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Connecting high-resolution 3D chromatin
organization with epigenomics

Fan Feng1, Yuan Yao?, Xue Qing David Wang3, Xiaotian Zhang4 & Jie Liuh2™

The resolution of chromatin conformation capture technologies keeps increasing, and the
recent nucleosome resolution chromatin contact maps allow us to explore how fine-scale 3D
chromatin organization is related to epigenomic states in human cells. Using publicly avail-
able Micro-C datasets, we develop a deep learning model, CAESAR, to learn a mapping
function from epigenomic features to 3D chromatin organization. The model accurately
predicts fine-scale structures, such as short-range chromatin loops and stripes, that Hi-C fails
to detect. With existing epigenomic datasets from ENCODE and Roadmap Epigenomics
Project, we successfully impute high-resolution 3D chromatin contact maps for 91 human
tissues and cell lines. In the imputed high-resolution contact maps, we identify the spatial
interactions between genes and their experimentally validated regulatory elements,
demonstrating CAESAR's potential in coupling transcriptional regulation with 3D chromatin
organization at high resolution.
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ARTICLE

hereas 3D chromatin organization at the large scale of

topologically associating domains (TADs) and com-

partments has been well-characterized in many cell
and tissue types by Hi-C technology!, our understanding of fine-
scale 3D chromatin organization at the nucleosome resolution
has just begun®~4 With the increasing evidence that fine-scale
chromatin organization at the nucleosome resolution is closely
related to epigenomic state>®, one intriguing question to ask is
whether we can accurately extrapolate such high-resolution
chromatin contact maps from epigenomic features such as
chromatin accessibility, histone modifications, and transcription
factor binding profiles. To explore this, we proposed CAESAR
(Chromosomal structure And E pigenomicS AnalyzeR), a deep-
learning approach to predict nucleosome-resolution 3D chro-
matin contact maps from existing epigenomic features and lower-
resolution Hi-C contact maps.

Our model leverages cutting-edge deep-learning approaches to
identify representations relevant to high-resolution chromatin
organization. In particular, 1D convolutional and graph convolu-
tional layers’ identify epigenomic patterns over the linear chro-
matin fiber and over the 3D spatial chromatin organization that is
relevant to impute high-resolution chromatin contact maps. With
existing high-resolution Micro-C contact maps, Hi-C contact
maps, and a number of cell-type matched epigenomic data on
human H1-hESC (hESC), mouse ESC (mESC), and human fore-
skin fibroblasts (HFF), we systematically evaluated the model’s
performance across different chromosomes, across different cell
types, and across different species. In the experiments, the model
accurately imputes many fine-scale chromosomal structures that
Hi-C sequencing fails to detect, including short-range chromatin
loops and stripes. The model is more accurate at imputing evo-
lutionarily conserved regions, active A compartment, and early-
replicating regions, which indicates that the fine-scale 3D chro-
matin organization is strongly influenced by the nature of the
epigenomic factors in these regions. The imputed chromatin
contacts also recapitulate enhancer activities previously elucidated
by CRISPRi experiments3, and manifest expression quantitative
trait loci (eQTLs) previously profiled by GTEx project’. CAESAR is
also coupled with an attribution method that identifies epigenomic
features explanatory to these fine-scale 3D chromatin structures.
The explanatory features help to further subtype fine-scale chro-
matin structures and elucidate the interplay between histone
modifications and nucleosome level chromatin organization.

CAESAR connects 3D genome organization with epigenomics at
nucleosome resolution and unprecedented scale. First, compared
with previous computational models for imputing Hi-C contact
maps, such as HiCPlus!'?, HICGAN!!, and HiC-Reg!?, CAESAR
reaches a much higher resolution. Since the majority of epigenomic
activities (TF binding and histone modifications) take place at the
nucleosome resolution, it is desirable to develop the predictive
model that connects epigenomics and chromatin organization at
the nucleosome resolution. Second, although previous models
EpiTensor!3 and DeepTACT!4 also reconstruct sparse 3D chro-
matin interactions from epigenomics at an ultra-high-resolution,
CAESAR learns from real Micro-C contact maps and predicts all
chromatin contacts within a distance range, which reveals diverse
fine-scale structures such as stripes, TADs, and polycomb interac-
tions between repressive regions. Third, different from Akital®> and
DeepC!® which predict chromatin contact maps from conserved
DNA sequences, CAESAR generates tissue-specific or cell line-
specific predictions from epigenomic features. Therefore, it imputes
an unprecedented number of high-resolution human chromatin
contact maps, including 57 tissue samples, 16 cell lines, 12 primary
cells, and 6 in vitro differentiated cells. The imputed high-resolution
contact maps are shared on a web server (https://nucleome.dcmb.
med.umich.edu/), which allows users to easily navigate these

