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Highlights Lay summary

� This manuscript describes the first mouse model of

OSTb deficiency.

� Ostb-/- mice are viable and fertile, but show
increased length and weight of the small intestine,
blunted villi and deeper crypts.

� Ostb deficiency leads to an altered microbiome
compared to both wild-type and Osta-/- mice.

� Cholestasis led to lower survival and worse body
weight loss, but an improved liver phenotype, in
Ostb-/- mice compared to Osta-/- mice.
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Organic solute transporter (OST) subunits OSTa and
OSTb together facilitate the efflux of conjugated bile
acids into the portal circulation. Osta knockout mice
have longer and thicker small intestines and are
largely protected against experimental cholestatic
liver injury. Herein, we generated and characterized
Ostb knockout mice for the first time. Osta and Ostb
knockout mice shared a similar phenotype under
normal conditions. However, in cholestasis, Ostb
knockout mice had a worsened overall phenotype
which indicates a separate and specific role of OSTb,
possibly as an interacting partner of other intestinal
proteins.
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Background & Aims: Organic solute transporter (OST) subunits OSTa and OSTb facilitate bile acid efflux from the enterocyte
into the portal circulation. Patients with deficiency of OSTa or OSTb display considerable variation in the level of bile acid
malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTb
deficiency.
Methods: Ostb-/- mice were generated using CRISR/Cas9 and compared to wild-type and Osta-/- mice. OSTb was re-expressed
in livers of Ostb-/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct
ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding.
Results: Similar to Osta-/- mice, Ostb-/- mice exhibited elongated small intestines with blunted villi and increased crypt depth.
Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostb-/- mice indicate the accumulation of bile acids
in the enterocyte. In contrast to Osta-/- mice, induction of cholestasis in Ostb-/- mice by BDL or DDC diet led to lower survival
rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostb expression via adeno-
associated virus-mediated overexpression did not rescue the phenotype of Ostb-/- mice.
Conclusions: OSTb is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to
Osta-/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our
findings provide insights into the variable clinical presentation of patients with OSTa and OSTb deficiencies.
Lay summary: Organic solute transporter (OST) subunits OSTa and OSTb together facilitate the efflux of conjugated bile acids
into the portal circulation. Osta knockout mice have longer and thicker small intestines and are largely protected against
experimental cholestatic liver injury. Herein, we generated and characterized Ostb knockout mice for the first time. Osta and
Ostb knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostb knockout mice had a
worsened overall phenotype which indicates a separate and specific role of OSTb, possibly as an interacting partner of other
intestinal proteins.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Bile acids facilitate the intestinal digestion and absorption of fats
and fat-soluble vitamins. Bile acids are synthesized in hepato-
cytes from cholesterol via several enzymatic steps that form the
primary bile acids cholic acid and chenodeoxycholic acid. The
first and rate-limiting step of this cascade is mediated by
CYP7A1. Bile acids are subsequently conjugated with amino acids
glycine and taurine to form glycocholic acid, taurocholic acid,
glycochenodeoxycholic acid and taurochenodeoxycholic acid.1 A
portion of primary bile acids are converted into the secondary
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bile acids deoxycholic acid, lithocholic acid and ursodeoxycholic
acid by gut bacteria in the intestine.1 Compared to humans, mice
have a more hydrophilic bile acid composition as they can also
synthesize (a-, b- or U-) muricholic acid from chenodeoxycholic
acid.

Tight regulation of bile acid homeostasis prevents intracel-
lular accumulation of toxic bile acids, which can disrupt mem-
branes, and lead to generation of reactive oxygen species and
initiation of apoptosis.2 The nuclear farnesoid X receptor (FXR)
plays a central role in regulating several genes involved in the
enterohepatic circulation of bile acids. Intestinal FXR increases
gene expression of fibroblast growth factor (FGF)19, the human
homolog of mouse FGF15, upon binding by bile acids.3 FGF15/19
is released by the enterocyte into the portal circulation and binds
to the FGF receptor 4 (FGFR4)-b-Klotho complex on hepatocytes,
which triggers several pathways including the suppression of the
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rate-limiting enzyme in bile acid synthesis, CYP7A.3 In addition,
activation of FXR also protects against bile acid overload in both
enterocytes and hepatocytes. This is achieved by inhibiting bile
acid influx via downregulation of the apical sodium-dependent
bile acid transporter (ASBT) and the hepatic uptake transporter
sodium taurocholate cotransporting polypeptide and stimulating
export of bile acids by upregulation of efflux transporters, such
as the bile salt export pump and the organic solute transporter a-
b (OSTa-OSTb).4

