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Redefining the hypotheses driving Parkinson’s diseases
research
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Parkinson’s disease (PD) research has largely focused on the disease as a single entity centred on the development of neuronal
pathology within the central nervous system. However, there is growing recognition that PD is not a single entity but instead
reflects multiple diseases, in which different combinations of environmental, genetic and potential comorbid factors interact to
direct individual disease trajectories. Moreover, an increasing body of recent research implicates peripheral tissues and non-
neuronal cell types in the development of PD. These observations are consistent with the hypothesis that the initial causative
changes for PD development need not occur in the central nervous system. Here, we discuss how the use of neuronal pathology as
a shared, qualitative phenotype minimises insights into the possibility of multiple origins and aetiologies of PD. Furthermore, we
discuss how considering PD as a single entity potentially impairs our understanding of the causative molecular mechanisms,
approaches for patient stratification, identification of biomarkers, and the development of therapeutic approaches to PD. The clear
consequence of there being distinct diseases that collectively form PD, is that there is no single biomarker or treatment for PD
development or progression. We propose that diagnosis should shift away from the clinical definitions, towards biologically defined
diseases that collectively form PD, to enable informative patient stratification. N-of-one type, clinical designs offer an unbiased, and
agnostic approach to re-defining PD in terms of a group of many individual diseases.
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INTRODUCTION
There is growing recognition that Parkinson’s disease is not a
single entity1,2. Rather there are multiple different clinical, genetic
and epidemiologically heterogeneous diseases that together are
recognised within the one umbrella term of Parkinson’s disease3–5.
Hereafter we refer to the multiple diseases as ‘PD’ for simplicity,
and to prevent clouding the literature with a new term. Despite
growing recognition of this concept, the majority of PD targeted
research focuses on the ‘common’-pathological end-point of a
linear PD storyline6: the physical manifestation of neuronal
inclusions termed Lewy bodies, and the loss of dopaminergic
neurons (DAn) within the central nervous system (CNS). This focus
on the end-point pathology has proven its worth in the
development of effective symptomatic therapies that include
Levodopa7. However, the failure of nineteen phase 3 intervention
trials8 targeting modification of disease progression illustrates a
limitation of this focus. The restricted focus on endpoint
pathology largely arises from issues including that PD diagnosis
typically occurs many years after disease onset, predominantly on
the basis of motor symptoms, and yet one can only study PD
patients after this clinical diagnosis is made. The successful
development of disease-modifying therapeutics has been further
hindered by the absence of biomarkers, and more critically—the
absence of informative, molecular mechanisms that define each of
the individual diseases that collectively form PD. This is reflected
in a lack of PD intervention trials that target specific mechanistic
changes in groups of individual patients defined according to the
mechanism(s) that contribute to disease development/progres-
sion. The SURE-PD3 trial is an exception that targeted only
individuals with low serum urate concentrations9. However,
beyond the SURE-PD3 trial, there is typically no specific

measurable biological signal for the success of a disease-
modifying intervention for each disease within the PD umbrella10.
Instead, we remain reliant on relatively insensitive and variable
clinical measures of PD progression8.
The advent of genome-wide association studies (GWAS) has