fine-scale chromatin structures and the corresponding explanatory
epigenomic features. In addition, CAESAR includes an attribution
component, which reveals detailed relationships between 3D
chromatin organization and epigenomic features.

Results

A deep-learning model imputing high-resolution chromatin
contact maps. We proposed CAESAR, a supervised deep-learning
model to impute chromatin contact maps at nucleosome resolu-
tion. CAESAR’s inputs include a lower-resolution Hi-C contact
map and a number of histone modification features (e.g.
H3K4mel, H3K4me3, H3K27ac, and H3K27me3), chromatin
accessibility (e.g., ATAC-seq), and protein binding profiles (e.g.,
CTCF) (Supplementary Note 2). CAESAR captures the Hi-C
contact map as a graph G with nodes representing genomic regions
of 200-bp long, weighted edges representing chromatin contacts
between the regions, and N epigenomic features modeled as N-
dimensional node attributes. The architecture of CAESAR (Fig. 1a,
Supplementary Fig. 1, and Supplementary Note 3) includes
ordinary 1D convolutional layers which extract local epigenomic
patterns along the 1D chromatin fiber, and graph convolutional
layers which extract spatial epigenomic patterns over the neigh-
borhood specified by G. The concatenated outputs from the con-
volutional layers capture all relevant features for one particular
200-bp bin, which are further fed into two parallel output layers—a
fully connected layer predicts the contact profile for each 200-bp
bin, and an inner product layer predicts loops between bins. The
outputs from the fully connected layer and the inner product layer
are summed up as CAESAR’s final output. Using Micro-C contact
maps from hESC, mESC, and HFF as the prediction target, the
model was trained with backpropagation!’, in which the afore-
mentioned convolutional features were learned adaptively. Other
than leveraging a number of epigenomic features, our model
architecture differs from HiCPlus!? and DeepHiC!® which treats
Hi-C contact maps as images and performs grid-convolution to
improve the resolution. With the graph convolutional networks
and additional epigenomic features, CAESAR not only enhances
the resolution of contact maps but also predicts the structures
which are not captured by Hi-C, including polycomb repressive
regions, short-range loops, and stripes (Fig. 1b).

Accurately predicting high-resolution chromatin contact maps.
With existing Micro-C data on mESC, hESC, and HFF, we
evaluated CAESAR in three different sets of experiments,
including a cross-chromosome experiment, a cross-cell-type
experiment, and a cross-species experiment, so as to evaluate
the model’s generalizability in different scenarios. In the cross-
validation experiment on hESC, we divided the human chro-
mosomes into a train set, a test set, and a tune set of similar sizes
(Supplementary Notes 4 and 5). CAESAR and two baseline
models, including HiCPlus!? which only used low-resolution
chromatin contact maps, and Hi-C-Reg!? which only used epi-
genomic features, were trained with the train set and evaluated
with the test set (Supplementary Note 6). We used the tune set to
tune hyperparameters. For CAESAR and HiC-Reg, 6 epigenomic
features were used, including ATAC-seq, CTCF, H3K4mel,
H3K4me3, H3K27ac, and H3K27me3. CAESAR outperformed
HiCPlus and HiC-Reg in terms of the stratum-adjusted correla-
tion coefficient (SCC) with the observed Micro-C contact map
(Fig. 2a). The results demonstrated that it is necessary to leverage
both the contact maps and epigenomic features in the prediction
of high-resolution contact maps. In the cross-cell-type experi-
ment, we used the same train set of chromosomes to build a
model on HFF, and then tested it on hESC with the same test set
of chromosomes as in the cross-chromosome experiments. The
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Fig. 1 Overview of the model. a Model architecture. The model inputs are a Hi-C contact map and a number of epigenomic features including histone
modifications, chromatin accessibility, and protein binding profiles. The lower-resolution Hi-C contact map is first interpolated into a 200 bp resolution
contact map, and then transformed into a graph G in which the nodes represent 200-bp genomic bins and the edges represent the interpolated contacts
between the nodes. Positional encoding is unrelated to Hi-C or epigenomic data and only encodes node order in the genome. The epigenomic features and
positional encoding are assigned to the corresponding nodes as node attributes. The inputs are fed into 1D convolutional and graph convolutional layers to
generate hidden representations, which extract features from both nearby genomic regions along the 1D DNA sequence and spatially contacting regions
specified by G. The output layers take input the hidden representations and predict the contact profile at each 200-bp bin as well as the chromatin contacts
between bins. b In an example region, the polycomb interactions are accurately predicted by CAESAR. In another example region, loops and stripes