OSTa-OSTb transports conjugated bile acids across the baso-
lateral membrane of enterocytes into the portal circulation.5–7

This transporter is a heterodimer that consists of 2 distinct
subunits; a and b,8 encoded by 2 different genes, SLC51A and
SLC51B, located on separate chromosomes. The a-subunit con-
sists of 340 amino acids with 7 transmembrane domains, while
the beta-subunit only has 128 amino acids and includes 1
transmembrane domain.6 Heterodimerization of the 2 subunits
leads to increased stability of the proteins and is necessary for
plasma membrane trafficking and transport activity.9

OSTa-OSTb functions in cellular efflux of both conjugated bile
acids and steroid hormones, independently of the sodium
gradient.7 Moreover, in vitro studies show that OSTa-OSTb is able
to mediate both cellular efflux and influx, dependent on the
concentration gradient of the substrate and extracellular pH.7

Highest expression levels of OSTa-OSTb are detected in the
distal part of the ileum. However, OSTa-OSTb also shows
expression in other tissues involved in bile acid homeostasis,
such as the kidney and liver, and tissues involved in steroid
hormone homeostasis.7 Of note, OSTa and OSTb are expressed
with highly varying protein ratios and their transcriptional
regulation is poorly correlated.7 The relevance of this is not yet
known.

To elucidate the physiological role and pathophysiological
implications of OSTa deficiency, Osta-/- mice have previously
been generated.10–14 Knockout of the Osta gene leads to complete
loss of the OSTa protein, strongly reduced OSTb,10,11,13 and results
in impaired intestinal bile acid absorption and bile acid accu-
mulation in enterocytes.11 Compared to control mice, Osta-/- mice
display an ameliorated liver phenotype upon bile duct ligation
(BDL), and this has been attributed to increased urinary bile acid
excretion.14 Bile acid accumulation and associated histological
changes in the intestine are prevented in Osta-/- mice that also
lack Asbt while Fxr depletion did not resolve the phenotype of
Osta-/- mice. While mutations in the Asbt gene are known to
cause bile acid malabsorption in humans,15 genetic defects in
Asbt do not account for all hereditary cases of bile acid malab-
sorption.16 In 2019, 2 brothers were identified with a frameshift
mutation in the OSTb/SLC51B gene causing impaired bile acid
transport activity.17 These patients had diarrhea, fat-soluble
vitamin deficiencies and features of cholestasis, including
moderately increased levels of the liver enzymes alanine
aminotransferase (ALT), aspartate aminotransferase (AST) and
gamma-glutamyltransferase (GGT).17 Due to the limited avail-
ability of biospecimens from these 2 patients, little is known
about the consequence of OSTb deficiency in humans. Recently,
the first OSTa-deficient patient was identified; this patient had
diarrhea and cholestasis,18 which is not observed in Osta-/-
mice.11,14 The OSTa-OSTb complex has an overall topology similar
to the heteromeric structure of G-protein coupled receptors
associated to receptor activity-modifying proteins9,19 where
OSTa adopts a 7-pass transmembrane structure, and OSTb is a
transmembrane protein that crosses the membrane once. OSTb
JHEP Reports 2022
expression is necessary for glycosylation and trafficking of OSTa
to the plasma membrane as well as for functional bile acid
transport,5,9,20 but whether its function is restricted to this
chaperone function is unknown. Therefore, an OSTb knockout
mouse model was generated to study the role of OSTb and to
analyze whether deficiency of Ostb in mice affects cholestatic
liver injury.
Materials and methods
For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Animals
Ostb-/- mice were generated in C57BL/6J mice by precise targeted
deletion via CRISPR/Cas9, which resulted in a large deletion in
exon 3 of the Ostb (Slc51b) gene. To this end, 2 single-guide RNA
(sgRNA) target sequences in the Ostb gene were selected and
inserted in a pDR274 gRNA cas9-guide plasmid. The sgRNA were
synthesized in vitro, purified and microinjected together with
Cas9 mRNA into 1-cell stage wild-type embryos. These mice
were backcrossed once to wild-type mice and resulting Ostb+/-