enabled the identification of variants associated with risk of
disease development11, different rates of cognitive decline12, and
different rates of progression for PD13,14. However, the conglom-
eration of datasets needed to achieve the sample size and
statistical power required for GWAS perpetuates the one-disease
model of PD, and overlooks the presence of multiple different
clinical, genetic and epidemiologically heterogeneous diseases. In
these situations, the conglomeration of data across multiple
different Parkinson diseases dilutes the frequency of specific
disease-associated variants and thus reduces the ability to identify
those variants that contribute to the trajectory of each individual
disease (i.e., the aetiology). As such, the integration of genetic and
standardised clinical data into a coherent coordinated approach to
slow or prevent PD development, is yet to materialise. Achieving
this requires that we move away from a dependence on the
shared terminal pathology and clinical definitions and develop a
means for patient stratification, using specific genetic information,
that is based upon a sound understanding of the aetiology of each
contributing molecular disease. But how can you achieve this,
when to study the different diseases you must first define them?
Here we will discuss how this circular argument can be broken
using genetic, molecular and clinical information to identify the
different trajectories within PD, from a prospective, disease risk-
driven perspective, that stratifies patients and therapeutics
without a priori assumptions.
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MULTIPLE DISEASE TRAJECTORIES BENEATH THE
PARKINSON’S DISEASE UMBRELLA
In 2008, William Weiner wrote “there is no Parkinson disease”1 and
suggested Parkinson diseases as a more fitting term for the
observed multiple aetiologies. The term Parkinson diseases is
consistent with the fact that there is no obvious, predictable
disease trajectory following diagnosis, even in monogenic forms
of the disease. Rather, each individual’s pathway is unique, or at
most shared with a limited number of fellow patients15.
To illustrate the impact that treating PD as a group of diseases

with different but overlapping aetiologies4,5,16 can have on our
understanding of the disease, let us consider a conceptual model
where each disease within PD is represented by a mountain within
a range of mountains (Fig. 1). At present we are unable to
accurately define the number of different diseases that collectively
form PD, thus we have limited our model to seven mountains, for
simplicity. In the PD mountain range model, an individual’s
genetic risk is represented by the position in the valley (i.e.,
basecamp) where the individual starts climbing—this position
naturally limits the mountain(s) that can be ascended and the
route(s) that can be taken. PD patients cluster according to their
basecamp, of which there are a limited number, defined by the
potential and realised combinations of the risk variants within the
genome. Environmental signals from the dynamic basecamp
surroundings interact with the individual’s genetic factors to alter
aspects of the disease, including onset age at which the patient
begins climbing, or whether the individual even develops PD.
These environmental signals include, among others: pesticides
and pollutants17,18, diet19, viral infection20, head trauma21,
inflammatory diseases22 (for an in-depth review on the role of
environmental signals in relation to PD genetics see Johnson
et al.23). Once an individual has begun ascending a mountain, the
topology of the mountain, which represents the intrinsic (e.g. the
gut microbiome24 or comorbid disease pathology25) and extrinsic
(e.g. exercise26, diet19, and periodic fasting27) factors, influences
how quickly each individual climbs the route (i.e., the rate of

disease progression), and thus the presentation and severity of
symptoms15.
Individual diseases that together comprise PD are heteroge-

neous in and of themselves. This is represented in our model by
the existence of multiple routes to each mountain summit. These
routes are not independent, merging and diverging, meaning it is
likely that individuals can switch between the routes dependent
on their particular combination of intrinsic and extrinsic factors.
Although heterogeneity likely exists within each disease, it would
ideally be sufficiently homogeneous to provide a single ther-
apeutic target for treatment development. Furthermore, each
route has different markers, or checkpoints, at different stages—
akin to the biomarkers that provide an unbiased snap-shot that
can be used to track disease development within individual
patients. It is important to note however that these ‘on route’
biomarkers will change over the course of the disease, and are
likely to be influenced by the individual’s age, diet, and
combination of predisposing comorbid diseases.
It can be argued that there are commonalities across individual

diseases that contribute to PD (i.e., shared between the different
mountains within the range). Treating these commonalities would
provide treatment for a larger group of patients. This may be true.
However, whilst potentially useful, treating these commonalities
would have limited benefit, as the symptoms (e.g. resting tremor
and bradykinesia) appear late in the disease course, and thus
patients would be more disabled (closer to their respective
summits) by the time the treatment is initiated. Notably, disease-
modifying interventions that target PD based on this premise
have yielded little success thus far.
Other models of PD have been presented before. Perhaps best

known is William Langston’s elephant model28 which captures the
idea of diverse symptomology but still presents PD as a single
disease, or, elephant. In our model, the elephant would be
represented as a single mountain within the PD mountain range.
Thus Langston’s model does not capture the multiple diseases
that collectively form PD, or the heterogeneity that is inherent to
each disease.