undetected by Hi-C are accurately predicted by CAESAR.

HFF-trained model imputed almost as well as the hESC-trained
model for chromatin contacts within 100 kb and 200 kb range
(Fig. 2b). In the cross-species experiment, we trained the model
on mESC and tested the performance on hESC. In order to stay
consistent with cross-chromosome and cross-cell-type evaluation,
we also divided mouse chromosomes into train, tune, and test sets
of similar sizes. We trained the model with mESC’s train set and
then tested its performance on the same aforementioned test set
of hESC. It was observed that the model trained on mESC also
moderately generalized to hESC, and the generalization deterio-
rates as the contact distance increases.

In addition, we tested CAESAR’s performance in predicting
fine-scale structures including loops and stripes. In the test set of
HFF, CAESAR captured 72% of the loops and 63% of the stripes
from Micro-C contact maps, whereas only less than 1% were
captured from the input Hi-C contact maps (Fig. 2c, e,
Supplementary Fig. 4, and Supplementary Notes 7, 8, and 9).
Since loops called from two Hi-C replicates only agree ~60%!%,
we believe that our imputed contact map recovers a good portion
of these fine-scale structures. By piling up all the loop and stripe
regions called from the Micro-C contact maps, we observed
comparable enrichment from our predicted high-resolution
contact maps and the observed Micro-C contact maps, but the
pile-up results from the input Hi-C contact maps showed little
enrichment (Fig. 2d, f).

Chromatin contact maps imputed by CAESAR also show
comparable cell-type variability as real Micro-C contact maps in
terms of SCC and cell-type-specific fine-scale structures, includ-
ing chromatin loops and stripes (Supplementary Figs. 5 and 6 and
Supplementary Note 10).

Factors influencing CAESAR’s performance. In order to opti-
mize CAESAR’s efficiency, we next explored the factors
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influencing its performance. As CAESAR’s principle inputs are
epigenomic and Hi-C data, we began by evaluating the minimum
required the number of datasets to achieve good imputed results.
Four sets of epigenomic features were chosen based on common
availability (Fig. 3a), and we observed comparable performance
among the 13-epi, 7-epi, 6-epi, and 3-epi models (Fig. 3b).
Although the SCC of the 3-epi model (including ATAC-seq,
CTCF, and H3K27ac) did not drop significantly, it over-predicted
fine-scale structures (Supplementary Note 8). Therefore, we
recommend using the commonly profiled 6 epigenomic features
in CAESAR. We also asked what is the requirement for input Hi-
C contact maps. Using Hi-C data from Rao et al.! and Krieten-
stein et al.3, we tested four contact maps, including the original
Hi-C contact maps with around 1 billion contacts, two down-
sampled Hi-C contact maps with 100 million and 10 million
contacts, and a surrogate Hi-C contact map with 1 billion con-
tacts aggregated from four unmatched cell lines. The surrogate
contact map acts as a replacement when no chromatin contact
map is available for a particular cell type. Although the SCC curve
does not drop significantly with the downsampled contact maps,
surrogate Hi-C performs better (Fig. 3c). The model trained with
surrogate Hi-C can still capture 69% of the loops and 61% of the
stripes from Micro-C contact maps in the test set (Supplementary
Fig. 3). Therefore, if the matched Hi-C contact map is unavailable
to complement the epigenomic data in a particular analysis, a
surrogate contact map can be used in CAESAR.

