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Abstract

Purpose: To assess the generalizability and performance of a deep learning classifier for 

automated detection of gonioscopic angle closure in anterior segment OCT (AS-OCT) images.

Methods: A convolutional neural network (CNN) model developed using data from the Chinese 

American Eye Study (CHES) was used to detect gonioscopic angle closure in AS-OCT images 

with reference gonioscopy grades provided by trained ophthalmologists. Independent test data 

was derived from the population-based CHES, a community-based clinic in Singapore, and a 

hospital-based clinic at the University of Southern California (USC). Classifier performance was 

evaluated with receiver operating characteristic curve (ROC) and area under the receiver operating 

characteristic curve (AUC) metrics. Inter-examiner agreement between the classifier and two 

human examiners at USC were calculated using Cohen’s kappa coefficients.
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Results: The classifier was tested using 640 images (311 open, 329 closed) from 127 

Chinese Americans, 10,165 images (9595 open, 570 closed) from 1,318 predominantly Chinese 

Singaporeans, and 300 images (234 open, 66 closed) from 40 multi-ethnic USC patients. The 

classifier achieved similar performance in the CHES (AUC=0.917), Singapore (AUC=0.894), 

and USC (AUC=0.922) cohorts. Standardizing the distribution of gonioscopy grades across 

cohorts produced similar AUC metrics (range 0.890–0.932). The agreement between the CNN 

classifier and two human examiners (Ҡ=0.700 and 0.704) approximated inter-examiner agreement 

(Ҡ=0.693) in the USC cohort.

Conclusion: An OCT-based deep learning classifier demonstrated consistent performance 

detecting gonioscopic angle closure across 3 independent patient populations. This automated 

method could aid ophthalmologists in the assessment of angle status in diverse patient populations.

Introduction

Primary angle closure glaucoma (PACG), the most severe form of primary angle closure 

disease (PACD), is a leading cause of irreversible vision loss and blindness worldwide.1 

The number of people affected by PACG is projected to increase to 32 million by 2040 

due to aging of the world’s population.1 PACG often develops asymptomatically and causes 

significant vision loss in at least one eye before it is detected and treated by an eyecare 

provider.2 Therefore, early detection of angle closure, the primary risk factor for PACG, is 

crucial so that treatments, such as laser peripheral iridotomy (LPI) and lens extraction, can 

be administered to prevent progression of PACD and development of glaucoma-associated 

vision loss.3, 4

Gonioscopy is currently the clinical standard for evaluating the anterior chamber angle 

and detecting angle closure. However, gonioscopy has several limitations that reduce its 

effectiveness for angle closure detection. Gonioscopy is subjective, expertise-dependent, 

and must be performed in-person by a trained examiner. It can also be time-intensive and 

uncomfortable for some patients, which discourages some eyecare providers.56 Anterior 

segment optical coherence tomography (AS-OCT) is a non-contact in vivo imaging method 

that provides an alternative to gonioscopy for assessing the angle. AS-OCT imaging is fast, 

easily tolerated by most patients, and can be performed by a technician with limited training 

and experience. In addition, AS-OCT angle assessments have high degrees of intra- and 

inter-user reproducibility, and AS-OCT images can be saved for off-line interpretation.7–9

Manual interpretation of AS-OCT images to detect angle closure can be time- and expertise 

dependent, which limits the utility of AS-OCT imaging in clinical practice. Our research 

group recently developed and reported a deep learning classifier that detects gonioscopic 

angle closure and PACD based on automated analysis of AS-OCT images.10 Deep learning 

algorithms hold the potential to increase accessibility to care and decrease the burden 

of disease detection in all fields of medicine.11–16 However, these algorithms may only 

function in a narrow range of patients that closely resemble the training cohort.17 While 

our deep learning classifier achieved favorable performance compared to previous manual 

and semi-automated methods, it was tested using data from the same population of Chinese 

Americans over the age of 50 who comprised the training cohort.18, 19 In addition, reference 
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gonioscopy grades were provided by a single trained ophthalmologist. In this study, 

we use AS-OCT images and reference gonioscopy grades provided by multiple trained 

ophthalmologists at independent clinical sites to assess the generalizability and performance 

of our deep learning classifier for community- and hospital-based detection of gonioscopic 

angle closure.