Fig. 1 Parkinson Diseases Mountain Range model. Conceptual model assimilating the different diseases within PD to mountains within a
range. There are likely many more mountains (diseases) than presented in this conceptual model. The topology of the valley floor represents
the total variation in interaction between age, environment, comorbidities, sex and genetics of the population. An individual’s genetic risk is
represented by the position in the valley (i.e., basecamp) where the individual starts climbing. Different signals (environment, age,
comorbidity) from the dynamic basecamp surroundings interact with the individual’s genetic factors to alter aspects of the disease including
onset age at which the patient begins climbing, or whether the individual even develops PD (reflected in the pie charts at base camps). The
topology of the mountain (e.g. intrinsic and extrinsic factors) affects how quickly each individual climbs the route (i.e., the rate of disease
progression), and thus the range, presentation and severity of symptoms15. The small boxes (i.e., checkpoints) along the routes of ascent
represent potential biomarkers that could be developed/used to provide an unbiased snap-shot that can be used to track disease
development within individual patients. However, these ‘on route’ biomarkers will likely change over the course of the disease.
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USING ‘OMICS TO INFORM ORIGINS AND TRAJECTORIES OF
PARKINSON’S DISEASE
It is the patient’s combination of genetic risk coding (e.g. LRRK2-
G2019S or SNCA-A53T) and non-coding variants that initially “set
the stage” and determine which basecamp and mountain an
individual will start ascending in their journey towards PD. The
application of GWAS to the study of PD enables unbiased
population-level identification of the genetic basis of risk that
exist long before the disease initiates. However, the genetic
variants that have been associated with PD by GWAS (e.g. 90
genetic loci11) only explain between 16-36% of the heritability of
PD. Additionally, apart from a few exceptions, the odds ratios of
the individual variants are typically low (e.g. between 0.8 – 1.2)11.
Indeed, the current predictive ability of the SNPs associated with
PD is so low as to make meaningful risk score prognosis
unfeasible29. The missing heritability can partly be explained by
issues with merging the multiple different diseases that contribute
to PD, into the single entity that is defined by late-stage
pathological markers (i.e., performing GWAS from the perspective
of PD being a single disease). Furthermore, the reliance on a
clinical definition means that no two ‘omics studies yield similar
results since they only represent those of the heterogeneous
patient population from which they were applied (e.g.30).
Averaging these different but related datasets results in the
identification of only the most significant risk loci that are
common across all the diseases reaching statistical significance.
The issue of averaging signals across the heterogeneous diseases
that contribute to PD, when undertaking a GWAS, can be
addressed by stratifying PD patients according to their genetically
defined start-point, in turn enabling selection of informative
longitudinal biomarkers and effective therapeutic approaches
(specific to each route). This stratification can be achieved through
genomic approaches that explore the specificities of GWAS
manifestation31,32, and inform the distinct routes of PD develop-
ment. As such, GWAS-based patient stratification could indicate 1)
which pathway(s) is dysregulated; 2) pathway biomarkers to be
examined; and 3) which targets should be considered for
therapeutic intervention. However, shifting from simply identify-
ing GWAS signals to informative stratification requires in depth
characterisation of the causative variant(s) function33.
Until recently33, our inability to functionally translate non-

