile synaptic devices. For representing synaptic efficacy,
we use the drift-based perovskite memristor configuration that
enables stable access to multiple conductance states. Because
synaptic efficacy in ANNs can be either positive or negative, we
use two memristor devices G+ and G− in a differential archi-
tecture to represent a single synapse56. Hence, synaptic poten-
tiation is obtained by increasing the conductance of G+,
and depression by increasing the conductance of G− with
identical pulses. The effective synaptic strength is expressed
by the difference between the two conductances (G+–G−).
Arranged in a crossbar array with the differential configuration,
synaptic propagation at the readout layer is realized efficiently,
governed by Kirchhoff’s Current Law and Ohm’s Law at O(1)
complexity57.

Like most filament-based memristors, our devices display non-
volatile switching across only two stable states (binary) and suffer
from the lack of access to true analog conductance states for
synaptic efficacy. This low bit resolution during learning has been
empirically shown to cause poor network performance58,59. To
have more granular control over the filament formation, we
migrate a recently proposed programming approach for oxide
memristors to halide perovskites60. We achieve multi-level stable
conductance states in the device’s low resistance regime by
modulating the programming Icc. In comparison to the undesir-
able non-linear transformations seen in HfO2 devices, the
mapping from Icc to conductance follows a linear relation for
the drift-based CsPbBr3 NC devices, hence providing linear
mapping to the desired conductance values (see below). This
enables controlled weight updates using a single shot without
requiring a write-verify scheme.

We use Icc modulation to train the readout layer of the
reservoir network (see “Methods”) using the statistical measure-
ment data from the devices. For every input pattern received from
reservoir nodes, the readout layer produces a classification
prediction via a sigmoid activation function. Depending on the
classification error, the desired conductance changes of each
differential memristor pair per synapse are calculated. The
memristive weights are then updated with the corresponding
Icc, resulting in the desired conductance values.
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Classification of neural firing patterns. Next, we present a virtual
reservoir neural network53,61 simulation with the short-term dif-
fusive configuration of perovskite memristors in the reservoir layer
and long-term stable drift configuration in the trainable readout
layer (Fig. 4a). The network is tested on the classification of the four
commonly observed neural firing patterns in the human brain-
Bursting, Adaptation, Tonic, and Irregular62. These spike trains
(Supplementary Note 4, Supplementary Fig. 25) are applied to a
single perovskite memristor in the reservoir layer, whose diffusive

dynamics constitute a short-term memory between 5 and 20ms
timescale. We exploit the concept of a virtual reservoir, where
each reservoir node is uniformly sampled at finite intervals
to emulate the rich non-linear temporal processing in reservoir
computing. We use a sampling interval of 35ms, resulting
in a population of 30 virtual reservoir nodes representing the
temporal features across 1050ms long neural firing patterns. The
device responses are derived from electrical measurements of 25
different memristive devices (Fig. 4b). Both device-to-device and
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cycle-to-cycle variability are captured with extensive measurements.
Stimulation with “Bursting” spikes results in an accumulative
behaviour within each high-frequency group and an exponential
decay in the inter-group interval, reflective of the fading memory
and non-linear internal dynamics as described above. “Adaptive”
patterns trigger weakened accumulative behaviour as a function of
the pulse interval, “Irregular” results in random accumulation and
decay, while “Tonic” generates states with no observable accumu-
lation. As the last stage of computation, these features are projected
to a fully-connected readout layer with 4 sigmoid neurons (see
“Methods”). The reservoir network achieves a classification accu-
racy of 85.1% with the training method of modulating the pro-
gramming Icc of drift-based perovskite weights in the readout layer
(Fig. 4c). Remarkably, with double-precision floating-point weights
trained with the Delta rule63 on readout, the test accuracy is 91.8%
confirming the effectiveness of our Icc approach (Supplementary
Note 4, Supplementary Figs. 26–28). The training and test accuracy
over 5 epochs demonstrates that both networks are not overfitting
the training data (Fig. 4d, Supplementary Note 4, Supplementary
Table 1).

