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Generation of surrogate cells with stable functional identities is crucial for developing cell-

based therapies. Efforts to produce insulin-secreting replacement cells to treat diabetes

require reliable tools to assess islet cellular identity. Here, we conduct a thorough single-cell

transcriptomics meta-analysis to identify robustly expressed markers used to build genesets

describing the identity of human α-, β-, γ- and δ-cells. These genesets define islet cellular

identities better than previously published genesets. We show their efficacy to outline cell

identity changes and unravel some of their underlying genetic mechanisms, whether during

embryonic pancreas development or in experimental setups aiming at developing glucose-

responsive insulin-secreting cells, such as pluripotent stem-cell differentiation or in adult islet

cell reprogramming protocols. These islet cell type-specific genesets represent valuable tools

that accurately benchmark gain and loss in islet cell identity traits.
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B lood glucose homoeostasis is regulated mainly by the
pancreatic “islets of Langerhans”, which are formed by
several types of endocrine cells. The bulk of these pan-

creatic islets is made up of α- and β-cells, defined by the release of
glucagon and insulin, respectively, upon blood glucose level
variations. Three other islet cell types, namely γ-, δ- and ε-cells,
secrete the hormones pancreatic polypeptide, somatostatin and
ghrelin, respectively, which contribute to the regulation of α- and
β-cell secretory activities.

The ontogeny of the different islet cell types has been largely
studied in mice, where endocrine progenitors located in the
ductal epithelium start expressing either ARX or PAX4, pushing
their specification towards α- or β-cell fates1. Cell type-specific
transcription factors then guide cells towards maturation. For α-
cells, these include MAFB, IRX2 and BRN4, while PDX1, MAFA
and NKX6.1 are key factors for β-cell maturation. Other tran-
scription factors, like RFX6, PAX6, FOXO1, FOXA1, FOXA2 and
NEUROD1 seem to play a more ubiquitous role during islet cell
type specification2. In adult cells, cellular identity is largely
defined by cell type-specific transcriptional networks regulating
cellular functions. For β-cells, the transcriptional landscape
associated with glucose sensing, calcium and incretin signalling,
insulin processing and secretion, is relatively well defined3. Much
less is known about the functional and transcriptional regulation
in the other cell types, particularly in human islets.

The development of single-cell RNA sequencing (scRNA-
seq)4,5, a technique allowing the profiling of the mRNA content
of individual cells from heterogeneous tissues, has offered an
opportunity to better characterize the cellular identities of the
different human pancreatic islet cell types. Single-cell sequencing
has progressively become more standardized6,7, but during the
process, there have been a high diversity in cell capture techni-
ques, library preparations, sequencing protocols and data pro-
cessing tools. Thus, despite expecting relatively similar results,
significant differences were observed, making side-by-side com-
parisons complex. For example, from the 171 genes that were
detected to be upregulated in T2DM β-cells, only one was found
in more than one dataset8. Equally, when comparing β-cell het-
erogeneity results, only six out of 43 genes were shared by at least
three out of five datasets, and none were shared by all9. This lack
of overlap complicates the robust definition of islet cellular
identities.

To get a more comprehensive view of what defines cell type
identities, geneset analysis tools have proven to be highly
valuable10–12. For example, by assessing sets of genes, informa-
tion can be gained on activated or repressed signalling pathways
involved in biological processes and/or molecular functions13.
Unfortunately, specific genesets defining the identity of the dif-
ferent islet cell types are rare or do not exist. The current ones do
not necessarily reflect the identity of the mature functional cells as
they often include developmental or imprecise markers. For
example, the widely used Pancreas Beta Cells geneset from the
Hallmark collection14 contains non-β genes like GCG, MAFB,
PCSK2 and SST, or genes that are strongly regulated during
endocrine specification, like NEUROG3 and NKX2-2.

Here, we have performed a meta-analysis aimed at defining the
transcriptomic identity profiles for the different islet cell types
through a common standardized pipeline. Previous reviews had
focused on overlap between datasets in the context of
type 2 diabetes and β cell heterogeneity8,9. After validating their
efficacy by determining the optimal trade-off between geneset
sensitivity and specificity, we use these genesets to assess identity
plasticity in a range of different settings, from (trans)differ-
entiation to the impact of the disease. The genesets we
generate here can be downloaded from the Molecular Signatures
Database (https://www.gsea-msigdb.org/gsea/msigdb), or directly

applied in our web-app scPancMeta (https://rapps.hirnetwork.
org/scPancMeta).

Results
In silico purification of human mono-hormonal α-, β-, γ- and
δ-cells. We conducted a meta-analysis studying in silico purified
populations of singlet mono-hormonal α-, β-, γ, and δ-cells from
seven published human islet single-cell transcriptomic datasets
(54 donors in total; Tables S1, S2)15–21, with the goal to generate
cell type-specific genesets. These key identity genes should con-
sistently and robustly be expressed across the different indepen-
dent datasets for each islet cell type. Raw sequencing reads from
seven datasets were first downloaded and mapped against the
GRCh38 transcriptome using Kallisto22. Individual datasets were
independently processed using Seurat23. Cell types were inferred
based primarily on unsupervised clustering, after which correc-
tions were made based on hormone expression (see Methods;
Fig. S1A; Table S3).

First, we aimed at identifying and excluding cells that
represent doublets as they may impact on the identification of
relevant islet cell genes. We decided to use two independent
predictive tools (Scrublet and DoubletFinder) to maximize the
probability of identifying doublets24,25. The amount of overlap
between the tools, and the localization of doublets was highly
variable between datasets (Fig. S1B; Table S3). This variability
has been described previously in the context of yet another
doublet removal tool (DoubletDecon)26, and justifies the use of
more than one tool to be more stringent in the removal of
doublets. Regardless, all cells identified as putative doublets by
either tool were removed in order to minimize downstream
interference.

Next, we explored overall islet composition based on final cell
type allocation (Fig. S1C). We found that α-cells were the most
abundant cell type, constituting 58.9% of all NDM islet cells. The
β-, γ- and δ-cells only comprised 30.4%, 4.4% and 6.1% of the
NDM islet cells, respectively. Compared to what was found in situ
by immunofluorescence and CyTOF27–29, the β/α-ratio was
generally lower in scRNA-seq studies15–21. This β/α-cell ratio is
known to be impacted by islet isolation30, and this may be even
more so by dispersing islets into single cells. Similar composi-
tional results were observed in T2DM donors (Fig. S1C). We then
aimed to identify bi-hormonal cells that were still detected after
doublet removal. As previously reported31, the abundance of bi-
hormonal cells seemed slightly elevated in T2D donors, but in our
analysis, this difference was not significant (Fig. S1D).

Despite limited numbers, we tried to resolve the transcriptomic
signature of GCG/INS bi-hormonal cells in the human pancreas.
We found GCG/INS bi-hormonal cells in both α- and β-cell
clusters and calculated differentially expressed genes compared to
their mono-hormonal counterparts (Fig. S2A). Interestingly, bi-
hormonal cells only had a small set of genes upregulated
compared to mono-hormonal cells, and none downregulated,
thus reflecting their hybrid phenotype, which retains the genes
linked to the mono-hormonal cell type while acquiring additional
identity genes from the alternative cell type. Bi-hormonal cells in
the α-cluster upregulated key genes related to β-cell identities, like
INS, IAPP, DLK1 and RBP4. Inversely, bi-hormonal cells in the β-
cell cluster upregulate α-cell-related genes like GCG, ARX, FEV
and TM4SF4 (Fig. S2A). Expression patterns for these genes were
comparable between different datasets (Fig. S2B).