animals were crossed to create Ostb-/- and wild-type littermates
for analysis. Sequencing was performed to confirm the exact
genotypes of the mutated Ostb gene and to analyze whether
mutations occurred in potential off-target genes, which was not
the case. Osta-/- mice were generated by Rao et al.13 and pur-
chased from the Jackson Laboratory. Male and female Osta-/-,
Ostb-/- and control wild-type C57BL/6J mice (Janvier Labs) were
housed under a 12 h light/dark cycle and bred in the Animal
Research Institute Amsterdam. Mice were fed with normal chow
diet and given ad libitum access to water. The study design, an-
imal care and handling were approved by the Institutional Ani-
mal Care and Use Committee of the University of Amsterdam
(Amsterdam, The Netherlands).

Cholestatic mice models
Wild-type and Ostb-/- female and male adult mice (littermates)
8-12 weeks of age were subjected to a common BDL as previ-
ously described.21 All surviving mice (both males and females)
were sacrificed at day 5 because of animal welfare regulations
(body weight loss >15%). A second cohort of male mice, including
wild-type, Osta-/- and Ostb-/- adult (age 20-30 weeks) mice, were
sacrificed 2 days after BDL. In a third cohort of mice, cholestasis
was induced by supplementing the chow diet (D12450B1, Open
Source Diets, USA) with 0.1% 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC, Sigma) during 8 days.22 In indicated ex-
periments, DDC diet was initiated 2 weeks after administration
via the tail vein of 2x1012 adeno-associated virus serotype 8
(AAV8) particles/kg encoding codon optimized mouse OSTb
(Vectorbuilder). All mice were sacrificed under anesthesia and
blood, bile and tissues were collected as described in the
supplementary information.

Statistical analysis
Data are provided as mean ±SD with individual points shown in
dots. Differences between groups were analyzed using a one-way
ANOVA test, and Dunnett’s test to compare with the wild-type
littermates or Sidak’s multiple comparisons test. Differences in
survival were assessed using a log-rank test. Statistical significance
was considered at p <0.05(*). Graphs were generated using
GraphPad Prism software (version 8.0.2; GraphPad Software Inc.).
2vol. 4 j 100463
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Fig. 1. Generation of Ostb-/- mice. (A) Schematic representation of the wild-type OSTb and knockout OSTb gene resulting from CRISPR/Cas9-mediated deletion of
exon 3. (B) OSTa and OSTb mRNA expression in ileums of 4- and 8-week-old male wild-type, Osta-/- and Ostb-/- mice. Data are normalized using the geometric
mean of CyclophillinB and Rpl4 (n = 5–7 mice per group). Statistical analysis was done using a one-way ANOVA test and Dunnett’s test to compare with wild-type
littermates. *Indicates p value of <0.05. (C) OSTa and OSTb protein expression in ileums of 4-week-old female wild-type, Osta-/- and Ostb-/- mice. Na/K-ATPase is
used as loading control. (D) Immunohistochemistry on ileal sections from wild-type and Ostb-/- mice stained with antibody against OSTb. Original magnification,
400x. Scale bar 25 lm. bp, base pair; del, deletion; KO, knockout; Osta, organic solute transporter alpha; Ostb, organic solute transporter beta; WT, wild-type.
Differences in microbiota a diversity were tested using ANOVA.
Permanova was used to test compositional differences in terms of
Bray-Curtis dissimilarity and Weighted Unifrac distances. Differ-
ential abundance of taxa was tested using DESeq2.23
Results
Generation of OSTb knockout mice
To study the role of OSTb in mice, targeted deletion was per-
formed using CRISPR-Cas9, resulting in a 190 base pair deletion
in exon 3 of the Ostb gene (Fig. 1A). Osta and OstbmRNAwere not
expressed in Osta-/- and Ostb-/- mice, respectively (Fig. 1B).
Western blotting confirmed the complete absence of OSTa and
OSTb protein in Osta-/- and Ostb-/- mice, respectively (Fig. 1C). In
line with previous Osta-/- studies, we found that Osta-/- mice lack
the OSTa protein and have strongly reduced OSTb protein
expression,10,11,13 while Ostb-/- mice lack both the OSTb protein as
well as the OSTa protein. Consistent with the western blot,
immunohistochemistry showed protein expression of OSTb on
the basolateral membrane of ileal enterocytes in wild-type mice,
while this signal was absent in Ostb-/- mice (Fig. 1D).