Materials and Methods

Approval for this study was granted by the University of Southern California Medical Center 

Institutional Review Board (IRB). All study procedures adhered to the recommendations of 

the Declaration of Helsinki. All study participants provided informed consent. Data for the 

Singapore cohort was obtained with permission from the Singapore Eye Research Institute 

(SERI), following approval by the ethics review board of Singhealth.20

The original dataset used for training and testing of the deep learning classifier was 

obtained retrospectively from the Chinese American Eye Study (CHES), a population-

based epidemiological study of 4,572 Chinese participants 50 years and older living in 

Monterey Park, California, USA.21 The second dataset used for classifier testing was 

obtained retrospectively as part of a community-based study in Singapore. A total of 2,052 

participants 50 years and older were recruited from a community polyclinic providing 

primary care services in Singapore.20 The final dataset used for classifier testing was 

obtained prospectively from a hospital-based glaucoma tertiary care referral center at the 

University of Southern California (USC) in Los Angeles, CA. A total of 40 participants 

21 years and older presenting for routine glaucoma evaluations were recruited from USC 

eyecare facilities.

Inclusion criteria included receipt of gonioscopy and AS-OCT imaging. Exclusion criteria 

included prior eye surgery, penetrating eye injury, or media opacities that precluded 

visualization of anterior chamber angle structures. Subjects with a history of prior laser 

peripheral iridotomy (LPI) were not excluded.

Clinical Assessment

The clinical assessment was similar across the three study cohorts. Each participant received 

a complete eye examination by a trained ophthalmologist including gonioscopy and AS-

OCT imaging. Gonioscopy was performed in the seated position under dark ambient lighting 

(approximately 0.1 cd/m2) with a 1-mm light beam and a 4-mirror goniolens by at least 

one trained glaucoma specialist or ophthalmologist (D.W., an ophthalmologist in CHES; 

M.T., a glaucoma specialist in Singapore; B.Y.X., a glaucoma specialist at USC; J.D., a 

clinical glaucoma fellow at USC) masked to other examination findings. Gonioscopy by 

the glaucoma specialist and fellow at the USC site were performed in a semi-random 

order depending on their availability in clinic. Care was taken to avoid light falling on 

the pupil and inadvertent indentation of the globe. The gonioscopy lens could be tilted up 

to 10 degrees. The angle was graded in each quadrant according to the modified Shaffer 

classification system: grade 0, no structures visible; grade 1, non-pigmented TM visible; 

grade 2; pigmented TM visible; grade 3, scleral spur visible; grade 4, ciliary body visible. 

Gonioscopy grades were grouped into two categories: gonioscopic angle closure (grade 0 or 
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1), in which pigmented TM could not be visualized, and gonioscopic open angle (grades 2 to 

4).

AS-OCT imaging was performed in the seated position under dark ambient lighting 

(approximately 0.1 cd/m2) after gonioscopy and prior to pupillary dilation by a trained 

ophthalmologist or technician with the Tomey CASIA SS-1000 swept-source Fourier-

domain device (Tomey Corporation, Nagoya, Japan). 128 two-dimensional cross-sectional 

AS-OCT images were acquired per eye. During imaging, the eyelids were gently retracted 

taking care to avoid inadvertent pressure on the globe.

Raw AS-OCT image data was imported into the SS-OCT Viewer software (version 3.0, 

Tomey Corporation, Nagoya, Japan). Two images were exported in JPEG format per eye: 

one oriented along the horizontal (temporal-nasal) meridian and the other along the vertical 

(superior-inferior) meridian. Images were divided in two along the vertical midline, and 

right-sided images were flipped about the vertical axis to standardize images with the 

anterior chamber angle to the left and corneal apex to the right. No adjustments were made 

to image brightness or contrast. Eyes with corrupt images or images with significant lid 

artifacts precluding visualization of the anterior chamber angle were excluded from the 

analysis. Image manipulations were performed in MATLAB (Mathworks, Natick, MA).