We further investigated the relationship between CAESAR’s
performance, measured with Spearman’s correlation between the
imputed and the observed Micro-C contact maps, and evolu-
tionary conservation, measured with phastCons scores. It was
observed that the model imputed more accurately in the regions
with higher evolutionary conservation (Fig. 3d). In addition, we
also discovered that the model imputes more accurately in A
compartment than B compartment, and in early-replicating
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Fig. 2 Evaluating CAESAR's performance in multiple tasks. a The distance-stratified Pearson’s correlation with the observed Micro-C contact map from
CAESAR and two baselines, HiC-Reg and HiCPlus, in a cross-chromosome experiment. The black dotted lines in (a, b) are the correlation between the
input Hi-C contact map and the observed Micro-C contact map. b The distance-stratified Pearson’s correlation with the observed Micro-C contact map
from CAESAR in (1) a cross-chromosome experiment (train on hESC train set and test on hESC test set), (2) a cross-cell-type experiment (train on HFF
train set and test on hESC test set), and (3) a cross-species experiment (train on mESC train set and test on hESC test set). ¢ The Venn diagram of the
loops called from (1) the input Hi-C contact map, (2) the CAESAR-imputed contact map, and (3) the observed Micro-C contact map. d The pile-up
visualization of the loops called from (1) the input Hi-C contact map, (2) the CAESAR-imputed contact map, and 3) the observed Micro-C contact map.
e The Venn diagram of the stripes called from (1) the input Hi-C contact map, (2) the CAESAR-imputed contact map, and (3) the observed Micro-C
contact map. f The pile-up visualization of the stripes called from (1) the input Hi-C contact map, (2) the CAESAR-imputed contact map, and (3) the

observed Micro-C contact map.

regions than late-replicating regions (Fig. 3e, f). The results
indicate that fine-scale chromatin organization is more closely
related to the 6 epigenomic factors at evolutionarily conserved
regions, A compartment, and early-replicating regions.

Recapitulating CRISPRi-validated enhancer activities. With
publicly available epigenomic data, we imputed high-resolution
chromatin contact maps for 15 human cancer cell lines (Sup-
plementary Table 4b). In some cancer cell lines, noncoding
regions with their regulating genes have been interrogated by
CRISPR interference (CRISPRi) technology®. The profiled
CRISPRI score indicates genomic loci’s capability to regulate an
essential gene, and the peaks (both positive and negative) often
correspond to enhancers and promoters.

We used the CRISPRi scores profiled near two essential genes,
MYC and GATALI, to validate our imputed contact maps. On the

imputed contact maps for the chronic myelogenous leukemia cell
K562, MYC gene strongly interacts with PVTI, which matches
with the peaks of CRISPRi scores at PVTI locus (Fig. 4a). The
imputed contact map also showed a significant interaction
between GATAI and HDACS6, which matches the CRISPRi score
peak at HDAC6 locus (Fig. 4b). The matching of chromatin
contacts and CRISPRi score peaks demonstrates our model
recapitulates gene-enhancer interactions in cancer cell lines.

Recovering eQTL-gene interactions. With the large-scale epige-
nomic data available from ENCODE and Roadmap Epigenomics
Project, we imputed the high-resolution contact maps for 57
human tissue samples and two cell lines—IMR-90 and GM12878
(Supplementary Tables 4a and b). With eQTLs profiled by GTEx?,
we asked whether our imputed chromatin contacts are enriched
between genes and their eQTLs in the corresponding tissue or cell
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Fig. 3 The relationships between CAESAR's performance with Hi-C quality, the number of epigenomic features, evolutionary conservation, A/B
compartments, and early/late replication timing. a The epigenomic features in 13-epi, 7-epi, 6-epi, and 3-epi CAESAR models are listed in the table, which
are chosen based on common availability. b The distance-stratified Pearson's correlation with the observed Micro-C contact map from CAESAR in a cross-
cell-type experiment with different numbers of epigenomic features (i.e., 13, 7, 6, and 3). ¢ The distance-stratified Pearson's correlation with the observed
Micro-C contact map from CAESAR in a cross-cell-type experiment when (1) using the original Hi-C contact map with about 1 billion contacts, (2)
randomly downsampling the Hi-C contact map at different downsampling rates (resulting in 100 million and 10 million chromatin contacts), and (3) using a
surrogate Hi-C contact map with 1 billion contacts aggregated from HFF, GM12878, IMR-90, and K562 with equal proportions. d The model performance in
a specific region is quantified by Spearman’s correlation coefficient between the CAESAR-imputed and the Micro-C contact map. In cross-chromosome
and cross-cell-type experiments, the model performance (i.e., Spearman’s correlation coefficient) is significantly correlated with evolutionary conservation
evaluated by sequence alignment scores (n[regions] = 1203, 960, and 240, one-sided t test). In all the boxplots, the center line indicates median; the box
limits are upper and lower quartiles; the whiskers are 1.5 x interquartile range; the points are outliers. e In cross-chromosome and cross-cell-type
experiments, the correlation coefficient is significantly larger in A compartment than in B compartment (n[regions]=1,018 and 1,388, one-sided t test). f In
cross-chromosome and cross-cell-type experiments, the correlation coefficient is significantly larger in early-replicating regions than in late-replicating
regions (n[regions] = 1205 and 1109, one-sided t test).