Discussion
We present robust halide perovskite NC-based memristive
switching elements that can be reconfigured to exhibit both
volatile diffusive and non-volatile drift dynamics. This represents
a significant advancement in the experimental realization of
memristors. In comparison to pristine volatile and non-volatile
memristors, our reconfigurable CsPbBr3 NC memristors can be
utilized to implement both neurons and synapses with the same
material/device platform and adapt to diverse computational
primitives without additional modifications to the device stack at
run-time. The closest comparison to our devices are dual func-
tional memristors- those that exhibit both volatile and non-
volatile switching behaviours without additional materials or
device engineering (Supplementary Note 5 Supplementary
Table 2). While impressive demonstrations of dual functional
memristors exist, many devices require an electroforming step to
initiate the resistive switching behaviour and most importantly,
the endurance and retention performance are often limited to
<500 cycles in both modes and ≤104 s respectively. In compar-
ison, we report a record-high endurance of 2 million cycles in the
volatile mode, 5655 cycles in the non-volatile mode, and a
retention of 105 s, highlighting the significance of our approach.
This makes these devices ideal for always-on online learning
systems. The forming-free operation, and low set-reset voltages
would allow low power vector-matrix multiplication operations,
while the high retention and endurance ensure precise mapping
of synaptic weights during training and inference of artificial
neural networks. In contrast to most metal oxide-based diffusive

memristors that require high programming currents to initiate
filament formation (≥1 V or/and ≥10 µA), our devices demon-
strate forming-free volatile switching at lower voltages and cur-
rents (≤1 V and ≤1 µA). This is possibly due to the lower
activation energy for Ag+ and Br− migration in halide per-
ovskites compared to oxygen vacancies in oxide dielectrics, softer
lattice of the halide perovskite layer and the large availability of
mobile ion species in the halide perovskite matrix. Most impor-
tantly, our devices can be switched to the volatile mode even after
programming multiple non-volatile states, proving true “recon-
figurability” (Supplementary Note 5, Supplementary Fig. 29).
Such behaviour is an example of the neuromorphic imple-
mentation of synapses in SNNs that demand both volatile and
non-volatile switching properties, simultaneously (see Fig. 1a). It
is important to note that existing implementations of dual
functional devices cannot be reconfigured back to the volatile
mode once the non-volatile mode is activated, making our device
concept and its use case for neuromorphic computing unique.

In operando thermal camera imaging provides further support
to our hypothesis of better management of the electrochemical
reactions with the OGB ligands when compared to DDAB, and
points to the importance of investigating nanocrystal-ligand
chemistry for the development of high-performance robust
memristors (Supplementary Note 6, Supplementary Figs. 30–31).
While the exact memristive mechanism is still unclear, our results
favour NC film implementations over thin films empirically
(Supplementary Note 7, Supplementary Figs. 32–33). The insights
derived on the apt choice of the capping ligands paves way for
further investigations on nanocrystal-ligand chemistry for the
development of high-performance robust memristors. The ability
to reconfigure the switching mode on-demand allows easy
implementation of multiple computational layers with a single
technology, alleviating the hardware system design requirements
for new neuromorphic computational frameworks. Our work
complements and goes beyond previous model-based
implementations46, by comprehensively characterizing diffusive
and drift devices for ~5000 patterns of different input spike
streams, and collecting statistical data on device-to-device and
cycle-to-cycle variability, device degradation, temporal con-
ductance drift and real-time nanoscopic changes in memristor
conductance. This statistical data is incorporated in the simula-
tions for a very accurate modelling of the device behaviour for
this task. To the best of our knowledge, this is the first time this
extent of systematic analysis is being done to use the same device
for both diffusive and drift behaviour for a real-world benchmark.
Given the excellent performance and record endurance of our
reconfigurable halide perovskite memristors, this opens way for a
completely novel type of memristive substrate, for applications
such as time series forecasting and feature classification.