Deep Learning Classifier Development and Testing

A previously reported multi-class convolutional neural network (CNN) model based on 

the ResNet-18 architecture was used to classify the anterior chamber angle in individual 

AS-OCT images as either open or closed (Figure 1).10 One AS-OCT scan was completed 

per quadrant, yielding one image per quadrant for assessment by the classifier. In brief, the 

classifier was trained using a dataset of 3,396 AS-OCT images with nearly equal distribution 

of open (N = 1,632) and closed (N = 1,764) angles. However, the distribution of gonioscopy 

grades was not balanced. Given an input image, the classifier produced a normalized 

probability distribution over Shaffer grades p = [p0, p1, p2, p3, p4]. Binary probabilities 

for closed angle (grades 0 and 1) and open angle (grades 2 to 4) eyes were generated by 

summing probabilities over the corresponding grades, i.e., pclosed = p0 + p1 and popen = p2 

+ p3 + p4. Probabilities were thresholded in order to generate binary classifications where 

a positive detection event was defined as classification to grade 0 or 1. The threshold value 

is a tunable parameter that controls the tradeoff between false positive rate (FPR) and true 

positive rate (TPR).

Classifier performance was evaluated on unstandardized test data (i.e., test data where the 

distribution of grades has not been resampled) from each of the three cohorts (CHES, 

Singapore, and USC) using mean area under the receiver operating characteristic curve 

(AUC) metrics and receiver operating characteristic (ROC) curves. The classification of 

open angle (Schaffer grades 2, 3, and 4) and closed angle (Schaffer grades 0 and 1) was 

compared by plotting the ROC curve of the CNN classifier with the false positive rates 

(FPRs) and true positive rates (TPRs). ROC curves corresponding to the lower and upper 

bounds of the 95% confidence interval in AUC values were generated by bootstrapping to 

evaluate variability in CNN performance. Reference gonioscopy grades and labels of open 

or closed angle were provided by the human examiner(s) who performed manual gonioscopy 
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at each study site, which differed for each test dataset. Gonioscopy grades provided by the 

glaucoma specialist were used as the reference standard in the USC test dataset.

Classifier performance was also evaluated on test data standardized so that its grade 

distribution matched that of the USC test dataset. Standardization was done by randomly 

selecting a given number of grade 0,1,2,3, and 4 images without replacement from the test 

data so its final distribution matched that of the USC clinical dataset. This process eliminates 

inter-cohort differences in angle grade distributions that might bias classifier performance. 

Test datasets were standardized to the USC test dataset since it contained the fewest images.

Statistical Analyses

Continuous data were expressed as mean, standard deviation, and range values. Categorical 

data were expressed in percentages. Two-way tables and Cohen’s kappa coefficients were 

calculated to assess the pairwise agreement between the CNN classifier and two human 

examiners at the USC site in the binary classification of open or closed angle. All analyses 

were performed using the R programming interface (version 4.0.3). Statistical analyses were 

conducted using a significance level of 0.05.

Results

The CHES test dataset contained 640 AS-OCT images with corresponding grades from 127 

subjects (Table 1, Figure 2). All images with eyelid artifacts had previously been removed 

from the dataset.21 There were 311 images with open angles (48.6%) and 329 with closed 

angles (51.4%) (Table 2): grade 0 (N = 149), grade 1 (N = 180), grade 2 (N = 65), grade 3 

(N = 175), grade 4 (N = 71). The mean age of participants was 62 years old, with 34% (N = 

43) males and 66% (N = 84) females. All participants (N = 127) self-identified as Chinese.