line. Previous works2? have shown eQTLs are enriched in tissue-
specific frequently interacting regions on Hi-C contact maps at 40
kb resolution, but a large portion of eQTLs reside too close to their
gene transcriptional start sites (T'SS) to be seen on a low-resolution
contact map (Fig. 5a and Supplementary Fig. 7a). For example,
two eQTLs that are specific in the pancreas and lung, respectively,

both locate in chr16:57,950,000-58,050,000. The loop between the
pancreas-specific eQTL and its target USBI gene can only be
called from the CAESAR-imputed contact maps of the pancreas.
The loop between lung-specific eQTL and its target TEPP gene can
be called from the CAESAR-imputed contact maps of both lung
and pancreas, which demonstrates some tissue-specific eQTLs do
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Fig. 4 The interactions between genes and their CRISPRi-validated enhancers in CAESAR-imputed contact maps. a The CAESAR-imputed contact map
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peaks, but are not shown on the original input Hi-C contact map. The magnitude of the epigenomic features is the observed value divided by the genome-
wide average. b The CAESAR-imputed contact map of K562 at GATAT region (chrX: 48,725,000-48,825,000) demonstrates significant contacts between
GATAT and HDAC6, which agree with CRISPRi score peaks, but are not shown on the original input Hi-C contact map.

not necessarily correspond to exclusive loops in the tissue
(Fig. 5a). More examples are visualized in Supplementary Fig. 7e
and f.

To evaluate the overall contact enrichment between eQTLs-
TSS pairs, we piled up the contact regions between tissue-specific
eQTLs and their gene TSS. In the pile-up results of twelve tissue/
cell lines, seven CAESAR-imputed contact maps (adrenal gland,
heart left ventricle, IMR-90, pancreas, sigmoid colon, spleen, and
transverse colon) have the highest contact values for their tissues/
cell line-specific eQTL-TSS interactions. Another four CAESAR-
imputed contact maps (GM12878, lung, stomach, and tibial
nerve) also have close-to-highest contact values for their tissues/
cell line-specific eQTL-TSS interactions. These results demon-
strate that tissue/cell line-specific enhancer-promoter interactions
are recovered by CAESAR. In addition, the moderate enrichment
on Micro-C and CAESAR-imputed contact maps from
unmatched tissue/cell lines further demonstrate the eQTL-TSS
interactions are not necessarily exclusive even if the eQTLs are
tissue or cell line-specific (Fig. 5b). This suggests that some fine
structural interactions are conserved across tissues or cell types
but the regulatory functions remain specific.

Identifying epigenomic features relevant to fine-scale 3D
chromatin organization. Although deep-learning models are
often referred to as “black boxes”, their outputs can be traced
back and interpreted. In our model, we used integrated gradient?!
to attribute the predicted chromatin contacts to each genomic
locus of each input epigenomic feature. The attribution results
illustrate which parts of the epigenomic features are the most
determinative for the model’s predictions. By attributing the

entire contact map to all epigenomic features, we evaluated the
overall contribution for each feature, and low attribution is
another reason for leaving H3K4me2 out from the 7-epi model
besides limited availability (Supplementary Fig. 8a).

