Skip to main content
. 2022 Apr 12;2022:6557593. doi: 10.1155/2022/6557593

Table 1.

Parameter setting of each module of 3D DenseUNet.

Block Feature size Convolution layer
Input 224 × 224 × 8
Convolution 1 112 × 112 × 4 7 × 7 × 7 × 96 conv
Pooling 56 × 56 × 2 3 × 3 × 3 max pooling
Dense block 1 56 × 56 × 2 (1 × 1 × 1 × 128 conv) × 3
(3 × 3 × 3 × 32 conv) × 3
Transition layer 1 28 × 28 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling
Dense block 2 28 × 28 × 2 (1 × 1 × 1 × 128 conv) × 4
(3 × 3 × 3 × 32 conv) × 4
Transition layer 2 14 × 14 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling
Dense block 3 14 × 14 × 2 (1 × 1 × 1 × 128 conv) × 12
(3 × 3 × 3 × 32 conv) × 12
Transition layer 3 7 × 7 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling
Dense block 4 7 × 7 × 2 (1 × 1 × 1 × 128 conv) × 8
(3 × 3 × 3 × 32 conv) × 8
Upsampling layer 1 7 × 7 × 2 2 × 2 × 1 × 504 upconv
Sum with dense block 3 14 × 14 × 2
Upsampling layer 2 14 × 14 × 2 2 × 2 × 1 × 224 upconv
Sum with dense block 2 28 × 28 × 2
Upsampling layer 3 28 × 28 × 2 2 × 2 × 1 × 192 upconv
Sum with dense block 1 56 × 56 × 2
Upsampling layer 4 56 × 56 × 2 2 × 2 × 2 × 96 upconv
Sum with convolution 1 112 × 112 × 4
Upsampling layer 5 224 × 224 × 8 2 × 2 × 2 × 64 upconv
Output 224 × 224 × 8 1 × 1 × 1 × 3 conv