The initial Singapore dataset contained 10,366 AS-OCT images with corresponding 

gonioscopy grades (Table 1, Figure 2). 201 images (1.9%) were excluded from analysis 

due to imaging and eyelid artifacts. The Singapore test dataset contained 10,165 AS-OCT 

images with corresponding grades from 1,318 subjects. There were 9,595 images with open 

angles (94.4%) and 570 with closed angles (5.6%) (Table 2): grade 0 (N = 196), grade 1 (N 

= 374), grade 2 (N = 1,174), grade 3 (N = 3,718), grade 4 (N = 4,703). The mean age of 

participants was 61 years old, with 37% (N = 484) males and 63% (N = 834) females. 1,115 

participants identified as Chinese (87.6%), 93 as Indian (7.1%), 35 as Malay (2.7%), and 35 

as other (2.7%).

The USC test dataset contained 300 AS-OCT images with corresponding grades from 40 

subjects (Table1, Figure 2). There were no eyelid artifacts among the images. There were 

234 images with open angles (78.0%) and 66 with closed angles (22.0%) (Table 2): grade 0 

(N = 30), grade 1 (N = 36), grade 2 (N = 32), grade 3 (N = 80), grade 4 (N = 122). The mean 

age of participants was 56 years old, with 45% (N = 18) males and 55% (N = 22) females. 

13 patients identified as Hispanic (32.5%), 13 as Asian (32.5%), 9 as non-Hispanic White 

(22.5%), and 5 as Black (12.5%).

Randhawa et al. Page 5

Br J Ophthalmol. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Classifier Performance

The CNN classifier achieved an AUC of 0.917 (95% CI = 0.891–0.937) in detecting 

gonioscopic angle closure by quadrant in the CHES test dataset (Figure 3). The classifier 

achieved an AUC of 0.894 (95% CI = 0.882–0.905) and 0.922 (95% CI = 0.883–0.952) in 

the unstandardized Singapore and USC test datasets, respectively.

The CNN classifier achieved an AUC of 0.932 (95% CI = 0.900–0.960) in detecting 

gonioscopic angle closure by quadrant in the CHES test dataset and 0.890 (95% CI = 

0.848–0.930) in the Singapore test dataset after distributions of gonioscopy grades were 

standardized to the distribution of the USC test dataset (Figure 4).

Inter-Examiner and CNN-Human Agreement

Inter-examiner agreement in detecting angle closure in the USC cohort was assessed by 

pairwise comparisons between the two human examiners and the CNN classifier (Figure 5). 

The CNN classifier demonstrated similar levels of agreement with the glaucoma specialist 

(κ = 0.700, 95% CI = 0.593–0.792) and glaucoma fellow (κ = 0.704, 95% CI = 0.595–

0.799) as between the two human examiners (κ = 0.693, 95% CI = 0.580–0.791) in detecting 

angle closure by quadrant. The CNN classifier produced a greater number of false positives 

(detecting angle closure when the reference examiner detected open angle) and a lower 

number of false negatives (detecting open angle when the reference examiner detected 

angle closure) when the glaucoma specialist was the reference examiner compared to when 

the glaucoma fellow was the reference examiner. The glaucoma fellow produced a more 

balanced number of false positives and false negatives when the glaucoma specialist was the 

reference examiner, with a sensitivity and specificity of 0.807 and 0.906, respectively, which 

fell within the 95% CI of the ROC curve by the CNN classifier (Figures 3 and 4).

Discussion

In this study, we assessed the generalizability and performance of a deep learning 

classifier for detecting gonioscopic angle closure in AS-OCT images. We compared 

classifier performance in a Chinese American population-based cohort to performance in 

a predominantly Chinese Singaporean community-based cohort and a multi-ethnic hospital-

based cohort. The classifier demonstrated excellent performance in all three test datasets 

despite differences in patient demographics, angle closure prevalence, ophthalmologists who 

provided reference gonioscopy grades, and practice settings. Classifier performance also 

approximated human inter-examiner agreement based on manual gonioscopy performed by 

a glaucoma specialist and fellow in the hospital-based cohort. Our findings demonstrate that 

an OCT-based deep learning classifier performing “automated gonioscopy” can be used to 

detect gonioscopic angle closure in a range of patient populations and care settings. This 

has important implications for increasing accessibility to care and reducing the burden on 

eyecare providers to perform gonioscopy in the general population.