After these analyses, all cells originating from T2D donors,
and all bi-/poly-hormonal cells, were excluded from downstream
analyses, which were thus performed on pure populations of
singlet mono-hormonal α-, β-, γ- and δ-cells from non-diabetic
donors.
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Defining identity genes for the human pancreatic α-, β-, γ- and
δ-cells. Next, in order to compare each islet cell type directly with
the other cell types, we made pairwise comparisons. For example,
we compared β-cells first to α-, then to γ- and δ-cells in all seven
datasets (Fig. 1A, in red, magenta and blue). The differentially
expressed genes we found compared to specific cell types were then
integrated, and identified genes were organized based on the
number of analyses they were found in, and the average log fold

change and adjusted p-value between all analyses. Then, we com-
bined all pairwise analyses together to elucidate the overall tran-
scriptomic profile of each cell type (Fig. 1A, in black). For this, we
integrated all analyses (vs. three different cell types in seven data-
sets; 21 analyses in total), and organized the results in the same
way as described above. This was done similarly for each of
the major islet cell types (α-, β-, γ- and δ-cells). (Fig. 1B, Fig. S3A,
and Supplementary data 1–4). Of note, we found that all
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datasets do contribute to the composed identity genesets, with a
certain bias that indicated that some datasets (Muraro, Segerstolpe)
typically contributed more than the others (Fig. S3B). We do
not observe a confounding bias based on the technique used to
generate the datasets17–19,21. Also, we do not observe obvious
contradictory results, where genes are differentially expressed in
different directions in different datasets (Supplementary data 1–4).

In order to test the validity of the gene list content obtained from
our meta-analysis, we first reviewed the literature (Supplementary
table 4) to assess the extent of genes already assigned to a given cell
type. We found many undisputable markers for α- and β-cells
amongst the 20 top regulated genes (14 and 16 genes with specificity
and/or a known function in α- and β-cells, respectively; Supplemen-
tary table 4). For example,G6PC2,ADCYAP1 andHADH in β-cells all
have been demonstrated to be involved in maintaining glycemia32–34.
Amongst the top regulated transcription factors, key identity
regulators PDX1, NKX6-1 and MAFA are highly regulated, while
ENTPD3 is one of the top regulated cell surface markers32. In α-cells,
TTR35 and SLC7A236 are amongst the top regulated genes. IRX233 is
recognized as the most strongly regulated transcription factor, while
TM4SF418 and FAP37 are the most highly regulated cell surface
markers (Fig. 1C, Fig. S3A). The γ- and δ-cells were much more
poorly characterized, but we did find here a number of identity
markers for each of these cell types as well. For γ-cells, these included
the transcription factors ETV138 PAX639 and ARX40, where HHEX41,
ETV138 and ISL142 were found in δ-cells. Other interesting top
markers for γ-cells included FXYD2 43and TM4SF418, and for δ-cells
CD944, LEPR45 and FFAR446 (Fig. 1C, Fig. S3A).

Next, to further strengthen the validity of the identity
genes we here describe, we aimed to validate an extra number of
genes using single-molecule fluorescent in situ hybridization
(smFISH). This technique allowed us to multiplex measure
relative gene expression with spatial resolution in human
formalin-fixed, paraffin-embedded pancreas sections. We thus
confirmed that IAPP and GSN have higher expression in β-
than α-cells, while TTR, GLS, SPINT2 and SERPINA1 were
more highly expressed in α- than β-cells (Fig. S4A–C). Finally,
we found that ARX, a well-known α-cell marker, was found to
be equally well regulated in γ-cells as in α-cells at mRNA levels
(Fig. S3B, Supplementary data 1 and 3). We validated the
presence of ARX in both adult α- and γ-cells of the human
pancreas at the protein level (Fig. S4D).

Generation of a single-cell transcriptomics dataset enriched for
γ-, δ- and ε-cells. We next aimed to better define the less
common cell types in the pancreatic islets in more detail. To
that effect, we generated a dataset containing single-cell tran-
scriptome profiles of human pancreatic islets that were enriched
for the γ-, δ- and ε-cell fractions. To do this, we optimized our
previously reported cell sorting protocol (Fig. 2A)47. In short,
dissociated human pancreatic islet cells were antibody-labelled,
as described previously44,48. The enriched γ-, δ- and ε-cell

populations were collected by flow cytometry (FACS) to gen-
erate single-cell libraries.

The dataset was generated using 10× Genomics single-cell gene
expression kit and processed using the analysis pipeline described
above. It contained over 15,000 cells after quality control filtering
and doublet removal. Cell types were inferred as previously,
primarily based on unsupervised clustering. In total, we defined
2492 cells (16.1%) as α-cells, 2767 cells (17.9%) as β-cells, 4082
cells (26.4%) as γ-cells, 2315 cells (14.9%) as δ-cells and 666 cells
(4.3%) as ε-cells. We also found 401 bi-hormonal cells after
doublet removal (2.6%), most of which co-expressed INS and SST.
The distribution between islet cell types in our dataset was thus
much more uniform than in previously generated datasets
(Fig. 2B) confirming enrichment of the γ-, δ- and ε-cell fractions.
The remaining 2862 cells (18.5%) represent non-endocrine types
such as ductal, acinar, stellate and immune cells (Fig. 2C;
Supplementary table 5). Cells originating from different donors
clustered based on cell type, not on donor identity (Fig. S5A). As
median values, cells expressed 10,557 UMIs and 2958 genes
(Fig. S5B). Cell type-specific clusters only expressed one single
hormone, matching their identity (Fig. S5C). As a control, we
integrated our γδε-enriched dataset with the Baron and Muraro
datasets, which were also UMI based, to validate that the cells we
obtained represented the same populations as those obtained
during unbiased cell selection (Fig. S5D).

We calculated the differential gene expression between
different islet cell types to determine cell type-specific identity
genes. We found TTR, GPX3, SLC7A2 and FAP in α-cells, which
were also in the above top 10 α-cell identity gene list, besides
well-known transcription factors like IRX2 and MAFB
(Figs. 1C, 2D, Supplementary data 1 and 5). Regarding β-cells,
we found top markers like ADCYAP1 and HADH, besides well-
known transcription factors like PDX1, MAFA and NKX6-1
(Figs. 1B–C, 2D, Supplementary data 2 and 5). In γ-cells, top
markers like STMN2 and SERTM1 were retrieved, just like
previously validated transcription factors like PAX6 and ETV1,
while δ-cells expressed top markers like RGS2, SLC38A1 and
SEC11C, together with transcription factor HHEX (Figs. 1C, 2D,
Supplementary data 3, 4 and 5). Previously described ε-cell-
specific genes, like SPINK1, APOH, ASCL1 and FRZB49, were
expressed in our dataset as well. Interestingly, we also found α-
and γ-cell-related markers, such as F10 and ETV1, to be strongly
expressed in ε-cells. Particularly, the expression of ARX, a well-
established key regulator of α-cell identity50,51, was found to be
more highly expressed in both γ- and ε-cells, and we detected
it on the protein level in γ-cells as well (Fig. 2D; Fig. S4D;
Supplementary data 5).

In summary, we have generated a single-cell transcriptome
dataset of human pancreatic islets containing thousands of α-, β-,
γ- and δ-cells, and hundreds of ε-cells, a dataset that thus
provides an unusual characterization of the less common human
islet cell types. This dataset will be referred to as the γδε-enriched
dataset from here on.

Fig. 1 Generation of islet cell type-specific genesets by intersecting differentially expressed genes from independent single-cell transcriptomics
datasets. A Differential expression was calculated in seven independent datasets in a pair-wise manner between all cell types (α vs. β, α vs. γ, α vs. δ, β vs.
γ, β vs. δ, γ vs. δ) using either the negbinom test on UMI based data (Baron, Muraro) or the MAST test. Then, data from all seven datasets were integrated
for a direct comparison between cell types, and in a combined manner to elucidate general cell type-specific identity genes. B Top differentially expressed
genes, top transcription factors and top genes that encode cell-surface proteins that characterize β-cells, in direct comparisons to α-, γ- and δ-cells (in red,
magenta and blue, respectively), and in a combined manner to define general β-cell identity genes (in black). Genes were ordered first on the number of
analyses in which they were found to be differentially expressed, then based on a rank score that comprised both the Bonferroni corrected p-value and the
log fold-change. Darker colours indicate a higher number of analyses, a higher log fold-change or a more significant adjusted p-value. C An overview of the
top 10 identity markers, top 10 transcription factors and top 10 cell surface encoding genes, per cell type. α-cell identity genes in red, β-cell identity genes in
green, γ-cell identity genes in magenta and δ-cell identity genes in blue. Source data are provided in the supplemental tables and as a source data file.
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Generation of optimal genesets that accurately define islet cell
type-specific identity. We next aimed to define a set of cell type-
specific genesets, based on the identity genes generated by inte-
grating differential expression from the seven published datasets.
For each islet cell type, differential expression was analysed
against the three other cell types in a pairwise manner, resulting
in a total of 21 integrated analyses, as shown in Fig. 1 (black
heatmaps). Of note, genes that were found in more analyses were
considered to be more predictive of cellular identity.