Phenotype of Osta-/- and Ostb-/- mice
Both Osta-/- and Ostb-/- mice are viable and showed no obvious
change in appearance and growth. Crossing heterozygous Ostb+/-

mice produced a Mendelian distribution of wild-type and
knockout genotypes. In contrast to the OSTb-deficient patients,
Ostb-/- mice showed no signs of diarrhea. Only a trend towards a
modestly increased plasma level of the liver enzymes ALT (p =
JHEP Reports 2022
0.073) and alkaline phosphatase (ALP; p = 0.075) was detected
and AST levels were unchanged (Fig. 2a). Osta-/- mice showed no
significant change in body weight at 4 and 8 weeks after birth in
both females and males. Likewise, Ostb-/- mice did not demon-
strate altered body weight except for 8-week-old females that
showed a modest reduction in body weight compared to wild-
type littermates (Fig. 2B). The length and weight of the small
intestine were significantly and similarly increased in the Osta-/-
and Ostb-/- mice in both 4- and 8-week-old mice (Fig. 2C,D). The
weight per length had a tendency to increase in the Osta-/- and
Ostb-/- mice that were 4 weeks of age, and was significantly
increased in 8-week-old male mice and female Osta-/- mice
(Fig. S1A). Liver weight and kidney weight were not changed in
the Osta-/- and Ostb-/- mice (Fig. S1B,C). The length, weight and
weight per length of the colon were not altered in Osta-/- and
Ostb-/- mice (Fig. S1D-F). The small intestine phenotype was
preserved in older Ostb-/- mice (32-37 weeks) (Fig. S1G).
Altered ileal histology in Osta-/- and Ostb-/- mice
Analysis of the ileum showed an altered histology in Osta-/- and
Ostb-/- male and female mice (Fig. 3A, Fig. S2A). While the ileum
of wild-type mice comprises normal-appearing long, thin villi,
Osta-/- and Ostb-/- mice exhibit blunted villi and elongated crypt
depth. This altered ileal histology is similar between Osta-/- and
Ostb-/- mice. Quantification of villus height showed a 25%
reduction in 4-week-old female and a (not significant) 21%
reduction in male Ostb-/- mice compared to wild-type littermates
(female mice: Ostb-/- 121.7 lm ± 24.45 vs. wild-type 163.4 lm ±
25.20) (male mice: Ostb-/- 115.5 lm ± 17.66 vs. wild-type 146.8
3vol. 4 j 100463
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lm ± 12.20) (Fig. 3B). Additionally, crypt depth was significantly
increased at both 4 weeks of age by 57% and 38% in female and
male Ostb-/- mice respectively, and 8 weeks of age by 83% and
64% in female and male Ostb-/- mice respectively (Fig. 3C). As a
result of the increased crypt depth and decreased villus height,
the ratio was significantly decreased in Osta-/- and Ostb-/- mice
(Fig. S2B). The top of the ileal villi of Osta-/- and Ostb-/- mice have
increased numbers of mucus-filled vacuoles (Fig. 3D). Further-
more, intestinal proliferation was determined using phosphohi-
stone H3 staining and demonstrated a more widespread
JHEP Reports 2022
distribution along the villi in both Osta-/- and Ostb-/- mice
compared to wild-type mice probably due to the increased crypt
depth (Fig. 3E). Other parts of the small intestine, the duodenum
and jejunum, were not histologically altered.