Deep learning is an effective method for automating the analysis of medical images to detect 

a wide range of diseases.13, 16, 17 However, the performance of deep learning algorithms can 

become degraded when the algorithms are applied to image datasets from populations that 
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differ from the training cohort.22 For example, a CNN developed to detect glaucomatous 

optic neuropathy in fundus photographs initially demonstrated excellent performance (AUC 

= 0.996, 95% CI = 0.995–0.998) in local validation datasets that significantly decreased 

when the model was applied to a multi-ethnic dataset (AUC = 0.923, 95% CI = 0.916–

0.930) and a dataset created with images of variable quality (AUC = 0.823, 95% CI 

= 0.787–0.855).23 This and similar studies suggest that generalizability of deep learning 

algorithms cannot be assumed, and caution should be exercised when applying algorithms in 

different patient populations and care settings.17, 24 Therefore, it is noteworthy our classifier 

demonstrates excellent performance that is consistent across three patient populations (AUC 

range from 0.894 to 0.922).

Racial homogeneity was a primary limitation of the original CHES data used to train 

and test the deep learning classifier. Biometric properties of the anterior segment vary by 

race, with shallower anterior chambers and thicker irises being more common in Asian 

compared to non-Asian eyes.25–27 These differences likely contribute to differences in 

PACG prevalence observed between different racial populations.28 The prevalence of PACG 

is highest in Asian populations28, approximating the prevalence of POAG.29 Conversely, 

POAG is far more prevalent than PACG among Blacks, Hispanics, and non-Hispanic 

Whites.30–32 However, these differences do not to appear to affect classifier performance, 

as AUC metrics were similar in the racially homogenous CHES cohort and racially diverse 

USC clinical cohort; the original CHES cohort consisted entirely of Chinese Americans, 

whereas the majority of the USC cohort were non-Asian. Biometric properties of the 

anterior segment are more consistent within ethnically Chinese populations.27 Therefore, 

race is less likely to contribute to a difference classifier performance between the CHES and 

Singapore cohorts, which were composed entirely of Chinese Americans and primarily of 

Chinese Singaporeans, respectively.

The prevalence of PACD varies widely by geographic location, and classifier performance 

could be affected by the distribution of gonioscopy grades and open/closed angles within a 

population.33 While our deep learning classifier was originally developed using population-

based data, the CHES training and test datasets were balanced based on the number of open 

and closed angles to avoid introducing biases in the detection of angle closure. However, 

individual angle grades were not balanced within these classes. While AUC metrics are not 

affected by different distributions of dichotomous states (open or closed angle), they are 

sensitive to different distributions of sub-classes that make up those states (angle grades). 

Therefore, we standardized to the gonioscopy grade distribution of the CHES and Singapore 

cohorts to that of the USC cohort, which was the smallest in size, to compare classifier 

performance directly across populations. The effect of standardization on AUC metrics was 

minimal. Performance on CHES data improved slightly, with an increase in AUC from 0.917 

to 0.932, whereas performance on Singapore data was largely unaffected, with an AUC of 

0.894 when unstandardized and 0.890 when standardized. These findings demonstrate that 

classifier performance is robust to not only differences in the distribution of open and closed 

angles within a population, but individual gonioscopy grades as well.

Gonioscopy is a subjective and expertise-dependent angle assessment method; therefore, the 

generalizability of the classifier could be limited by the quality of the reference gonioscopy 
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grades used to train the classifier. The deep learning classifier was trained using gonioscopy 

grades provided primarily by a single ophthalmologist, which could limit its performance 

when gonioscopy grades by other ophthalmologists are used as the reference standard. 