This method can be applied to arbitrary regions on the contact
map, which allows us to connect fine-scale structures with the
most explanatory epigenomic features. Surprisingly, many of the
peaks in the input epigenomic features do not necessarily help the
model to predict fine-scale structures. For example, the H3K27ac
peaks showed negative attribution in predicting the stripe in
Fig. 6a and the loop in Fig. 6b (Supplementary Note 12). With
attribution calculated by integrated gradient, the predicted
chromatin structures can be further analyzed and subtyped
(Supplementary Fig. 8e, f and Supplementary Note 11).

Discussion

Our study connects nucleosome-resolution chromatin structures
with epigenomic features. Leveraging the currently available
Micro-C contact maps for hESC, mESC, and HFF from the 4DN
consortium and the corresponding epigenomic profiles from
ENCODE and Roadmap Epigenomics Project, we systematically
mapped 1D epigenomic profiles to fine-scale 3D chromatin
structures with CAESAR. The mapping was validated by high
SCCs with observed Micro-C contact maps and the accurate
capture of fine-scale loops and stripes. CAESAR can be applied
to generate high-resolution contact maps for any cell line or
tissue as long as their common epigenomic features are profiled.
Our model further connects transcriptome with fine-scale struc-
tures and epigenomics by identifying the spatial interactions
between genes and regulatory elements. Therefore, the imputed
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attribution in predicting the loop.

high-resolution contact maps will be useful for target finding,
hypotheses generating, and other downstream analyses. All
imputed human chromatin contact maps across 57 tissues,
16 cell lines, 12 primary cells, and 6 in vitro differentiated cells
have been made publicly available on our web server (http://
nucleome.dcmb.med.umich.edu/) for ease of access by biomedical
researchers to perform further analyses (Supplementary Table 1
and Supplementary Note 13).

While CAESAR presents a method to investigate fine details of
3D chromatin structure, we note that it is an evolving metho-
dology with certain shortcomings that can be improved. First,
since Micro-C data mostly outperforms Hi-C in the detection of
short-range interactions, CAESAR also performs best at genomic
distances of less than 200kb. As a result of this, CAESAR-
imputed contact maps are not well suited for analyses of large 3D
chromatin structures such as compartments. Second, because
Micro-C and Hi-C generate short-read sequences, our study is
still limited to pairwise chromatin contacts, and therefore higher-
order interactions are insufficiently studied. Third, our analyses
showed that CAESAR performed well according to multiple
evaluation metrics, yet there was clear bias towards A compart-
ment, evolutionarily conserved regions, and early-replicating
regions. This is likely a reflection that the epigenomic features in
the study are generally more enriched in these regions. As such, it
is possible that including additional epigenomic features may shift
this bias effect accordingly. Fourth, though CAESAR demon-
strated clear relationships between epigenomic features and 3D
fine-scale chromatin organization, we did not observe significant
improvement in imputed contact maps with the increasing
number of epigenomic datasets. This suggests that epigenomic
data may not explain all the features observed in 3D chromatin

organization. There may be unexplored layers of genetic and/or
epigenetic information that play a role in the organization of
chromatin inside the nucleus. So far, CAESAR demonstrated a
framework for jointly analyzing 3D chromatin structures and
1D epigenomic features at a matched resolution, and further
integration of 1D DNA sequences is possible. For example, our
model can potentially include DNA sequences as features and
elucidate 3D QTLs?? in the context of high-resolution chromatin
organization.

Methods

Model training. CAESAR takes both epigenomic features and Hi-C contact maps
as inputs. Based on the availability of epigenomic features, we trained four models
with different epigenomic features—one model with 13-epi-features including
ATAC-seq, CTCF, H3K4mel, H3K4me2, H3K4me3, H3K9ac, H3K9me3,
H3K27ac, H3K27me3, H3K36me3, H3K79me2, Nanog, and Rad21; one model
with seven epi-features including ATAC-seq, CTCF, H3K4mel, H3K4me2,
H3K4me3, H3K27ac, and H3K27me3; one model with six epi-features including
ATAC-seq, CTCF, H3K4mel, H3K4me3, H3K27ac, and H3K27me3; and one
model with three epi-features including ATAC-seq, CTCF, and H3K27me3. Due to
the high computational burden, it is impossible to feed the entire contact map into
the memory, and therefore we used a 250-kb sliding window with 50-kb step length
along the diagonal (e.g., 0-250,000; 50,000-300,000; 100,000-350,000; ...) to select
the regions and fed them one by one into the model.