coding genetic variation and risk to biologically disease-relevant
pathways has meant that the earlier stages of PD development
have been primarily neglected as a means of stratification or
therapeutic intervention. In contrast to the noncoding risk
variants, coding mutations in GBA and LRRK2 genes have been
explored and enabled patients with these specific mutations to be
stratified for therapeutic intervention, targeting these genetic
subgroups of patients34,35. Furthermore, Szwedo et al. demon-
strated a role for APOE-ε4 and GBA mutations in the rate of
cognitive decline in PD patients, but found no significant impact
for common variants in SNCA and MAPT12. These findings raise the
possibility for earlier identification and stratification of individuals
at high risk of rapid cognitive decline, thus highlighting suitable
candidates for future targeted trials. Despite progress, the known
incomplete penetrance of these mutations is problematic36 and
highlights a remaining knowledge gap surrounding the mechan-
istic role of some of these mutations, such as the role of LRRK2
mutations in disease progression14. This therefore raises the
question as to whether such interventions will be effective against
disease progression even in patients with these specific mutations.
Nonetheless, with recent advancements, our understanding of
how both coding and non-coding risk manifests is evolving33,37.
Such understanding can be used to inform hypotheses which will
aid in the identification and stricter classification of individual
diseases within PD that could also lead to targeted therapeutics.

Functional characterisation requires that the associated mole-
cular, cellular and physiological phenotyping is sufficiently deep to
allow accurate assignment of the causal variants and their target
genes38, and potentially what tissue(s), the disease risk is
conveyed in. Panyard et al. applied an approach to functionally
characterise and assign the action of causal genetic variants in
Alzheimer’s disease (AD)39. Briefly, Panyard et al. integrated
genomic and clinical data from two longitudinal AD cohorts with
epigenetic annotations to develop cell-type-specific genomic
functional annotations39. These annotations were used to identify
which SNPs are likely to be functional in different tissues39. The
authors demonstrated that effects of these SNPs in the liver were
statistically associated with Alzheimer’s diagnosis39. In so doing,
Panyard et al. highlighted a potential contribution from the liver
towards AD, including associations with core AD cerebrospinal-
fluid biomarkers, in what is widely considered a ‘brain-centric’
disease. Whilst a small study (n= 79 AD patients), the finding that
changes in the liver were predictive for some, but not all,
individuals is consistent with the hypothesis that the liver
malfunction accounts for one of the heterogeneous diseases that
collectively contribute to AD40.
Genomic approaches are also being applied in attempts to

identify and understand the cell- and tissue- types where genetic
risk manifests in PD41,42. For example, Coetzee et al.43 used histone
modification data combined with enrichment analyses to
demonstrate that many PD-associated genetic variants were
enriched, and had expression quantitative trait loci (eQTL)
associations, in non-neuronal cell-types, including lymphocytes,
mesendoderm-, liver- and adipocyte- cells43. Similarly, we have
used a discovery-based approach to identify putative regulatory
impacts of non-coding PD-associated risk variants in both the CNS
and peripheral tissues33,44. Notably, our analyses indicated that
eQTL effects for a subset (28%) of the 90 PD-associated risk
variants were only detected in peripheral tissues (e.g. thyroid and
oesophagus)33 while only 2% of PD risk SNPs had identifiable
eQTLs solely in CNS tissues. Given that tissues are complex
mixtures of cell types, the oesophageal finding does not imply
that the effect is due to the muscles at the exclusion of the nerves
that innervate the oesophagus. However, the finding is consistent
with peripheral symptomology (e.g. dysphagia), that is sometimes
observed in the early stages of PD45.
In an attempt to determine which tissues, and subsequently

cell-types, are responsible for PD heritability, Reynolds et al.41 used
stratified Linkage Disequilibrium score regression46 (see box 1) to
measure the contribution(s) that common genetic variation makes
to the heritability of PD across 53 tissues (inc. 13 brain region
tissues), using schizophrenia as a comparative measure. In
contrast to schizophrenia in which all 13 brain tissues were
significantly enriched for heritability, there was no enrichment for
PD heritability across any of the 53 tissues (in the CNS or
peripheral tissues). The lack of PD heritability enrichment across
these bulk tissues led Reynolds et al. to question whether cellular
heterogeneity within tissues may be masking signals, and thus
sought to investigate cell-type-specific enrichment of heritability.
However, across 6 human and 30 mouse CNS cell-types, Reynolds
et al. identified no cell-type enrichment for PD heritability. The
Lewy Body pathology in specific neuronal cell types, associated
with PD, has encouraged researchers to focus efforts towards
understanding risk in neuronal subtypes. However, the findings
from Reynolds et al. provide reason to believe that risk loci are
affecting non-CNS cell-types and/or cellular processes and path-
ways across multiple cell types, and to which different cell types
have varying vulnerability41. Such varying vulnerability, consistent
with the proposed threshold theory for PD47, could likely be a
result of interactions with environmental factors and/or comorbid
disease pathology.
In contrast to the lack of cell-type heritability enrichment