For example, three genes were consistently found in all of the
21 β-cell analyses: INS, IAPP and G6PC2. While their combina-
tion would make a very specific β-cell identity geneset, the

sensitivity of such a geneset would be low as many other genes
describing β-cell identity are missing. Conversely, 1872 genes
would be found as β-cell identity genes if the selection criteria
were defined as a “marker present in at least one” of the 21
analyses. Such a geneset would be very sensitive, as all genes
describing β-cell identity would likely be included, but with very
low specificity, for it would also contain many exotic genes with
low predictive value for β-cell identity.

Here, we aimed at defining the optimal trade-off between
specificity and sensitivity, to produce genesets with as many
highly predictive identity genes as possible, while removing as
many genes with low predictive value as possible. To do this, we
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Fig. 2 Generation and validation of a single-cell transcriptomics dataset enriched for γ-, δ- and ε-cells. A Strategy for the enrichment of human γ-, δ- and
ε-cells. Dissociated human islets were labelled with cell-surface antibodies and the different fractions were processed and collected as described. Cells
from gate 2 were complemented with cells from gate 1 to 15,000 cells (γ/ε fraction). The δ-fraction of 15,000 cells was collected in gate 3. B Compared to
the unsupervised islet cell collection used to produce non-enriched datasets, our dataset contains smaller fractions of α- and β-cells but larger fractions of
γ-, δ- and ε-cells. C UMAP dimensional reduction representation of the final dataset. Cells are colour-coded based on their identity. Populations of α-, β-, γ-
and δ- cells each contain thousands of cells, while the ε-cell fraction contains hundreds of cells. D Heatmap showing a representative selection of manually
selected identity markers for each of the cell types. Low expression levels are marked in red, high expression in blue. The colour bar above indicates the
specific populations: α-cells (red), β-cells (green), γ-cells (magenta), δ-cells (blue) and ε-cells (orange). Source data are provided in the supplemental
tables and as a source data file.
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Fig. 3 Generation of islet cell type-specific identity genesets. A Methodology to determine the optimal genesets from our lists of identity genes.
First, 21 incrementally smaller genesets were generated per cell type, including genes with an increasingly higher number of integrated analyses.
To define the best identity geneset, we used GSEA to generate normalized enrichment scores (NES; proxy for geneset sensitivity) and gene retrieval
rates (GRR; proxy for geneset specificity) based on differential expression in our γδε-dataset. The optimal geneset was defined as the geneset with the
highest combined NES/GRR metrics. B Geneset sizes for each cell type, regarding every possible intersect level. Genesets were filtered to contain
between 40 and 500 genes (darker colours). Genesets outside this range (lighter colours) were not considered for downstream evaluation. C Mean
sensitivity score (normalized enrichment; n= 3 independent experiments) for each geneset for each cell type. D Mean specificity score (gene retrieval
rate; n= 3 independent experiments) for each geneset for each cell type. E Multiplication of NES and GRR scores (n= 3 independent experiments)
for each geneset for each cell type. Per cell type, the highest measured value is indicated by a dotted line, and the appropriate number of integrated
analyses is indicated on the x-axis. Genesets were defined to include all genes with at least this amount of integrated analyses, resulting in
genesets sizes as indicated in the top left corner. F Determination of final geneset sizes by applying the determined # integrated analyses on the
lists of ID genes generated in Fig. 1. For each cell type, the determined cut-off is indicted as a thick black line, numbers indicated with a # indicate
the cut-off value determined in panel (E). α-, β-, γ- and δ-cell genesets in red, green, magenta and blue, respectively. Source data are provided as a
source data file.
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needed to determine what would be the minimal number of
integrated analyses a gene should be found in, in order to be
included in the geneset (Fig. 3A, left part). To that effect, we made
use of GeneSet Enrichment Analysis (GSEA)10. Output from
GSEA includes the Normalized Enrichment Score, which
represents the correlation between the geneset and the observed
phenotype (NES; proxy for sensitivity), and the Gene Retrieval
Rate, which represents the fraction of observed genes from a
geneset during analysis (GRR; proxy for specificity). Thus, the
number of intersected analyses where the relation between NES
and GRR is the highest would represent the ideal geneset for each
of the different islet cell types (Fig. 3A, right panel).

For each cell type, the number of genes per geneset was
inversely correlated with the number of integrated analyses they
were found in. In general terms, α- and β-cell identity genesets
contained more genes at any given intersect level than γ- and δ-
cell identity genesets (Fig. 3B). For downstream analyses, we
excluded any geneset that contained more than 500 or less than
40 genes, due to default thresholding settings during GSEA
(Fig. 3B; see Methods). For the remaining genesets, we calculated
both NES and GRR in each pairwise comparison, and used the
mean value as a measure. While the NES (sensitivity) tended to
decline with the number of intersect levels (Fig. 3C), we observed
a positive correlation between the GRR and an increase in the
number of integrated analyses, indicating that the genesets were
indeed becoming more specific for each cell-type (Fig. 3D). The
optimal trade-off between specificity and sensitivity was deter-
mined as the highest value of the multiplication between the NES
and GRR (Fig. 3E).

This resulted in four genesets, one for each cell type, that
consisted of 40, 127, 45 and 75 genes for α-, β-, γ- and δ-cells,
respectively (Fig. S6A). Of these genes, some were predictive of
more than one cell type. Most shared genes (10) were found
between β-and δ-cells: NPTX2, HADH, PCSK1, TIMP2, SORL1,
RBP4, CADM1, DHRS2, SCD5 and CASR. δ- and γ- cells next
shared 7 genes: ETV1, ABCC9, AQP3, CALB1, DPYSL3, CPB1 and
AKAP12. α- and γ- cells shared 3 genes (TM4SF4, TMEM176B and
GC), α- and δ-cells 2 genes (PAPPA2 and GPX3), β- and γ-cells 1
gene (FXYD2), and α- and β-cells also share 1 gene (PEMT). The
remaining genes (34, 115, 34 and 56 genes for α-, β-, γ- and δ-cells,
respectively) were only predictive for a single cell type (Fig. S6B).

Islet cell type-specific genesets perform better on combined
sensitivity and specificity than previously published cell type-
specific lists of identity genes. In order to ascertain if our gen-
esets represent a significant gain over previously published lists,
we decided to perform an in-depth comparison with previously
published lists of identity genes from the original manuscripts
(Lawlor, Muraro, Segerstolpe and Xin datasets)17–19,21. For β-
cells, we also included two genesets from the Hallmark14 and
Reactome12 collections that have been commonly used to evaluate
β-cell identity. For evaluation purposes, we analyzed all these
genesets by GSEA using two more recent datasets52,53 besides our
γδε-enriched dataset. This way, each geneset could be assessed
nine times (in three datasets, in a pairwise manner against three
other cell types).

Between these different genesets, each originating from specific
datasets, thus unique in their composition, we still found general
trends indicating that larger genesets were both more sensitive and
less specific (Fig S7). We found that our proposed genesets always
performed equally well or better than genesets from the original
datasets, both regarding the normalized enrichment (sensitivity)
and gene retrieval (specificity; Fig. 4). More importantly, our
genesets are the only genesets that combine high sensitivity and
specificity, while the previous from the Muraro and Segerstolpe

datasets suffer on specificity and those from the Lawlor and Xin
datasets suffer on sensitivity (Fig. 4C).

Equally important, our genesets never failed GSEA analyses
under control conditions, unlike the γ- and δ-cell identity
genesets from the Lawlor and Xin datasets, which failed in all
conditions (Fig. 4D). For β-cells, we also assessed how well our β-
cell identity genesets performed compared to well-known
genesets from the Hallmark (Pancreas beta cells) and Reactome
(Regulation of gene expression in beta cells) databases. The
Hallmark geneset failed in five out of nine conditions, and
generated lower NES and GRR scores for the conditions that did
work, while the Reactome genesets failed in all conditions. These
genesets thus seem poorly appropriate choices to evaluate the
transcriptomic signature of pancreatic β-cells.

Islet cell type-specific genesets help evaluate and characterize
dynamic changes in islet cell identity during differentiation,
conversion and in disease. Substantial efforts are currently made
by many laboratories to generate functional β-like cells for future
diabetes therapies. We took advantage of the genesets obtained
from our meta-analysis to evaluate the progression in identity
toward the α- and β-cell phenotype in ES/iPS differentiation and
adult islet cell reprogramming protocols. Likewise, we applied our
geneset to evaluate identity changes caused by type 2 diabetes.