Fig. 4 Fully-memristive reservoir computing framework with reconfigurable halide perovskite devices. a An ANN is trained to perform classification
using the temporal properties of the reservoir, in response to a series of inputs representing neural firing patterns. Using Icc control, OGB-capped CsPbBr3
NC memristors are configured to the diffusion-based volatile mode to serve as virtual nodes in the reservoir; and to the drift-based non-volatile mode to
implement synaptic weights in the ANN readout layer. During single inference, a neural firing pattern represented as a short-voltage pulse train is applied
to a single diffusive-mode perovskite device. Based on the virtual node concept53, temporal features of the input signal are intrinsically encoded as an
evolving conductance of the device due to their nonlinear short-term memory effects. This evolving device state is sampled with equal intervals of 35 ms in
time, denoting 30 virtual nodes that jointly represent the reservoir state. These virtual node states are delayed and fed into the readout layer, whose
weights, Wji (size of 30 ´4); are implemented by the drift-mode non-volatile perovskite memristors, placed in a differential configuration69. Classification
of neural firing patterns. b Experiments. The memristive reservoir elements are stimulated using four common neural firing input patterns - “Bursting”,
“Adapting”, “Tonic” and “Irregular”. During the presentation of inputs, the evolution of the device conductance is monitored. Each spike in the input data
stream is realized as a voltage pulse of 1 V amplitude and 20ms duration, while the device states are read with −0.5 V, 5 ms pulses. c Distribution of the
programmed perovskite memristor non-volatile conductances with Icc modulation. The inset shows the simulated linear Icc ! G relation. Simulations.
d Normalized confusion matrix shows the classification results with the Icc controlled training scheme. The RC performs slightly worse in irregular patterns
due to lack of temporal correlations among samples. e Training (86.75%) and test (85.14%) accuracies of the fully-memristive RC framework.
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Methods
Device fabrication. Indium tin oxide (ITO, 7Ω cm−2) coated glass substrates
were cleaned by sequential sonication in helmanex soap, distilled water, acetone,
and isopropanol solution. Substrates were dried and exposed to UV for 15 min.
PEDOT:PSS films were deposited by spin‐coating (4000 rpm for 25 s) the pre-
cursors (Clevios, Al 4083) and followed by annealing at 130 °C for 20 min.
PolyTPD (Poly[N,N’-bis(4-butylphenyl)-N,N’-bisphenylbenzidine]) dissolved in
chlorobenzene (4 mg/ml) was then spin-coated at 2000 rpm, 25 s; followed by
annealing at 130 °C for 20 min. Solutions of CsPbBr3 NCs capped with DDAB
and OGB (refer to Supplementary Note 1) were next deposited via spin coating
(2000 rpm for 25 s). Finally, ~150 nm of Ag was thermally evaporated through
shadow masks (100 µm x 100 µm) to complete the device fabrication.

Thin-film characterization and Electrical Measurements. Stoe IPDS II dif-
fractometer modified for the characterization of nano-materials (NANO-DIFF)
was used to record the XRD pattern of the films. FIB-SEM (Helios 5 UX,
Thermofisher Scientific) was utilised to analyse the device cross-section and
JEM-2200FS JEOL TEM was used to capture images of the perovskite nano-
crystals. For scanning transmission electron microscopy (STEM), a droplet of
the suspension was deposited on a thin carbon foil supported on a Cu TEM grid.
After drying, the specimen was mounted on a cryo holder (Gatan 626).
After cooling down to liquid nitrogen temperature and drift stabilization of
the specimen, images were recorded with a high-angle annular dark field
detector (HAADF-STEM) on an aberration-corrected dedicated STEM micro-
scope, a Hitachi HD-2700Cs (frame time 5–20 s). Absorption and steady‐state
PL spectra were collected using Jasco V 770 and FluoroMax FL1013, respec-
tively. Electrical measurements were carried out using a Karl Suss PM8 Manual
Probe Station and Keithley 4200 SCS under ambient conditions without any
encapsulation.