There are few studies on the inter-examiner reproducibility of angle closure detection 

based on manual gonioscopy, in part due to the time-consuming nature of having multiple 

eyecare providers perform gonioscopy on the same patient. We used the USC cohort to 

assess the inter-examiner agreement between a glaucoma specialist and fellow in detecting 

angle closure on manual gonioscopy. The agreement between the classifier and glaucoma 

specialist (Ҡ = 0.700) and glaucoma specialist (Ҡ = 0.704) closely approximated the 

agreement between the two human examiners (Ҡ = 0.693). The level of agreement is also 

similar to metrics of inter-examiner agreement in detecting gonioscopic angle closure by 

two trained glaucoma specialists during two separate clinic visits (Ҡ = 0.66 and 0.69).7 

These findings support the high quality of the reference gonioscopy grades used to train 

the classifier and the competency of the trained ophthalmologist who performed manual 

gonioscopy in CHES.

Data collection protocols and severity of angle closure are additional factors that did not 

appear to affect classifier performance across the three cohorts. The Singapore cohort was 

screened and examined at a busy, high-volume primary care community clinic. The CHES 

cohort was recruited through door-to-door solicitation and ocular examinations, including 

gonioscopy and AS-OCT imaging, were performed during a follow-up visit at a dedicated 

examination site. Finally, the USC cohort was recruited during routine glaucoma evaluations 

at a tertiary care referral center, and AS-OCT imaging performed as part of the standard 

clinical workflow. The three study cohorts also comprise a wider range of anatomical 

configurations and ocular biometrics than any single cohort, with previous studies finding 

milder PACD in the community and more severe PACD in the hospital.34–36

Our study has several limitations. First, the USC dataset is much smaller than both 

the CHES and Singapore datasets, which became a limiting factor when standardizing 

the datasets based on gonioscopy grades. All participants in the USC cohort received 

gonioscopy performed by the same two examiners. Consequently, recruitment ended early 

due to the onset of the COVID-19 pandemic and graduation of the second examiner 

(glaucoma fellow). However, the sample size of this cohort appears to be sufficient given 

the narrow confidence intervals associated with the ROC curve and AUC metric. Second, 

the study is limited to images taken on the Tomey CASIA SS-1000 AS-OCT device. 

While biometric measurements from the CASIA SS-1000 and newer swept-source AS-OCT 

devices are comparable, there are differences in image quality that would likely affect 

classifier performance across devices.37 Therefore, additional generalizability studies and/or 

retraining of the classifier is required before the described method can be used on images 

acquired using other AS-OCT devices. Third, classifier predictions were based on a single 

AS-OCT scan per quadrant. This approach may miss localized regions of angle closure. 

Therefore, future studies utilizing the classifier may improve its sensitivity to gonioscopic 

angle closure by analyzing multiple images per quadrant. Fourth, a standalone AS-OCT 

device is expensive compared to a standard goniolens. However, the cost of OCT devices 

continues to decrease as technology evolves, and biometry functions in newer AS-OCT 

devices could increase the scope of their clinical utility and adoption. Fifth, the second 
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examiner in the USC cohort was a glaucoma fellow who was trained in and regularly 

performed gonioscopy. Therefore, the inter-examiner agreement, which was comparable to 

the human-CNN agreement, may not generalize to ophthalmologists with less experience 

performing gonioscopy. Finally, the classifier was trained using a dataset with a specific 

distribution of angle grades and open/closed angles. Therefore, our findings cannot be 

generalized to classifiers developing using other distributions of training data.

In conclusion, our deep learning classifier for detecting gonioscopic angle closure in AS-