Before assessing iPS/ES differentiation, we first tested whether
our genesets were suitable to evaluate natural α- and β-cell
differentiation during pancreas development, using a published
scRNA-seq dataset enriched for mouse pancreatic cells progres-
sing towards an endocrine cell fate54. For this purpose, genes in
the human genesets were converted to their mouse orthologs
(using Ensembl reference genome GRCm38 build 100; Supple-
mentary data 7). Some genes were translated into more than one
mouse gene (like Ins1 and Ins2 for the human INS gene), while
others did not translate in a mouse orthologue (like the INS-IGF2
read-through in beta cells, and C22orf42 in delta cells). The
resulting mouse genesets contain 43, 126, 45 and 75 genes for α-,
β-, γ- and δ-cells, respectively, compared to 40, 127, 45 and 75
genes for α-, β-, γ- and δ-cells in the human genesets
(Supplementary data 6 and 7).

We then determined how well these mouse orthologous genesets
function to evaluate dynamic processes such as α- and β-cell
differentiation. After dataset downloading, we calculated the
differentially expressed genes between the different cell types as
defined by clustering in the original manuscript, and used the rank
files generated from these analyses as input for GSEA. No changes in
islet cell identity were found for cells progressing from the ductal
epithelium towards Neurog3 expression, nor from Neurog3 expres-
sing endocrine precursors towards Fev expressing cells (Fig. 5A).
After this, cells differentiating towards the α-cell phenotype had
enrichment only in α-cell identity genes. Inversely, cells progressing
towards the β-cell fate gained β-cell identity genes exclusively
(Fig. 5A). We also evaluated how well the genesets of the original
manuscripts were able to predict these identity changes. Not all of
these were able to detect enrichment for endocrine progenitors
developing towards either α- or β-cells, and the ones that did detect it
yielded lower normalized enrichment scores than our genesets
(Supplementary table 6). In conclusion, our genesets display both
good sensitivity and specificity in this context as well.

Next, we investigated how well ES/iPS protocols mimic the
in vivo process of α- and β-cell differentiation, and if our genesets
can help evaluating differentiation protocols. To this end, we
downloaded recently published single-cell transcriptomic datasets
in which the cells in different culture stages were investigated
from stage 3 to stage 655. Transcriptomics data was published for
two culture protocols to assess β-cell maturation (protocol x1 and

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29588-8 ARTICLE

NATURE COMMUNICATIONS | (2022)13:2020 | https://doi.org/10.1038/s41467-022-29588-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


x2, both single-cell RNA-seq). The core differences between these
protocols were the replacement of KGF in protocol x1 with
LDN193189 during culture stages 3 and 4, and the addition of RA
during stage 4 in protocol x2, which ultimately resulted in a larger
fraction of α-cells in the x2 protocol compared to x155. As these
culture protocols mimic embryonic development, we aimed at
comparing identity changes in a similar way as in the pancreas
development dataset. To recapitulate this, we linked PDX1
expressing cells at stage 3 with the ductal epithelium during
embryonic development, then calculated progression towards first
the NEUROG3, then the FEV expressing populations in stage 4.
After that, we assumed the bifurcation as we see it during
pancreas development, and calculated for α-cell differentiation

the progression towards the SC-α-cells in stages 5 and 6, while for
β-cell differentiation we calculated progression towards the SC-β-
cells in stages 5 and 6 (Fig. 5B, S8A). We found that in both
protocols, α-cell identity was increased in cells progressing from
stage 4 FEV+ cells towards SC alpha cells in stage 5, and again in
SC alpha cells progressing from stage 5 to stage 6. Also, we found
an increase in β-cell identity for cells progressing from stage 4
FEV+ to stage 5 SC beta cells, and for SC beta cells progressing
from stage 5 to stage 6, in both protocols. Interestingly, the
enrichment for α-cell identity was more pronounced in protocol x2,
while the enrichment for β-cell identity was more pronounced in
protocol x1. Thus, the NES using our genesets correlate with the
fact that more α-cells were obtained in the x2 protocol as reported

A

C

B

D

Fig. 4 Evaluation of identity genesets reveals superior on- and off-target scoring compared to previously published ID lists. A, B Box plots of
normalized enrichment (sensitivity; A) and Gene Retrieval Rate (specificity; B) for our islet cell type-specific ID genesets compared to previously published
ID lists, using three independent datasets for evaluation (n= 9 per condition). Box plots are colour-coded per cell type (α-, β-, γ- and δ-cells in red, green,
magenta and blue, respectively), and distribution follows standard boxplot formatting as min-Q1-median-Q3-max, with individual dots marking outliers.
Darker colours indicate our ID genesets. C Scatterplot indicating the relation between NES/sensitivity and GRR/specificity for the different ID genesets.
Larger genesets from the Muraro and Segerstolpe datasets score well on sensitivity at the expense of GRR/specificity. The smaller genesets from the
Lawlor and Xin datasets are more specific, at the expense of sensitivity. In our ID genesets, we have managed to optimize the trade-off between sensitivity
and specificity. Dots are colour coded per cell type (α-cells in red, β-cells in green, γ-cells in magenta, δ-cells in blue) and shaped per dataset. D statistics
for on-target, off-target and evaluation metric scoring. Comparisons were made using Wilcoxon signed-rank test; = indicates no significant difference
compared to our ID genesets, ↓ indicates a significantly lower score compared to our ID genesets, ‘failed’ indicates all analyses for this geneset failed.
NES normalized enrichment score, GRR gene retrieval rate, FAIL number of geneset analyses that did not produce output. Source data are provided as a
source data file.
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in the original manuscript, and suggests they become more α-like.
In contrast, the x1 protocol yielded relatively more β-cells, which we
found to have a more pronounced β-like phenotype as well. Also,
we found that γ- and δ-cell identities were not strongly affected in
either protocol. We only observed a loss of γ-cell identity for cells
progressing towards stage 5 SC β-cells in the x1 protocol (Fig. S8A).
Looking at leading-edge genes (the genes detected by GSEA to be
responsible for the correlation between the geneset and the observed
identity changes; Fig. S8B–F), we observe several key differences
between protocols x1 and x2: there seem to be more identity genes
regulated in the x1 protocol compared to x2, and particularly
striking is the observation that from stage 5 to stage 6 SC β-cells,
key markers like INS and PCSK1 are only regulated in the x1
protocol (Fig. 5C, D).

To further unravel which mechanisms play a role in the
differentiation of ES/iPS cells into β-like cells, we investigated
which genes in our identity genesets were regulated during the
final stages of the differentiation protocol (from FEV+
precursors to first stage 5, then stage 6 SC-β cells), in both
the x1 and x2 protocol. For this, we distinguished three sets of

regulated genes: (1) the leading-edge genes as indicated by
GSEA, which support the differentiation toward the desired
phenotype, (2) downregulated genes, which belong to the
geneset of the objective cell-type, but are thus associated with a
less differentiated, or incomplete phenotype, and (3) genes
belonging to genesets of the other islet cell types in the leading-
edge region of the analysis, which may indicate the acquisition
of traits of alternative cell types in the differentiation protocol
(Fig S8B). Regulated genes from categories 2 and 3 may indicate
an incorrect or aberrant modulation of identity genes for the
acquisition of the desired phenotype and thus can be used as
quality markers to optimize the cells during final differentiation
protocol steps.

Between both protocols, many key identity genes were
correctly expressed within the different stages of β-cell matura-
tion, like INS, PCSK1, IGF2, ABCC8, SURF4, PDX1, MAFB and
HADH. On the other hand, cells expressed a few genes associated
to other islet cell types (mostly with α-cells, in both protocols),
like GCG, TTR, LOXL4, SLC7A2, TMEM176B and ISL1. Yet
specific differences between the protocols could also be found.
Beyond the leading-edge genes mentioned earlier, we found PAX6
misexpression in the x1 protocol, whereas the x2 protocol
misexpressed inhibitor of differentiation ID1. We also recognized
the unexpected downregulation of UCHL1, DLK1 and LDHB in
the x1 protocol, while GNAS, ALCAM and PLCXD3 were
downregulated in the x2 protocol. In conclusion, we feel that
the inclusion in our carefully annotated genesets of genes that are
not known in the context of β-cell identity would warrant a closer
inspection for their roles (Fig. S8C–F).