Altered expression of differentiation markers in enterocytes
of Osta-/- and Ostb-/- mice
Caudal type homeobox 2 (CDX2) induces transcription of several
genes implicated in intestinal differentiation and epithelial cell
maturation.24–26 Ostb-/- mice showed a significant decrease in
4vol. 4 j 100463
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organic solute transporter beta; wk, week; WT, wild-type.
expression of Cdx2 in the ileum in males at 4 and 8 weeks of age
(41% and 50% reduction, respectively), and a similar decreased
trend is seen in 4-week-old Ostb-/- females (−31%; p = 0.15)
(Fig. 4A, Fig. S3A). Osta-/- and Ostb-/- mice showed no change in
JHEP Reports 2022
mRNA expression of Muc2, a marker for goblet cells, and Lyso-
zyme, a marker for Paneth cells (Fig. S3E,F). However, 4-week-old
female and male Ostb-/- mice had a significantly decreased
expression of sucrase-isomaltase (Sis; 65% and 63% reduction,
5vol. 4 j 100463
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respectively) (Fig. 4B, Fig. S3B) which was confirmed by deter-
mining SIS protein levels by immunostaining (Fig. S3C). The
change in Sis expression was still observed in 8-week-old male
mice (�70% reduction; p = 0.0019 and 0.0013), but not in female
mice (−25%; p = 0.62 and -34%; p = 0.74 for Osta-/- and Ostb-/-

mice, respectively). Similarly, mRNA expression of Arginase2 had
a tendency to decrease in Ostb-/- mice at both 4 and 8 weeks of
age (Fig. S3D). Neonatal markers Ass1 and Lct were not changed
at mRNA levels (Fig. S3G,H). Similar findings were obtained in
Osta-/- mice. Together this indicates that deficiency of OSTb but
also OSTa mainly affects epithelial cells in villi leading to
incomplete differentiation.

Bile salt-related gene expression changes in ileal enterocytes
of Osta-/- and Ostb-/- mice
Gene expression levels of Fabp6, Fgf15, Mrp3 and Asbt were
measured to assess possible adaptations related to bile acid trans-
port. Fabp6 (encoding IBABP) and Mrp3 mRNA levels were not
increased in Osta-/- and Ostb-/- mice (Fig. S4A,B,E,F). In contrast,
Fgf15 levels increased 3.8-fold and 2.9-fold in Osta-/- females and
JHEP Reports 2022
Ostb-/-males at 4 weeks of age. Furthermore, Fgf15 levels tended to
increase 3.2-fold (p = 0.056) in 4-week-old female Ostb-/- mice and
2.4-fold (p = 0.26) in 4-week-old Osta-/- males (Fig. 4c). Both Osta-/-
and Ostb-/- mice that were 8 weeks of age did not show increased
Fgf15 levels (Fig. 4A, Fig. 4D). Furthermore, Osta-/- and Ostb-/- mice
show decreased expression of the apical bile acid uptake trans-
porter Asbt at both ages, which could serve as a protective mech-
anism against bile acid overload (Fig. 4D, Fig. S4C). Organoids were
cultured from ileal stem cells of the Osta-/-, Ostb-/- and wild-type
mice to investigate whether the altered ileal morphology and
gene expression is due to cell-intrinsic factors (Fig. S5A,B). Both
Osta-/-, Ostb-/- and wild-type organoids grew in the same manner
regarding their size and number of buds (Fig. S5A). Furthermore,
expression levels of Fgf15 and Ibabp are similar in Osta-/-, Ostb-/-
organoids and wild-type organoids (Fig. 5D,E).

Bile acid concentration and composition in circulation and
excretory systems
Next, we investigated the effect of Ostb deficiency on concen-
trations and composition in the circulation and excretory
6vol. 4 j 100463
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systems. Osta-/- and Ostb-/- mice showed unaltered bile acid
concentration and composition in bile or plasma. Furthermore,
no increased bile acid excretion in urine or feces was observed
and the bile acid hydrophobicity index of bile was unchanged
(Fig. S6).
JHEP Reports 2022
Decreased b diversity in Ostb-/- microbiome
We evaluated bacterial a and b diversity in Ostb-/-, Osta-/- mice
and their wild-type littermates. We found no significant differ-
ences in terms of a diversity (a metric of microbial richness)
analyzed in 3 different ways (Fig. S7A). In contrast, b diversity
7vol. 4 j 100463
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showed significant differences in bacterial composition between
groups as shown in the principal coordinates analysis plots
((PERMANOVA p = 0.001, R2 = 0.19; Fig. S7B). Weighted Unifrac
analysis, which takes the relatedness of the microbes into ac-
count, did not show significant differences, indicating the
microbiota are more similar at higher taxonomic ranks.
Comparing abundances of taxa in Ostb-/- mice with both wild-
type mice and Osta-/- mice shows a decrease of Lactobacillus,
various Lachnospiraceae and Candidatus_Saccharimonas and in-
crease of Bifidobacteria and Faecalibaculum (Fig. S7C).