OCT images demonstrated consistent and robust performance across a range of patients and 

patient care settings, approximating that of a trained ophthalmologist performing manual 

gonioscopy. This has important implications for the clinical utility of AS-OCT imaging as a 

method for performing “automated gonioscopy” to detect patients who would benefit from 

more thorough clinical assessments by trained eyecare providers. Gonioscopy appears to be 

underperformed by eyecare providers, despite recommendations by the American Academy 

of Ophthalmology (AAO),38 perhaps because it is time-consuming and should be performed 

prior to pupillary dilation. This deficiency is especially problematic given that the treatment 

of open angle and angle closure forms of glaucoma differ substantially.39 While the recent 

landmark Zhongshan Angle Closure Prevention (ZAP) Trial suggested that the majority 

of patients with early angle closure may not benefit from treatment with laser peripheral 

iridotomy (LPI), angle closure can nevertheless lead to significant ocular morbidity if left 

undetected.40 Therefore, automated methods to detect angle closure may yet play a vital role 

in improving efficiency of eyecare and decreasing the burden of angle closure detection on 

healthcare providers and systems worldwide.
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Synopsis

An OCT-based deep learning classifier demonstrates consistent and robust performance, 

approximating inter-examiner agreement between trained ophthalmologists, in detecting 

gonioscopic angle closure across a range of patient populations and care settings.
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Figure 1. 
Schematic of binary classification process. Unmarked AS-OCT images were used as inputs 

to the CNN classifier. Gonioscopy grade probabilities (P0 to P4) were summed to make the 

binary prediction of angle status: angle closure = grades 0 and 1, open angle = grades 2, 3, 

and 4.
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Figure 2. 
Representative AS-OCT images from CHES, USC, and Singapore cohorts corresponding to 

open and closed angles based on manual gonioscopy.
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Figure 3. 
Receiver operating characteristic (ROC) curves with 95% confidence intervals (colored bars) 

and area under the curve (AUC) metrics for detecting angle closure in three independent test 

datasets with unstandardized distributions of gonioscopy grades. A second ophthalmologist 

performed manual gonioscopy in the USC cohort to compare with classifier performance 

(black point).
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Figure 4. 
Receiver operating characteristic (ROC) curves and area under the curve (AUC) metrics for 

detecting angle closure in three independent test datasets with standardized distributions of 

gonioscopy grades. A second ophthalmologist performed manual gonioscopy in the USC 

cohort to compare with classifier performance (black point).
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Figure 5. 
Statistical measures of agreement between the CNN classifier and two human examiners in 

the USC cohort.
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Table 1.

Patient demographics by cohort and dataset

CHES Train (N=664) (%) CHES Test (N=127) (%) Singapore (N=1318) (%) USC (N=40) (%)

Gender

Male 209 (31.5) 43 (33.9) 484 (36.7) 18 (45.0)

Female 455 (68.5) 84 (66.1) 834 (63.3) 22 (55.0)

Age

<50 0 0 0 13 (32.5)

50–60 374 (56.3) 61 (48.0) 615 (46.7) 8 (20.0)

61–70 201 (30.3) 44 (34.6) 556 (42.2) 8 (20.0)

70+ 89 (13.4) 22 (17.3) 147 (11.2) 11 (27.5)

Race

Chinese 664 (100) 127 (100) 1155 (87.6) 13 (32.5) *

Indian 0 0 93 (7.1) 0

Malay 0 0 35 (2.7) 0

Non-Hispanic White 0 0 0 9 (22.5)

Black 0 0 0 5 (12.5)

Hispanic 0 0 0 13 (32.5)

Other 0 0 35 (2.7) 0

*
USC patients self-identified as Asian.
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Table 2.

Distributions of angle status and grades by cohort and dataset

CHES Train (N=3396) (%) CHES Test (N=640) (%) Singapore (N=10165) (%) USC (N=300) (%)

Angle Status

Closed 1764 (51.9) 329 (51.4) 570 (5.6) 66 (22.0)

Open 1632 (48.1) 311 (48.6) 9595 (94.4) 234 (78.0)

Gonioscopy Grade

0 808 (23.8) 149 (23.3) 196 (1.9) 30 (10.0)

1 956 (28.2) 180 (28.1) 374 (3.7) 36 (12.0)

2 360 (10.6) 65 (10.2) 1174 (11.5) 32 (10.7)

3 898 (26.4) 175 (27.3) 3718 (36.6) 80 (26.7)

4 374 (11.0) 71 (11.1) 4703 (46.3) 122 (40.7)
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