Next, we investigated if our genesets were also suitable to
quantify cell type interconversion in adult islet cells. For that
purpose, we downloaded bulk RNA sequencing data describing
the conversion of adult human α-cells47. The original manuscript
described a gain in β-cell identity by aggregating α-cells into 3D
pseudo-islets (αGFP). This β-like signature was further enforced
by overexpressing transcription factors Pdx1 and Mafa (αPM),
resulting in glucose-sensing insulin-secreting pseudo-islets. In
line with the original findings, β-cell identity was enforced after
aggregating sorted α-cells and even more pronounced under αPM
conditions (Fig. S9A). Negative enrichment was not observed
using the α-ID geneset, which supports the initial conclusion that
converted human α-cells retain a strong α-cell identity while
acquiring the ability of glucose-dependent insulin secretion. The
hybrid phenotype of these αPM cells can be observed by
comparing them with native sorted β-cells. Here, β-cells have a
strongly enriched β-cell identity, while α-cell identity is negatively
impacted (Fig. S9A). By recapitulating the findings of the original
manuscript, we validate that these genesets are well suited to
evaluate adult islet cell type plasticity.

Lastly, we assessed if our ID genesets could reveal changes in α-
and β-cell identity in disease conditions by comparing cells from
NDM and T2DM donors. To this effect, we generated an
integrated dataset with α- and β-cells from four of the original
datasets that comprise both NDM and T2DM donors17,19–21.
After data integration, we found that cells clustered based on cell
type, not diabetes status or dataset (Fig. S9B), suggesting that the
impact of T2DM does not strongly affect cellular identity. We
also observed that there were many more differentially expressed
genes between α- and β-cells in both ND and T2D conditions,
compared to differentially expressed genes between ND and T2D
cells in both α- and β-cells (Fig. S9C). When comparing NDM α-
or β-cells to their T2DM counterparts, we found none of the ID
genesets regulated in either cell type (Fig. S9D). This suggests that
functional defects of α- and β-cells in T2DM do not seem to
impact significantly on the expression of specific identity markers
that comprise our genesets.

α-ID
β-ID
γ-ID
δ-ID

�
�

�
�

Fig. 5 Assessing plasticity in α- and β-cell identity during embryonic
development, pluripotent cell differentiation, cell type interconversion
and in diabetes. Changes in α-, β-, γ- and δ-cell identity were measured
between states during murine embryonic pancreas development (A) and in
different human ES/iPS cell differentiation protocols (x1 and x2; B). Arrows
indicate progression. Values in red, green, magenta and blue indicate
normalized enrichment scores from GSEA for α-ID, β-ID, γ-ID and δ-ID
genesets, where positive values indicate a gain in identity and negative
values indicate a loss of identity; scores indicated by – are not significant
(FDR higher than 0.05). C, D Venn diagrams indicating differences in
leading-edge genes (genes responsible for the correlation between a
geneset and the observed increase in β-cell identity) between the x1 and x2
protocols. Differences in leading-edge genes from stage 4 FEV expressing
cells to stage 5 SC-β cells (C) and from stage 5 to stage 6 SC-β cells (D).
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In summary, our α-ID and β-ID genesets accurately bench-
mark identity changes toward the α- and β-cell fates, during both
embryonic development and in vitro differentiation. Likewise,
they are suited to capture identity changes in adult islet cells.

Discussion
Here we present a meta-analysis of seven independent scRNA-seq
datasets15–21 that were used to generate robust lists of identity
genes for the different cell types constituting human pancreatic
islets: α-, β-, γ- and δ-cells. From these lists of identity genes, we
were able to generate highly sensitive and specific genesets that
accurately define the cellular identity of the different pancreatic
islet cell types. These final genesets represent additional tools
that will help evaluating current in vitro cell differentiation pro-
tocols as well as adult islet cell type interconversion processes,
amongst others.

In our primary analysis, we provide a list of genes that can be
marked as identity genes for all of the islet cell types. The con-
fidence in these genes is increased with a higher number of
integrated analyses a gene is found in. This confidence was fur-
ther strengthened by a deep literature review on the top regulated
genes, as well as orthologous validation of specific markers for α-
and β-cells. This still leaves room for interpretation of how
important any given gene is in the context of cellular identity, but
also sketches some interesting nuances for specific genes. For
example, ARX, a critical transcription factor in the context of α-
cell identity, was found to be strongly regulated in α-cells com-
pared to β- and δ-cells, but not against γ-cells, which is in line
with developmental findings where α- and γ-cells both develop
from Arx-expressing endocrine progenitors51. Equally interesting,
we were able to define cell surface markers that were specifically
regulated between α- and β-cells, like serine peptidase inhibitor
SERPINA1 in α-cells and serine peptidase PRSS23 in β-cells. The
combination of serine peptidase and their respective inhibitors
are known to play a role in ECM degradation56 and may be
involved in paracrine signalling between α- and β-cells57.

In order to generate genesets accurately defining the different
islet cell types, we tried to find the delicate balance between
including as many meaningful genes as possible to provide robust
enrichment scores, while keeping the genesets as concise as
possible to prevent the inclusion of the more exotic, poorly pre-
dictive genes. To our knowledge, this is the first attempt to
develop a methodology to make a quantifiable distinction
between different genesets. As proxy for geneset sensitivity, we
propose to use the normalized enrichment score, a standard
output of GSEA, that explains the correlation between a geneset
and an observed phenotype. To measure geneset specificity,
instead, we propose to use the gene retrieval rate from GSEA
analysis. This GRR value represents the proportion of genes in a
geneset that were retrieved during analysis, and thus allows us to
specify how many genes in a geneset can be considered to be
meaningful. Using this rationale, and in comparison with the
genesets from the original manuscripts, we succeeded in gen-
erating genesets with optimal sensitivity/specificity balance. We
also consider, in this light, the poor results observed using the
widely used and appreciated Hallmark (Pancreas beta cells)
geneset, where inclusion of aberrant genes like GCG, SST and
NEUROG3 can only interfere with correct recognition of the β-
cell phenotype, and scored very poorly in our hands.

Geneset analyses represent a valuable approach to assess the
cell type identities in various biological systems. We thus applied
our genesets to evaluate processes like reprogramming through
cell type interconversion, in vivo and in vitro differentiation
conditions and the impact of disease (type 2 diabetes) on cellular
identity. We assessed how α- and β-cell identities were affected in

these conditions by retrieving transcriptomic data from recently
published studies. Importantly, our human islet cell genesets can
be used in a broad variety of conditions: They perform equally
well in both single-cell and bulk RNA sequencing data, but also
on mouse data using ortholog genes for the genesets. Geneset
analyses confirmed previous results of our laboratory showing
that human adult α-cells ectopically expressing Pdx1 and MafA
exhibit a significant gain in β-cell identity while preserving a
strong α-cell signature47,58,59.

Finally, our genesets are effective tools to evaluate in vitro ES/
iPS protocols aimed at generating surrogate β-like cells. We show
that our genesets represent critical evaluation tools to quantify
cell differentiation outcomes. This was done by assessing the
acquisition of α- or β-cell identities, and by investigating which
genes from our genesets are regulated in this context. While the
original manuscript emphasizes that different protocols can
impact the cellular composition of the final culture stages, we here
demonstrate that this goes hand in hand with the final identity
acquisition: the x1 protocol has a higher ratio of β-cells, and
according to our findings these cells also more strongly gain in β-
cell identity.

Still, our genesets also have limitations in applicability. For
instance, the analysis of α- and β-cells from non-diabetic and type
2 diabetic donors did not reveal any identity changes. Additional
efforts may be necessary to generate genesets that accurately
define diabetes disease progression at the islet cell identity level.
Since single-cell transcriptomics does not yield many highly
regulated genes in this context, alternative techniques like GWAS
may help further elucidate this process60,61. Similarly, we did not
observe any identity modulation during pancreas development
for cells progressing towards Neurog3 or Fev expression, which
are features of islet endocrine precursors. With the recent
appearance of datasets regarding human pancreas development62,
generating carefully annotated genesets that describe these early
stages may be a crucial addition for better profiling in iPS dif-
ferentiation protocols.