Ostb-/- mice show lower survival rates while displaying
hepatoprotective effects during BDL-induced liver injury
While OSTb- and OSTa-deficient patients show features of chole-
static liver injury,17,18 OSTa-deficient mice display attenuated liver
disease upon induction of cholestasis by ligation of the common
bile duct.14 Therefore, we wondered whether challenging Ostb-/-

mice by inducing cholestasis would affect liver injury. To this end,
we performed experiments with 2 distinct cholestasis models;
common BDL and a 0.1% DDC-containing diet. Both models
revealed an unexpectedphenotype specifically inOstb-/-mice. First,
18Ostb-/-mice (8male) and 20wild-type littermates (10male; 8-10
JHEP Reports 2022
weeks of age) were subjected to common BDL (Fig. 5A). While all
wild-typemice survived, 40% of the Ostb-/-mice diedwithin 5 days
(Fig. 5B; p = 0.02 log-rank test). No difference in body weight loss
was observed in surviving Ostb-/- mice compared to wild-type lit-
termates (Fig. S8A). Remarkably, livers of surviving Ostb-/- mice
were completely devoid of necrotic areas, which covered 15-20% of
the area in wild-type mice (Fig. 5C and Fig. S8E). A clear reduction
was observed in bile acid levels (62%), plasmabilirubin (42%) and in
cholesterol (38%) levels in the surviving Ostb-/- mice, while plasma
ALT, ALP and AST levels were unchanged (Fig. 5D,E and Fig. S9A,B).
Taurobetamuricholic acid levels are increased in Ostb-/- mice
compared to wild-type littermates (Fig. 5F). In general, expression
levels of markers of hepatic inflammation (Mcp1; p = 0.0163),
fibrosis (Timp [p = 0.093], a-Sma [p = 0.19], Col1a1 [p = 0.17]) and
proliferation (Afp [p = 0.14]), but not Cyp7a1 and IL6 tended towards
being reduced in surviving Ostb-/- mice compared to wild-type
mice after BDL (Fig. 5G, Fig. S8D). The high mortality upon BDL in
Ostb-/-micewas confirmed in a second experiment with a group of
3 Ostb-/- mice (male, 20-30 weeks old). In this experiment we also
included wild-type littermates and Osta-/- mice (Fig. 5H). On day 3,
animals were sacrificed due to severe symptoms of distress,
including hunched posture and lethargy, specifically presented by
8vol. 4 j 100463



the Ostb-/- mice. Furthermore, the contents of the stomach and the
intestines were dark colored and were located throughout the
small intestine while the small intestine of both Osta-/- mice and
wild-type mice showed a normal color and contained less
alimentary matter (Fig. 5I and Fig. S8F). Remarkably, the cages of
Ostb-/- mice contained considerably less feces compared to the
cages of Osta-/- mice (data not shown). In line with results of the
first BDL experiment, examination of the liver suggested a pro-
tective effect in both Osta-/- and Ostb-/- mice with respect to liver
damage due to BDL, with obvious pre-necrotic areas in the wild-
type animals (Fig. 5J).