We split all chromosomes into train, tune, and test sets of similar sizes
(Supplementary Note 4). We used the train set to train the parameters and the tune
set to choose hyperparameters (Supplementary Note 5). During training, the
parameters were optimized by minimizing the mean squared error (MSE) with
Adam algorithm?3. Because the model has two parts, one for predicting contact
profiles and one for predicting loops (Supplementary Fig. 1 and Supplementary
Note 3), we employed a sequential training strategy as follows. First, the loop
predicting part was trained, in which the model was optimized targeting only the
observed Micro-C contacts in loop regions (i.e, 10 kb x 10 kb squares centered at
Micro-C loops) instead of the entire contact map. Second, we trained the contact
profile part with the residual contact map (i.e., the observed Micro-C contact map
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minus the outputs of the loop predicting part). The outputs from the two parts
were summed up to generate the predicted contact maps.

Evaluation experiments. Three sets of cross-validation experiments were per-
formed. First, the cross-chromosome model was trained with the train set of hESC,
and tested on the test set of hESC. Second, the cross-cell-type model was trained
with the train set of HFF, and tested on the test set of hESC. Third, the cross-
species model was trained with the train set of mESC, and tested on the test set
of hESC.

To compare CAESAR with baselines and evaluate how much they improve
original Hi-C contact maps, we calculated the stratum-adjusted correlation
coefficient (SCC)%* between the observed Micro-C contact map and (1) the
CAESAR-imputed contact map, (2) the contact maps imputed by other baseline
methods (Supplementary Note 6), and (3) the interpolated Hi-C contact map.
Other than evaluating SCC, we also called and compared the loops and stripes from
the CAESAR-imputed contact maps, the Micro-C contact maps, and the Hi-C
contact maps. We implemented a fast loop calling approach and a stripe calling
approach to call loops and stripes at 1 kb resolution (Supplementary Notes 7 and 8
and Supplementary Fig. 2). We compared the loops and stripes called from (1) the
CAESAR-imputed contact map, (2) the observed Micro-C contact map, and (3)
the interpolated Hi-C contact map to generate a Venn diagram. We piled up all
stripe and loop regions called from Micro-C contact maps in (1) the CAESAR-
imputed contact map, (2) the observed Micro-C contact map, and (3) the
interpolated Hi-C contact map.

Correlating model performance with evolutionary conservation, A/B com-
partments, and replication timing. We tested whether the model performance is
correlated with evolutionary conservation, A/B compartments, and replication
timing. The genome was split into 250 kb mutually exclusive fragments. For each
fragment, we imputed the OE-normalized contact map at 200-bp resolution and
smoothed it with a 5x 5 uniform kernel. We calculated Spearman’s correlation
coefficient between the imputed and the observed Micro-C contact maps to eval-
uate the model’s performance at this fragment.

The 100-way hg38 phastCons scores?> were used to quantify evolutionary
conservation. We processed the hg38 phastCons scores into 250 kb resolution and
performed a correlation test between the model performance (i.e., the Spearman’s
correlation coefficients) and the phastCons scores. Then, the fragments were
clustered into three groups, top 10%, top 10-50%, and the others, according to
their phastCons score ranking. A box plot of spearman’s correlation coefficients
was plotted for each group.

The A/B compartments were called at 250 kb resolution. By checking the sign of
the first eigenvector of the normalized contact map2®, we separated all 250-kb bins
into two groups. The one with more enriched H3K27ac was labeled as A
compartment, while the other B compartment. The one-sided Student’s ¢ test was
applied to identify whether the two groups have significantly different Spearman’s
coefficients.

Similarly, early-late replication timing is defined by the sign of the two-stage
repli-seq signal?’. We processed the repli-seq signal at 250 kb resolution and
separated the fragments into two groups, early-replicating regions and late-
replicating regions. The one-sided Student’s ¢ test was applied to identify whether
the two groups have significantly different Spearman’s coefficient.