Note: For endurance testing in the volatile mode, write and read voltages of
+ 2 V and+ 0.1 V were used respectively with a pulse width of 5 ms. The following
methodology was used: 1. read the current level of the device using+ 0.1 V, 2.
apply+ 2 V for 5 ms as the write pulse and monitor the device’s current level, 3.
repeat step 1. For the non-volatile mode, write voltage of+ 5 V, erase voltage of
− 7 V and read voltage of+ 0.1 V were used. The following methodology was used:
1. read the current level of the device using+ 0.1 V, 2. apply+ 5 V/−7 V for 5 ms
as the write/erase pulse, 3. repeat step 1 and extract the on-off ratio comparing
steps 1 and 3. Note: Since our VM loses the stored information upon removing
power, the ON state (Ipower ON) is reported as the current value corresponding to
the application of the programming pulse (at 2 V) and the OFF state (Ipower OFF) is
reported as the current value corresponding to the application of the reading pulse
(at 0.1 V), in alignment with the reported literature10. For endurance measure-
ments in the non-volatile memory (NVM) mode, the conventional methodology
was used, i.e., the ON-OFF ratios were extracted from the current values corre-
sponding to the same reading pulse (0.1 V).

Neural spike pattern dataset generation. The neural spike pattern dataset consists
of samples of four classes: Bursting, Adaptation, Tonic, and Irregular. “Bursting”
firing patterns are defined as groups of high-frequency spikes with a constant inter-
group interval; “Adapting” corresponds to spikes with gradually increased intervals;
“Tonic” denotes low-frequency spikes with a constant interval; and “Irregular”
corresponds to spikes that fire irregularly. In total, the dataset consists of 4975
patterns (199 cycles applied to 25 devices) for each of the four types. Each pattern is
~1050 ms long, where spikes are emulated with square wave voltage pulses (1 V,
25 ms). For Bursting patterns, each spike train consists of 4–5 high-frequency burst
groups (4 spikes per burst group) with an interspike interval (ISI) of 5 ms. Between
bursts, there exist 75–125 ms intervals. For Adaptation patterns, each spike train
starts with high-frequency pulses with an ISI of 5 ms and gradually increases 50%
with each new spike (with 5% standard deviation). For Tonic patterns, a regular
spiking pattern with an average ISI of 70 ms is used. For each ISI, 5% standard
deviation is applied. For irregular patterns, spike trains are divided into 60 ms
segments, and a spike is assigned randomly with a 50% probability to the beginning
of each segment.

Simulation of neural networks. For classifying neural spike patterns, a fully-
connected readout layer with 30 inputs and 4 outputs is used. In addition, there
is one bias unit in the input. The 4 neurons at the output are sigmoid neurons.
For training, 90% of the neural spike pattern dataset is used over 5 epochs. At the
end of each epoch, the network performance is tested with the rest 10% of the
dataset. During Icc modulated training, each synapse comprises two conductance
values in a differential configuration. The differential current is scaled such that
W= β (G+ − G−), where β= 1/(Gmax − Gmin), corresponds to maximum and
minimum allowed conductance values of memristors. Conductances are initi-
alized randomly with a Normal distribution (μG= 0.5 mS and σG= 0.1 mS).
Network prediction is selected deterministically by choosing the output neuron
with the maximum activation. After the prediction, the L1 loss is calculated.
Then, weight change that reflects a step in the direction of the ascending loss
gradient is calculated with ΔW= (η xi δj)/β, where η is the learning rate, xi is the
reservoir node output, δj is the calculated loss and 1/β is the scaling factor
between weights and conductances. Target weights are clipped between 0.1 mS
and 3.5 mS. Subsequently, Icc values corresponding to the target conductances
are calculated (see Supplementary Note 4, Supplementary Fig. 28). Finally,
we sample new conductance values from a Normal distribution whose
mean and standard deviation is calculated using linear functions of Icc. For the

double-precision floating-point-based training, the same readout layer size is
used. Network loss is calculated via the Mean Squared Error. Weights are
adjusted using the Delta rule with an adaptive learning rate64. Both networks are
trained with a batch size of 1 and a suitably tuned hyperparameters.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the paper and its Supplementary Information files. Source data are provided with
this paper.
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