Ostb-/- mice show lower body weight gain while displaying
hepatoprotective effects when challenged with a DDC diet
After 8 days on a DDC diet, Ostb-/- mice showed marked body
weight loss compared to wild-type and Osta-/- mice (Fig. 6A). In
contrast, Mcp-1 levels were significantly lower in Ostb-/- mice
when compared with wild-type littermates and a significant
reduction was found in AST in Osta-/- and Ostb-/- mice when
compared with wild-type mice (Fig. S9A,B) while plasma bili-
rubin, ALP and ALT levels as well as a-Sma, Col1a1 and Afp
expression remained unchanged (Fig. S9B). Intestinal Asbt
expression was decreased and Fgf15 expression increased in
Osta-/- and Ostb-/- mice also under these cholestatic conditions
(Fig. 6B). The discrepancy between overall health status and
(selected) markers for liver damage mimics the BDL phenotype
and suggests that, in Ostb-/- mice, an extrahepatic phenotype is
unmasked under cholestatic conditions which is distinct from
Osta-/- mice. The increased weight loss in Ostb-/- mice was
confirmed in a second DDC-induced cholestasis experiment
where we tested the role of hepatic OSTb (Fig. 6C). To this end,
we included a group that received AAV8 encoding mouse Ostb 2
weeks prior to the onset of the diet. A second difference with the
first DDC experiment was that we briefly switched to control
chow on day 5-6 and 9-10 to allow recovery of body weight and
continued with DDC diet afterwards for another 2.5 days. Body
weight loss was more severe in Ostb-/- mice than wild-type mice
(Fig. 6C). Body weight differences across the entire experiment
are calculated as area under the curve (%.day) and were -86.07 ±
5.25 in mice expressing endogenous OSTb and -129.6 ± 10.9 and
-127.0 ± 9.34 in DDC-fed Ostb-/- mice (respectively mock injected
or treated with OSTb-AAV8) (Fig. 6C). Hepatic expression of OSTb
was confirmed in the latter group (Fig. 6D). Also, cholestatic
Ostb-/- mice displayed elongated small intestines (irrespective of
restored hepatic OSTb expression) (Fig. 6E), while no difference
in liver weight was present (Fig. 6F). This indicates that the
increased body weight loss seen in cholestatic Ostb-/- mice likely
has an extrahepatic origin.
Discussion
Here, we generated OSTb-deficient mice and show that disrup-
tion of OSTb results in profound ileal morphological changes.
When unchallenged, no major differences are observed between
Osta-/- and Ostb-/- mice and Ostb-/- mice are phenocopying Osta-/-
mice. Our results are mostly in line with previous Osta-/-
studies,10,11,13,14,20,27,28 suggesting that OSTa and OSTb function in
the same manner in bile acid homeostasis under normal condi-
tions. However, under cholestatic conditions, Ostb-/- mice have a
worsened phenotype, a significant lower survival rate and lower
body weight compared to both wild-type and Osta-/- mice. This
phenotype is independent of hepatic OSTb expression status. As
JHEP Reports 2022
the contents of the intestine and stomach of Ostb-/- mice were
dark colored, while Osta-/- mice were indistinguishable from
wild-type littermates, an intestinal origin of this phenotype is
likely. Furthermore, these data indicate that there might be a
difference between the function of OSTa and OSTb.

The OSTb-deficiency phenotype under cholestatic conditions
does not relate to liver damage since the lower survival rates of
Ostb-/- mice do not seem to correlate with histology and markers
of bile acid-induced liver injury. The Ostb knockout mice even
showed some level of protection against liver injury during
cholestasis by BDL, similar to Osta-/- mice. The discrepancy in
content in the colon vs. the stomach of cholestatic Ostb-/- mice
may point to an intestinal motility phenotype. Several papers
suggest a link between cholestasis and/or altered bile acid
signaling and alterations in intestinal transit via 3 possible
mechanisms.29–32

First, the endogenous opioid system has been demonstrated
to be activated in cholestatic conditions in mice, leading to
decreased intestinal transit.29 Therefore, induction of cholestasis
may reveal or enhance an intestinal mobility phenotype in Ostb-/-

mice. Second, activation of TGR5, the GPCR for bile acids, is
essential for peristalsis and gastric emptying, possibly via in-
duction of glucagon-like peptide-1 secretion.30,31 Ostb-/- mice
may have reduced TGR5 activation as the bile acid pool is likely
reduced due to chronically elevated Fgf15 expression. Third,
NGM282, an FGF15/19 mimetic has prokinetic activity itself.32

Chronic overexpression of FGF15, as seen in Osta-/- and Ostb-/-

mice may lead to desensitization of FGFR/KLB, just as chronic
FGF23 overexpression desensitizes this receptor complex.33 A
rapid reduction in FGF15, as would occur during cholestasis may
then lower intestinal motility to pathologically relevant levels.
Although such mechanisms could contribute to the intestinal
phenotype of Ostb-/- mice in cholestatic conditions, it remains
unclear why this phenotype is not exposed in Osta-/- mice, which
are largely indistinguishable with regard to bile acid homeosta-
sis. This suggests that OSTb might have another function besides
forming a bile acid efflux transporter upon heterodimerization
with OSTa. Early after the cloning of OSTa-OSTb it was postulated
that OSTb may function as a chaperone or regulatory subunit for
other proteins6 as the topology of OSTa-OSTb is similar to that of
G-protein coupled receptors associated to receptor activity-
modifying proteins.34 This may also explain why the regulation
of gene expression of these 2 subunits is so different.7 For
example, hepatic upregulation of OSTb expression is much
higher than that of OSTa in patients with primary biliary chol-
angitis35 and in obstructive cholestasis.36 Finally, the modest but
evident differences in microbial composition may lead to or
reflect differences in intestinal function. Ostb-/- mice were more
sensitive to the DDC diet than wild-type or Osta-/- mice. Ostb-/-

mice lost significantly more body weight which may be related
to the altered microbiota as this could lower the efficiency of
energy harvest.37 This would also explain why the effect is in-
dependent of hepatic OSTb expression.