Attribution by integrated gradient. We used integrated gradient to identify each
input dimension’s contribution to the output. Let X denote the input epigenomic
signals

X(lsl )
X=| ..
X(ISm)

Xt
e R™™", 1)
x0n)
n

in which s, ..., s,, are m epigenomic signals (e.g., ATAC-seq, CTCF, etc.) and
1,2, ..., n are the indices of 200-bp bins. CAESAR takes X as input and learns a
mapping function F: R™*" — R"*" to predict n x n chromatin contacts between
n bins (denoted as Y). Integrated gradient?! attributes the output to each input
dimension of X by calculating a path integral of the gradient % Gradient % is a
measure to quantify how much each dimension of X influences Y, which reveals
the contribution from each input dimension. The path integral starts from a pre-
defined “background” X, and ends at X, and thus it accumulates the contributions
of each input dimension from the background to real input X28. Here, we used a
matrix of all zeros as the epigenomic background. As demonstrated in?, a straight-
line path is efficient at disentangling the input features. Formally, the attribution of

the t-th epigenomic signal s, at bin i is:

. Ty
A(Xg,)):/ (sg' Y (@)
a=0 9y, (@) O

da 2)

in which y can be Y or a part of Y, % is the gradient, y is the path, and y?s‘) (a) is

the dimension corresponding to Xis') in the path.

By calculating the attribution toward the entire output, we obtained an overall
attribution from each epigenomic feature, in which the scale of its absolute value
indicates the magnitude of its importance (Supplementary Fig. 8a). Alternatively,
the attribution can be calculated for an arbitrary region on the contact map, e.g., a
chromatin loop or a chromatin stripe, and used for further subtyping of these loops
and stripes (Supplementary Note 11 and Supplementary Fig. 8e, f).

High-resolution contact map imputation for 91 human tissues and cell lines.
As the cross-cell-type model is validated, we used the trained model to impute high-
resolution chromatin contact maps for other human tissues and cell lines. We col-
lected the epigenomic signals from a total number of 57 tissue samples, 16 cell lines,
12 primary cells, and 6 in vitro differentiated cells (Supplementary Note 2). If the
ATAC-seq signal was unavailable, DNase-seq was collected as an alternative. The
6-epi CAESAR model trained with both hESC and HFF'’s train set was used. For IMR-
90, GM 12878, and K562, we used their deeply sequenced (above 1B contacts) Hi-C
contact maps as input. For cell lines or tissues without Hi-C or with only shallowly
sequenced Hi-C, we used the surrogate Hi-C as input (Supplementary Note 2).

Validation of imputed contact maps with CRISPRi in cancer cell lines. The
profiled CRISPRIi score indicates the strength a genomic locus regulates a gene, and
the peaks (both positive and negative) correspond to enhancers and promoters. We
binned the CRISPRi scores at 200-bp resolution. On the imputed high-resolution
contact maps, we selected the region near MYC gene (chr8: 12,765,000-12,785,000)
and GATAI gene (chrX: 48,725,000-48,825,000) for K562. The contacts in these
regions were jointly analyzed with CRISPRi scores.

Validation of imputed contact maps with eQTLs in human tissues. To process
the raw eQTL data, we identified the 200-bp bin where each variant and its cor-
responding TSS locates and the contacts between the variant bin and TSS bin. We
only kept the eQTL-TSS “bin pairs” which are (1) less than 180 kb apart (200 kb
prediction range — 20-kb window size), and (2) specific in only one tissue or cell
line. The piled-up analysis was applied to the eQTL-TSS interactions in (1) the
CAESAR-imputed contact map, (2) the Micro-C contact map of hESC and HFF.
For each eQTL-TSS pair, a square region (101 pixels x 101 pixels) centered at their
contact was collected. The regions from each contact map were piled up, averaged,
and further visualized.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support this study are available from the corresponding author upon
reasonable request. All data used in our model training, tuning, and evaluation are
publicly available. All imputed human chromatin contact maps are publicly available on
our web server (http://nucleome.dcmb.med.umich.edu/). Source data are provided with
this paper (Supplementary Note 1 and Supplementary Tables 2 and 3).

Code availability

Our figures are generated from the computational results of CAESAR. The source code,
trained model, and example imputation results are shared in our GitHub repository
(https://github.com/liu-bioinfo-lab/caesar). The entire imputed contact maps of tissues/
cell lines are shared on our web server (https://nucleome.decmb.med.umich.edu/).
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