In conclusion, we report the generation of islet cell type-
specific genesets defining the identity of pancreatic α-, β-, γ- and
δ-cells. As exemplified above, these genesets represent valuable
tools for the islet biology/diabetes fields. We provide these gen-
esets as resources through the Molecular Signatures Database
(www.gsea-msigdb.org)63, and a web-based application directly
accessible through the website of the Human Islet Research
Network (https://rapps.hirnetwork.org/scPancMeta). Our γδε
−enriched dataset can be accessed through the Gene Expression
Omnibus (GSE150724).

Methods
Nomenclature regarding the two Xin datasets. Since we use two datasets from
the Gromada group, where Y. Xin is the first author, we will use the following
naming. The dataset generated using SMARTseq technology, published in 201621,
will be referred to as Xin, while the dataset generated using 10x genomics tech-
nology, published in 201853, will be referred to as Xin2.

Downloading of single-cell RNA sequencing data. Single-read RNA sequencing
data (Lawlor et al. (SRP075970 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE86473])17, Segerstolpe et al. (ERP017126 [https://www.omicsdi.org/
dataset/arrayexpress-repository/E-MTAB-5061])19, Wang et al. (SRP076307
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83139]) and Xin et al.
(SRP075377 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608])21

datasets) were downloaded as SRA files from the NCBI sequence read archive, and
then transformed to fastq files using fastq-dump version 2.8.2. Paired-end RNA
sequencing data (Enge et al. (PRJNA322355 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE81547])16, Baron et al. (PRJNA328774 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133])15, and Muraro et al.
(PRJNA337935 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE85241])18 datasets) were downloaded as fastq files from the European
Nucleotide Archive.
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Demultiplexing of UMI datasets. UMI based datasets (Baron and Muraro) were
demultiplexed into separate fastq files, each corresponding to a single cell. For the
Muraro dataset, demultiplexing was performed using the paired-end_barcode_splitter
python script (https://github.com/joel-tuberosa/paired-end_barcode_splitter) imple-
menting the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) version 0.0.14.
This produced pairs of files, each corresponding to a single cell. Subsequently, UMI
sequences were retrieved from the fastq files, and N bases were replaced with a
random base. For the Baron dataset, the dropTag function and the indrop_v1_2.xml
config file of the dropEst pipeline (https://github.com/hms-dbmi/dropEst) version
0.7.164 were used to append cell barcode and UMI sequences to the biological read
names. A custom R script was then used to demultiplex the biological fastq files into
individual files, each corresponding to a single cell. A barcode was considered for
downstream analysis if (1) it exactly matched one of the inDrop v1 barcodes, and (2) if
it had at least 10,000 reads. UMI sequences were also retrieved from the fastq files, and
N bases were replaced with a random base.

Pseudoalignment of reads. Biological reads from all datasets were pseudo-aligned
to the Ensembl release 91 of the Homo sapiens transcriptome reference 38
(GRCh38) using kallisto version 0.43.122. Before alignment, a kallisto index was
built with a k-mer length of 31. Reads from SMART-Seq datasets (Enge, Lawlor,
Segerstolpe, Wang and Xin datasets) were pseudo-aligned and quantified using
kallisto quant. For the single-read datasets, the estimated fragment lengths and
standard deviations were set to 300 ± 150 bp for the Segerstolpe, Wang and Xin
datasets, and to 200 ± 100 bp for the Lawlor dataset, depending on the cDNA
library generation kits they used. Transcript counts were then summarized to gene
counts using tximport version 1.8.065. The Baron and Muraro datasets were
pseudo-aligned to the transcriptome using kallisto pseudo in --umi mode. This
pseudo-alignment produces a table of counts summarizing the number of distinct
UMIs aligned to each equivalence class (EC) per cell. Each EC is formed of a (or
multiple) transcript(s) to which a read can align. UMI counts per EC and per cell
were corrected for collisions, as described previously66, using the formula m=−n
ln(1 – (b−1)/n), where n represents the maximum expected UMI count (4l, with l
corresponding to the length of the UMI) and b is the observed number of UMI
counts. Corrected UMI counts per EC and per cell were then divided by the
number of transcripts per EC and then summed into gene counts per cell.

Downloading of processed data. The following datasets were downloaded as
processed data: matrices from 6x non-diabetic and 3x type 2 diabetic donors from
Fang et al. (GSE101207)52, matrices from 12x non-diabetic donors from Xin2 et al.
(GSE114297)53, the Seurat subset Rdata object from van Gurp et al.
(GSE132364)54, matrices from stage 3-6 for protocol X1 from Veres et al.
(GSE114412)55, all samples for sorted α, sorted β, αGFP and αPM conditions from
Furuyama et al. (GSE117454)47.

Generation of a γ-, δ- and ε-cell-enriched single-cell transcriptomics dataset.
Human pancreatic islets from anonymized deceased donors were purchased and
obtained through the NIDDK’s Integrated Islet Distribution Program (IIDP), which
provides islets for fundamental research worldwide (NIH Grant no. DK098085).
This type of investigation is outside the scope of the Swiss Human Research Act,
and does not require approval by the IRB. Human islets from three independent
non-diabetic donors (RRID: SAMN11633049 [https://www.ncbi.nlm.nih.gov/
biosample/?term=SAMN11633049], SAMN11963659 [https://www.ncbi.nlm.nih.gov/
biosample/?term=SAMN11963659], SAMN12227196 [https://www.ncbi.nlm.nih.gov/
biosample/?term=SAMN12227196]) were dissociated and labelled with cell-surface
antibodies as described previously44,47,48. Cells were sorted on a Moflo Astrios
(Beckman Coulter) system. Populations gated in HIC3-2D12 vs. HIC1-2B4 plots were
further gated in a CD9 vs. SSC-H plot. For γ- and ε-cell enrichment, all CD9+ cells
were complemented to 15,000 cells with CD9- cells. For δ-cell enrichment, 15,000
CD9+ and SSC-HLOW cells were sorted. The γ/ε- and δ-fraction were processed as
independent experiments using the Chromium single-cell gene expression protocol v3
(10x Genomics). A median of 55,000 paired-end reads per cell were sequenced using
Illumina Hiseq4000. Data were mapped against the Homo sapiens transcriptome
reference 38 (GRCh38) using 10x Genomics Cell Ranger v3.0.2. Cells were included if
they contained at least 2000 UMIs, expressed at least 1000 genes and had a percentage
of mitochondrial gene counts below 15%. Cells originating from the γ/ε-fraction and
δ-fraction were merged per donor before further processing.

QC filtering and data processing. Seurat objects were generated for individual
single-cell datasets using Seurat version 2.3.4 (Baron, Enge, Fang, Lawlor, Muraro,
Segerstolpe, Wang, Xin and Xin2 datasets)7. Cells were filtered using dataset-
specific thresholds to contain a minimum number of counts or UMIs, a minimum
number of expressed genes and a maximum percentage of mitochondrial counts
(Table S1). Gene counts were normalized by the library size and log-transformed.
For each dataset, 40 principal components (PCs) were computed based on detected
variable genes using default settings, and then tested for statistical significance
using JackStraw (Supplemental Table 1). UMAP dimensional reduction was cal-
culated using only the significant PCs. Seurat objects for the γ-, δ- and ε- enriched
dataset, and the Veres dataset, were created using Seurat version 3.1.0. Individual
Seurat objects were generated per donor (γ-,δ- and ε- enriched dataset) or per stage

(Veres dataset). Filtering, normalization, principal component analysis and
dimensional reduction were performed as described above. Data integration per
donor (our dataset) or stage (Veres dataset) was then performed using the Fin-
dIntegrationAnchors function with the top 20 CCs (our dataset) or 50 CCs (Veres
dataset). The IntegrateData function was run using the top 2000 variable genes
between the individual objects. PCA and UMAP dimensional reduction were
performed on the integrated dataset, as described above.

Doublet cell detection. For the γ-, δ- and ε- enriched dataset, and the Baron,
Enge, Fang, Lawlor, Muraro, Segerstolpe, Veres, Wang, Xin and Xin2 datasets,
doublets were detected in each dataset using two independent tools: DoubletFinder
v2.0.2 and Scrublet v0.2.124,25. For DoubletFinder, 25% of the total cells were
generated in doublets (pN), neighbours (pK) were defined using the parameter
sweep functions and 5% of all cells in every dataset were estimated as doublets
(nExp). For Scrublet, the expected doublet rate was set to 5% and the call_doublets
threshold was set between 0.15 and 0.2. All cells detected by either tool as a doublet
were removed.