Our Ostb-/- model made it possible to compare the conse-
quence of OSTb deficiency and OSTa deficiency in mice but also
to compare this to the few individuals described to date with
SLC51A or SLC51B deficiency. In contrast to Asbt-/- mice which
show a similar malabsorptive phenotype as patients with an Asbt
mutation,15,38 Ostb-/- mice do not reflect all characteristics of the
2 OSTb-deficient patients. The OSTb-deficient brothers suffer
from congenital diarrhea and features of cholestasis,17 whereas
Osta-/- and Ostb-/- mice do not. Furthermore, the OSTa-deficient
9vol. 4 j 100463
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patient who was recently identified showed symptoms similar to
the OSTb-deficient brothers, albeit with more severe signs of
cholestasis.18 While expression of Osta and Ostb is high in human
livers, it is marginal in mouse livers under normal circum-
stances.7 This may explain why OSTa- and OSTb-deficient pa-
tients experience liver histological changes and elevated liver
enzymes ALT, AST and GGT, while there is only a trend towards a
modest increase in ALT and ALP in the Ostb-/- mice. Protective
mechanisms are initiated in mice with OSTa or OSTb deficiency
to reduce the bile acid load, which likely explains the amelio-
rated phenotype in older mice,10,11,13,14 although the elongated
small intestine remains present in aged Ostb-/- mice. In addition,
mice have a different gut microbiome composition and enzy-
matic bile acid (re)hydroxylation repertoire leading to a distinct
bile acid composition and conjugation.39 The mouse bile acid
pool is less hydrophobic and toxic which may dampen liver
damage and is also much reduced in OSTa- and OSTb-deficient
mice, lowering the level of diarrhea despite the severely affected
ileal morphology.

Gene expression of ileal Fgf15 was increased, inversely
correlated with Asbt expression in the ileum and Cyp7a1 in the
liver, implying accumulation of bile acids in the enterocyte and
dampening of bile acid synthesis. Surprisingly, gene expression
of Fabp6 was not elevated, however, conflicting results on gene
expression of Fabp6 have been observed in Osta-/- mice
before.11–13 Short-term inhibition of OSTa-OSTb in vivo leads to
JHEP Reports 2022
increased FXR activation in enterocytes40 and it was previously
demonstrated that the increase in Fgf15 expression in Osta-/-
mice is due to FXR activation. Recent evidence indicates that
the ileal histological changes in Osta-/- are secondary to enter-
ocyte injury caused by bile acid accumulation, since disruption
of Asbt in Osta-/- mice restores the intestinal phenotype
completely.11 Even though expression of Asbt is partly down-
regulated, Osta-/- and Ostb-/- mice are not able to fully restore
the ileal morphology, suggesting that bile acid accumulation in
enterocytes is still present. Furthermore, expression of ileal
Mrp3 is not increased, supporting the evidence that MRP3 does
not have a major role in conjugated bile acid transport.41

Finally, Osta-/- and Ostb-/- organoids do not show an altered
phenotype, suggesting that bile acids cause the altered
phenotype in the ileum.

In conclusion, OSTa-OSTb is an important heterodimeric bile
acid transporter. Knockout of either Osta or Ostb results in a se-
vere ileal phenotype that is in line with previous Osta knockout
studies. During cholestasis, knockout of either Osta or Ostb seems
to ameliorate liver damage. However, unlike in Osta-/- mice, these
beneficial effects are paralleled by an intestinal motility pheno-
type in Ostb-/- mice, potentially contributing to a significantly
lower survival rate and higher body weight loss. This is the first
evidence that the role of OSTb differs from OSTa and suggests
that OSTb might also have an additional, unidentified, intestinal
function.
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