identified by Reynolds et al., there have been multiple studies to
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date that implicate glial cell types, mostly microglia, in neuroin-
flammation and PD pathogenesis42,48,49. Given these implications,
Bryois et al. combined cell-type-specific gene expression and
GWAS data to explore the role of glial cells in PD pathogenesis49.
Roles for microglia were indicated by the finding that cell-type-
specific ATACseq identified functional PD risk loci that were
enriched for autophagy and lysosomal processes50, both of which
have been previously implicated in PD51. Furthermore, elevated
LRRK2 expression, associated with the linked PD GWAS SNPs
rs76904798 and rs7294619 (R2= 0.842), has also been shown to
occur specifically in microglia42. Collectively, these data are
consistent with the hypothesis that PD genetic risk variants affect
non-neuronal cell types of the CNS. However, while these studies
highlight the importance of cell-type consideration, they are still
driven by a priori assumptions that are CNS focused. As such, it is
essential to extend these analyses to non-CNS cell-types, following
a more discovery-based, hypothesis-free approach, to determine if
such risk enrichment is truly specific to the microglia, or if other
non-CNS cell-types may also be involved in disease initiation and
propagation.
Together these studies highlight how multiple ‘omics

approaches can be used to identify the tissue- and cell-type-
specific manifestations for GWAS risk variants. The findings we
have discussed support two potential, non-mutually exclusive,
hypotheses: First, the individual diseases within the PD umbrella
may arise through genetic variation-dependent mechanisms that
dictate the tissue-of-origin(s) and thus the pathological pathways
associated with the disease. This concept is reflected in the
mountain range model, with each basecamp representing a
different, genetically-informed, start-point. In the second hypoth-
esis, variants impacting a specific peripheral tissue- or cell-type,
cause dysregulation that adds to the disease complexity/
symptoms without necessarily leading to the CNS pathology that
is typically associated with PD. This second hypothesis aligns with
the threshold theory for PD which was developed on the basis of
parallel degeneration of both the central and peripheral nervous
systems47. As such, there is a need to look beyond the tissue- and
cell-types that are traditionally associated with PD pathology to
gain a greater understanding of the mechanisms through which
genetic risk may be manifested. Advances within the fields of
single-cell transcriptomics52,53 and bulk-cell analyses54 will provide
additional insights that begin to untangle the relative contribu-
tions of genetics and the environment to PD risk manifestation.
But the question remains, how do we apply these approaches to a
mechanistically-heterogeneous disease?

USING BIG DATA TO IDENTIFY INDIVIDUAL TRAJECTORIES IN A
HETEROGENEOUS DISEASE
Conglomerating data from different cohorts provides a large
sample size (n) which is otherwise unachievable from a single-
centre cohort. As such, conglomerated data provides much-
needed statistical power to address particular hypotheses. Despite
providing statistical power, the conglomeration of different PD
cohorts unfortunately also highlights the lack of strict diagnostic
criteria for PD and related diseases, with different cohorts often
using different diagnostic criteria30. A further confounding
problem, that affects diagnosis even at the level of a single
clinician, is misclassification55. Such misclassification raises the
problem of inclusion of non-PD patients in cohorts, which may be
skewing outcomes of observational studies and clinical trials. A
third, and substantial, complicating factor is the likely multiple
different mechanistic diseases that exist within the ‘homogenous’
clinical PD cohorts currently studied. This problem is particularly
prevalent in cohorts that include patients with different genetic
predispositions to diseases within PD, such as GBA-PD and LRRK2-
PD patients, who typically present with different symptomatic
trajectories56,57. Grouping these different individual diseases