Clustering, hormone detection and cell type allocation. For the γ-, δ- and ε-
enriched dataset, and the Baron, Enge, Fang, Lawlor, Muraro, Segerstolpe, Wang,
Xin and Xin2 datasets, the FindClusters function was run for a range of resolutions
with sensitivities between 0.1 and 2. For datasets generated using Seurat version
2.3.4, clustree version 0.4.0 was used to assess the clustering results and the lowest
sensitivity was picked that was stable over at least 2 resolutions. A phylogenetic tree
was then built, and nodes were assigned an out-of-bag (OOB) error score using a
random forest approach. All clusters underneath a node with an OOB above 10%
were merged. The result was considered to be the final clustering for each dataset.
This option was not available for datasets analyzed using Seurat version 3.1.0, and
was thus skipped. For these datasets, clustering was performed on the
integrated assay.

Upregulated genes were calculated for each cluster compared to other clusters
using the FindAllMarkers function in Seurat, applying the “negbinom” test to UMI
based data (γ-, δ- and ε-enriched dataset, Baron, Fang, Muraro and Xin2 datasets)
and the MAST test67 to the other datasets, and using the number of genes and
counts as variables to regress. For the γ-, δ- and ε-cell enriched dataset, donor
origin was included as well. Only positive genes were detected with a log fold
change of at least 0.5 and an adjusted p-value of at most 0.05. For each cluster, we
tried to assign one of the islet cell types based on the expression of key markers, like
GCG, TTR, ARX, IRX2 or PCSK2 in α-cells, INS, IAPP, PDX1, MAFA, NKX6-1,
ABCC8 or PCSK1 in β-cells, PPY, STMN2, ETV1 or SLC6A4 in γ-cells and SST,
LEPR, BCHE, HHEX and RGS2 in δ-cells. Cluster identity for each cell was stored
as meta data.

Next, cells were classified based on their expression of hormone genes GCG,
INS, PPY, SST and GHRL. As the expression pattern for these hormones was
bimodal, density plots were generated using log-normalized counts in which the
local minimum between the two modes was calculated. This was considered the
threshold value for that given hormone gene, and cells were classified to express
this hormone if they had an expression level equal to or higher than the threshold
value. This was done for each hormone gene, after which the hormone expression
profile for each cell was stored as meta data.

For final cell type allocation, we primarily assigned cell identities based on
clustering. Then, we checked for each cell if their hormone expression was in line
with their assigned cell type. If a cell expressed a single hormone that did not match
with the cluster it was found in, its cell type identity was corrected based on
hormone expression (e.g. if a cell clustered with α-cells but expressed only INS, it
would be re-assigned as a β-cell). All cells that expressed more than one hormone
were categorized apart as bihormonal cells. In each dataset, we thus finally ended
up with seven potential identity classifications: α-cell, β-cell, γ-cell, δ-cell, ε-cell,
bihormonal, or other for cells that did not express any hormone genes and did not
cluster in an endocrine cluster.

Characterization of mono- and bi-hormonal cells. For the Baron, Enge, Lawlor,
Muraro, Segerstolpe, Wang and Xin datasets, summary statistics were generated
based on how many cells expressed any given (combination of) hormone(s), split
per diabetes status when applicable. The percentage of mono-hormonal cells was
calculated based on the total of all mono-hormonal cells. For bi-hormonal cells, the
percentage was calculated based on that given combination of hormones (e.g. the
percentage of GCG/INS co-expressing cells was calculated as part of all cells that
expressed GCG and/or INS), split—when applicable—per diabetes status in each
dataset. In order to characterize gene expression profiles of GCG/INS expressing bi-
hormonal cells, we compared mono-hormonal cells with bi-hormonal cells within
the α- and β-cell clusters (i.e. GCG expressing cells vs. GCG/INS co-expressing cells
in the α-cell cluster, and INS expressing cells vs. GCG/INS co-expressing cells in
the β-cell cluster). Differential expression was calculated using the FindMarkers
function in Seurat, applying the “negbinom” test to UMI based datasets (Baron and
Muraro) and the MAST test67 to the other datasets, and using the number of genes
and counts as variables to regress.
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Defining islet cell type-specific identity genes. For the Baron, Enge, Lawlor,
Muraro, Segerstolpe, Wang and Xin datasets, upregulated genes were calculated for
each identity using a pairwise approach between non-diabetic α-, β-, γ- and δ-cells
(e.g. α-cells vs. β-cells, α-cells vs. γ-cells and α-cells vs. δ-cells, within one dataset,
to define α-cell identity). The “negbinom” test was applied on UMI based datasets
(Baron and Muraro) and the MAST test67 to the other datasets using the Find-
Markers function in Seurat. The number of genes and counts were given as vari-
ables to regress. Only positive genes were detected with a log fold change of at least
0.5 and an adjusted p-value of at most 0.05. Average adjusted p-values were cal-
culated as 10^-(mean(-log10(value 1), -log10(value 2 … -log10(value x)). Aggre-
gated datafiles were then generated for each cell type, integrating all upregulated
gene lists from all datasets, compared to all cell types, and ordering them first by
the total number of analyses they were found in, then by a rank score that was
calculated as -log10(average Padj) * average logFC. Metrics were also provided for
individual comparisons (e.g. in α-cells: # analyses, rank scores, average logFC and
average Padj compared to β-, γ- and δ-cells). For every gene, the subcellular
localization of the encoded protein was determined based on the Compartments
database68. Each gene was matched against a transcription factor database69, and
all genes with a localization to the plasma membrane or extracellular domain were
cross referenced with existing cell surface protein lists70,71. Finally, information was
added to convey which genes were included in the genesets we generated, and if
there was overlap for that gene with any of the genesets for the other cell types.
These tables were provided as supplemental data (Tables S4–7).

Multiplex single-molecule fluorescent in situ hybridization. Between 9 and 22
DNA probes were designed for each gene that cover the mRNA coding sequence, and
had overhangs that were compatible with the MUSE amplification system (Arcoris
bio AG, Switzerland; Supplementary data 8). Sections of formalin fixed, paraffin
embedded human pancreata were kindly provided by D. Bosco (Laboratoire d’Is-
olement et de Transplantation Cellulaires, Dépt de Chirurgie, Geneva University
Hospitals). For these experiments, sections no older than 3 months were baked and
deparaffinized, then consecutively treated with hydrogen peroxide, target retrieval
solution and protease solution according to the RNAscope multiplex fluorescent
reagents kit v2 (323100-USM, ACD). Then, sections were washed at 40 C in 30%
formamide solution with 40 U/ml murine RNAse inhibitor in 2× SSC for 3 h and then
hybridized with all probes targeting all the genes that needed to be multiplexed
combined in a hybridization buffer (containing 10% (w/v) dextran sulfate, 30%
formamide, 200 μg/ml BSA, 1 mg/ml yeast tRNA and 40U/ml murine RNAse
inhibitor in 2× SSC) overnight at 40 C. After, cells were consecutively treated with the
primary, secondary and read-out MUSE chemistry to amplify smFISH signals,
appropriate to the overhangs on the probes according to the manufacturer’s stan-
dardized protocol (MUSE-5, MUSE-6 and MUSE-8; Arcoris bio AG, Switzerland).
Sections were counterstained with DAPI and images were acquired on a Leica TCS
SPE confocal. To measure mean intensities for α- and β-cells in individual islets,
ImageJ was used to threshold GCG and INS channels, then selections were created
and saved as ROIs. These ROIs were overlaid on the image of the gene to measure,
and mean intensity within the ROI was calculated. This was done in two donors for
five islets per donor (n= 10 per gene total). Results were plotted as paired boxplots,
and statistical analysis was performed using Wilcoxon signed-rank test, where the α-
and β-regions for each islet were taken as paired data.