together is likely causing a loss of information. If data conglom-
eration is to achieve what is hoped, disease biomarkers, and more
specifically biomarkers for the different diseases that collectively
form PD are urgently needed. The need to define individual
diseases as opposed to merging them into a single entity is in line
with the prediction made by Espay and Lang that smaller, smarter
clinical trials are needed to move away from this ‘homogeneous’
clinical Parkinson’s phenotype6.
As discussed earlier, genetic risk variants offer an option for

such genetic stratification—with an individual’s risk profile
determining their disease starting point (e.g. specific basecamp
in the mountain range model). These genetic risk variants, or SNPs,
do not however act independently33. Rather they act in a
combinatorial manner within a much larger genetic background.
In order to understand the full contribution that PD-associated
SNPs make to PD, they need to be considered in the context of the
omnigenic58 and infinitesimal59 models for disease (see box 1),
and in terms of network medicine60. Network medicine
approaches enable the disease to be contextualised as a sum of
inter-connected perturbations, reflective of the underlying genetic
and molecular risk drivers (i.e. studying PD risk variants in the
context of an individual’s complete genotype). The utility of
network medicine60 has being explored in other complex
diseases, and has already aided in the identification of novel
targets for therapeutic strategies and development61,62.
Exploring the impact and interconnectivity of genetic contribu-

tions to an individual’s disease risk profile, from a network
medicine angle, has only become feasible following recent
advancements. These include the reductions in costs for genome
sequencing and computing63, and the development of machine
learning approaches to detect complex patterns in genomes. Such
advances have informed, and been enhanced by, the rapidly
evolving post-GWAS genome-editing toolbox, including CRISPR
screens64 and massively parallel reporter assays65 (to test
observed patterns for functional significance). These tools will
over time provide the data required to understand the complete
genetic contributions to the development of the diseases that
collectively form PD, amongst other complex diseases. Collabora-
tive efforts, such as the Atlas of Variant Effects Alliance (https://
www.varianteffect.org/)66, will be critical in enabling the curation

Box 1 Glossary of terms.

Expression quantitative trait loci (eQTL): A genetic locus that affects (or
correlates with) the expression (mRNA) of one or more genes.
Genome wide association study (GWAS): An approach used to associate
specific genetic variations with particular diseases or traits. The genomes of
individuals with the disease or trait of interest are compared to the genomes of
matched, control, individuals – to identify variants that are significantly
associated with that particular disease or phenotypic trait.
Infinitesimal model: A model built on the premise that the inheritance of a
quantitative trait is controlled by an infinite number of loci, and each locus has an
infinitely small effect.
Linkage disequilibrium (LD): The non-random association of alleles at
different loci.
Linkage disequilibrium score regression (LDSC): A statistical method for
quantifying the separate contributions of polygenic effects and various
confounding effects, such as population stratification, based on summary
statistics from GWA studies.
N-of-1 approach: In this context, an n-of-1 analysis is a meta-analyses of deeply
characterised single patient information, of individuals within a heterogeneous
cohort, that explores genetic variation in the context of the measured phenotype(s).
In effect, the characteristics of each participant are individually (and frequently
where possible) noted and contrasted to each other individual. This approach
accounts for the individual-level heterogeneity that is present in PD.
Omnigenic model of complex disease: The model is centred on the premise
that human genome regulatory networks are hugely interconnected, and almost
any gene with regulatory variants in at least one relevant tissue will contribute to
the heritability of the phenotype.
Single nucleotide polymorphism (SNP): The most common type of variation
among people. One SNP represents a variation at a single position (i.e.
nucleotide) in the DNA sequence.
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and systematic collation of results from these functional post-
GWAS studies. Another recent technological advance that will
likely enhance genomic findings from a phenotypic perspective is
the introduction of wearables67. Such devices have been shown to
provide vital sign data (e.g. heart rate and electrodermal activity)
at a level equivalent to that gained in a clinical setting68. The
widespread uptake of these wearables enables individualised,
longitudinal and continuous health monitoring. While identifying
signal from noise in movement measurements is challenging,
combining the in-depth phenotypic data that wearables provide
with matched genetic data promises to aid in identifying clinical
differences amongst the different genomic diseases within PD.
Information on genetic variation and drug responses can be