Immunofluorescence stainings. Sections of formalin-fixed, paraffin-embedded
human pancreases were provided by the Network for Pancreatic Organ donors
with Diabetes (nPOD) program. They were deparaffinized, and citrate-based
antigen retrieval was performed in a pressure cooker at 121 C. Primary antibodies
used were mouse-α-GCG (1:1000, Sigma G2654), goat-α-PPY (1:1000, Novus
Biologicals NB100-1793) and rabbit-α-ARX (1:500, gift from Ken-ichirou Mor-
ohashi). The ARX signal was amplified using a donkey-α-rabbit biotin-SP antibody
(1:250, Jackson Immunoresearch 711-065-152). Secondary antibodies used were
donkey-a-mouse Alexa488 (1:600, Thermo Fisher A21202), donkey-a-goat
Alexa568 (1:600, Thermo Fisher A11057) and streptavidin Alexa647 (1:600,
Thermo Fisher S32357). Sections were counterstained with DAPI and images were
acquired on a Leica TCS SPE confocal.

Generation and evaluation of identity genesets. Intersect levels were defined as
the minimum number of differential expression analyses a gene was found in. For
example, if a gene was found to be regulated in 16 out of 21 analyses, it was placed
at intersect level 16. Per cell type, genesets were generated for each unique intersect
level, and these genesets contained every gene that was placed at that intersect level
or higher. This yielded 21 genesets per cell type, and 84 genesets in total for the 4
islet cell types we investigated here. For downstream analyses, only genesets were
included that contained between 40 and 500 genes. These genesets were used as
input for GSEA, using the GSEA mac app version 4.0.1 that can be downloaded
from http://www.gsea-msigdb.org/gsea/downloads.jsp. In the γδε-dataset, differ-
ential expression analysis was performed as described above, with a logFC
threshold of 0.1. Rank files were calculated as the -log10(Padj), where adjusted p-
values smaller than 1e-300 were increased to 1e-300. For each cell type, there were
thus 3 GSEA results for both normalized enrichment scores (NES) and the number
of genes used per analysis. For on-target scoring, we took the average of the 3 NES

values. For off-target scoring, we calculated the gene retrieval rate (GRR) as the
average of the percentage of genes used over the total number of available genes in
each geneset. The evaluation metric (EM) was calculated by multiplying the on-
target and off-target scores. If scores could not be calculated as fewer than 15, or
more than 500 genes were retrieved for GSEA, EM scores for that geneset were set
to 0. For each cell type, the geneset was picked with the highest EM, and these were
considered the final genesets.

Comparison between our ID genesets and previously published lists of genes.
Four of the seven manuscripts that we used for this analysis, published lists of
identity genes for each of the four cell types we here investigate (Lawlor, Muraro,
Segerstolpe and Xin datasets). We converted these lists to genesets in order to
compare them to our final genesets. We recycled the rank files generated from the
γδε-dataset above, and generated rank files for pairwise differential expression
within the Fang and Xin2 dataset in the same manner as described above. Thus,
during GSEA, we now obtained 9 NES, GRR and EM scores for each geneset. For
NES and GRR scores, failed analyses were presented as NA, while for EM scores,
failed analyses were presented as 0 (zero) scores. Statistical analysis was performed
using the Wilcoxon signed-rank test.

Processing of the van Gurp mouse embryonic pancreas dataset. For the van
Gurp dataset, a Seurat object (version 2.3.4) was offered as supplemental data. In
this object, we assigned identities based on the clustering of the original
manuscript54, as follows: clusters 2, 3 and 6 were designated as ducts, cluster 5 as
Neurog3+, cluster 4 as Fev+, clusters 8 and 9 as α-cells and cluster 1 and 7 as β-
cells.

Assigning of cellular identity in the Veres human iPS/ES single-cell dataset.
Cellular identities were assigned as provided by the original manuscript: PDX1-
expressing, NKX6.1-expressing, NEUROG3-expressing, FEV-expressing, SC-α-cell,
SC-β-cell, SC-δ-cell, exocrine cell, enterocyte, FOXJ1-expressing, replicating or
unknown55.

Integration of the Baron, Muraro and our human pancreatic single-cell
datasets. Seurat objects (version 3.1.0) were generated for the Baron, Muraro and
our dataset containing all cells, and normalization and variable gene selection were
performed as described above. Datasets were integrated with the FindInte-
grationAnchors and IntegrateData functions of Seurat 3.1.0, using 2000 anchor
features and 30 CCAs. UMAP dimensional reduction and clustering were per-
formed as described above, using the first thirty principal components. Cell type
identities were assigned based on clustering, with a resolution of 0.1.

Integration of the Lawlor, Segerstolpe, Wang and Xin human pancreatic
single-cell datasets. Seurat objects (version 2.3.4) were generated for the Lawlor,
Segerstolpe, Wang and Xin datasets using only α-, β-, γ-and δ-cells. Cellular
identity (α, β, γ or δ), diabetes status (non-diabetic or type 2 diabetic) and dataset
of origin were annotated in the meta data. All genes that were present in the top
1000 most highly dispersed genes in at least two datasets were identified and the
four datasets were then integrated using the RunMultiCCA function of Seurat
version 2.3.4. The first 8 CCAs were selected for UMAP dimensional reduction
after manual interpretation of the standard correlation strength of each
component.

Differential expression analysis in the van Gurp, Veres and Lawlor/Seger-
stolpe/Wang/Xin integrated datasets. Differential expression analysis was
performed in a pairwise manner, using the FindMarkers function in Seurat. For the
van Gurp and Veres datasets, the “negbinom” test was used, while the MAST test
was applied to the integrated dataset. The number of counts and genes were used as
variables to regress, and the dataset of origin was included as well for the integrated
dataset. Both positive and negative genes were kept with a log fold change of at
least 0.1 and an adjusted p-value equal to or below 0.05.

Annotation of genes based on subcellular localization of encoded proteins.
Genes in Fig. 5D, E and S8C–D were annotated based on the subcellular locali-
zation of their encoded proteins. These were determined primarily based on the
compartments68 database and human protein atlas72. In case of ambiguity, the
compartments database was used as the primary source of information. Categories
were compressed to nuclear, ER, mitochondrial, cytoplasmic, secreted/granular,
receptor/transmembrane and extracellular.

Processing of the Furuyama adult cell type interconversion bulk RNA
sequencing dataset. Bulk RNA sequencing data from the Furuyama dataset was
processed using DESeq2 version 1.24.073. After estimation of size factors and
dispersion, differential expression between samples of different populations (sorted
α vs. αGFP, sorted α vs. αPM and αPM vs. sorted β) was calculated in a pairwise
manner using negative binomial GLM fitting. Log2 fold changes were shrunken
using lfcShrink (applying the adaptive t prior shrinkage estimator from apeglm
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version 1.6.0). Both positive and negative genes were detected with a log fold
change of at least 0.5 and an adjusted p-value of at most 0.05.

Statistical analysis. Unless otherwise noted, comparisons between distinct sam-
ples were tested for significance using a two-sided Wilcoxon ranked sum test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genesets can be downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp). All data in this manuscript can be accessed through an R-shiny based web app
(https://rapps.hirnetwork.org/scPancMeta). Our γ- δ- and ε-cell enriched datasets can be
accessed through the Gene Expression Omnibus (accession nr. GSE150724). The
following datasets were downloaded as SRA files from the NCBI sequence read archive:
Lawlor17 (SRP075970 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE86473]), Segerstolpe19 (ERP017126 [https://www.omicsdi.org/dataset/
arrayexpress-repository/E-MTAB-5061]), Wang20 (SRP076307 [https://www.ebi.ac.uk/
ena/browser/view/PRJNA325005?show=reads]) and Xin21 (SRP075377 [https://
www.ebi.ac.uk/ena/browser/view/PRJNA322072?show=reads]). The Baron15

(PRJNA328774 [https://www.ebi.ac.uk/ena/browser/view/PRJNA328774?show=reads]),
Enge16 (PRJNA322355 [https://www.ebi.ac.uk/ena/browser/view/PRJNA322355?
show=reads]) and Muraro18 (PRJNA337935 [https://www.ebi.ac.uk/ena/browser/view/
PRJNA337935?show=reads]) datasets were downloaded as fastq files from the European
Nucleotide Archive. These datasets were downloaded as processed data: Fang52

(GSE101207), Xin53 (GSE114297), van Gurp54 (GSE132364), Veres55 (GSE114412) and
Furuyama47 (GSE117454). Source data are provided with this paper.

Code availability
All codes used to generate data in this manuscript are available upon justified request.
Code used to share data is available on GitLab (https://gitlab.com/hirn-apps/
scpancmeta).
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