used to help determine which drugs, are likely to be safe and
efficacious in an individual. These approaches are leading to the
emergence of ‘genetically-informed’ clinical trials (i.e., precision
medicine approaches) in PD69–71. For example, Ambroxol has been
repurposed to treat PD patients with a GBA coding mutation34.
Despite having only been trialled in a small, open label, non-
randomised group of individuals, Ambroxol shows promise for the
treatment of this well-defined yet heterogeneous (i.e., it included
multiple GBA coding mutations) subset of individuals34. The
Ambroxol trial is an exemplar that paves the way for future
precision-informed clinical trials in PD. Not only does it address
the issue of treating patients according to genomic information,
but also shows the potential of repurposing already licensed
medication72, to accelerate the process of drug development. The
Ambroxol trial also included some idiopathic PD patients—of
whom also showed promising responses to the treatment.
Identifying idiopathic PD patients who specifically have reduced
GCase activity (i.e., those with GBA modifying genotypes30,44) may
lead to better outcomes for patients.
Despite the obvious promise of a stratified approach to clinical

testing and therapy, the lack of genotyping as a part of clinical
assessment means that the identification of the relatively small
numbers of individuals with genetic predispositions remains a
major financial and temporal challenge. However, this is changing
as initiatives, such as PD frontline (https://pdfrontline.com/en) and
PD GENEration (https://www.parkinson.org/PDGENEration), are
offering genetic testing for PD patients to ensure individuals
carrying defined mutations are referred to the clinical trials best
suited to them.

CONCLUDING REMARKS & FUTURE PERSPECTIVES
Recognising that many diseases contribute to PD highlights a
challenge that is present in the search for a biomarker of PD
progression and therapeutics. Specifically, if there are many
diseases subsumed within the umbrella of PD, then we should be
looking for biomarkers for each individual disease. That we
continue selecting patients on the basis of clinical criteria rather
than biological ones impairs our ability to do this. Even genetic
risk for PD is currently viewed within the context of the shared
pathology that connects the different Parkinson diseases. The
utility of network medicine60 has been established in other
complex diseases, aiding the identification of novel targets for
therapeutic strategies and development61,62. While it is certainly
true that further initiatives involving large-scale data conglomera-
tion will aid in the molecular and clinical understanding of the
disease, the lack of uniformity in PD diagnosis and disease
trajectories will likely confound findings from genomic and
biomarker studies30,73. Recent initiatives (e.g. PREDICT-PD74 and
the Cincinnati Cohort Biomarker Program (CCBP)75) that incorpo-
rate discovery-based analyses of prospective cohorts are seeking
to address this by defining PD developmental pathways and
biomarkers. Furthermore, we contend that it is time to consider
systematic n-of-176–78 approaches (see box 1) in PD research, to
identify the combinations and relative contributions of the

genetic, pathological and environmental factors in each unique
circumstance3,79, for individuals within a heterogeneous popula-
tion. The population’s use of wearables will contribute to the
collection of relevant data for achieving such an approach80.
Ultimately, the aggregated results of n-of-1 approaches will help
elucidate the many diseases that contribute to the one complex
Parkinson disease. Redefining the hypotheses driving PD research
will enable movement away from the current focus on shared
pathology and clinical definitions. This in turn will make way for
the development of targeted diagnostic and therapeutic
approaches that are based upon a molecular understanding of
the aetiology of the individual diseases, and thus have the ability
to slow, stop or reverse disease progression and ultimately
achieve disease prevention.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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