Skip to main content
. 2022 Apr 6;13:860209. doi: 10.3389/fphar.2022.860209

TABLE 5.

Studies on the therapeutic effects of quercetin in HCC.

Type of Quercetin Dose Targets Results Model (in vitro/in vivo/Human) Cell Line Reference
Quercetin 100 mg/kg CK2α, Notch1, Gli2, caspase-3, p53, cyclin-D1, and Ki-67 Antiproliferation, antioxidant, and antiapoptosis In vivo Salama et al. (2019)
Quercetin 100–300 μg/ml Prevented CCl4-induced cytotoxicity In vitro HepG2 Vijayakumar et al. (2019)
Quercetin 0–200 µM JAK2 and STAT3 Antiproliferation, cell cycle arrest, induced apoptosis, anti-migration, and anti-invasion In vitro and in vivo LM3 Wu et al. (2019a)
QRC/SPC co-loaded NCs 0–100 µM kappa B, TNF-α, and Ki-67 Enhancing SFB antitumor efficacy.(antiproliferative and anti-vascularization) In vivo and In vitro HepG2 Abdelmoneem et al. (2019)
Quercetin 12.5–50 µM Hexokinase-2 and AKT/mTOR Antiproliferative effect In vitro and In vivo SMMG-7721 and BEL-7402 Wu et al. (2019b)
Quercetin 0–80 μM AKT/mTOR and MAPK Autophagy stimulation and Induced apoptosis In vitro MMC7721 Ji et al. (2019)
In vivo HepG2
Quercetin 0, 20, 40, and 80 µM Intracellular ROS, p53 Antiproliferative effect In vitro HepG2 Jeon et al. (2019)
Ziziphus spina-christi (ZSCL) 100 and 300 mg/kg Hepatocyte growth factor Antioxidant effects and anti-oncogenic effects In vivo HepG2 El-Din et al. (2019)
Insulin-like growth factor-1 receptor In vitro
Quercetin, dasatinib 5, 50 mg/kg SASP, P16, and γH2AX foci Pro-tumorigenic effects In vivo HepG2 and Huh-7 Kovacovicova et al. (2018)
In vitro
QCT-SPION-loaded micelles 0–60 µM Increased cytotoxicity, cell cycle arrest, and antiproliferation In vitro HepG2.2.15 Srisa-Nga et al. (2019)
Quercetin 20–160 μM Cyclin A, B2, D1, Bcl-2, caspase-3, and -9 Antiproliferation and induced apoptosis In vitro Hep3b and HepG2 Bahman et al. (2018)
Nanocarriers of quercetin 1, 550, and 150 µM Caspase-3, H2O2, c-MET, and MCL-1 Induced apoptosis In vitro HepG2 and HeLa AbouAitah et al. (2018)
Quercetin 40, 80, and 160 μM ABCB1, ABCC1, ABCC2, and Wnt Enhanced sensitivity and increased cellular accumulation of chemotherapy drugs In vitro BEL/5-FU Chen et al. (2018)
BEL-7402
Quercetin (SFJDC) 6.75 μg/ml Bcl-2, Bax, Akt/mTOR, and NF-κB Induced apoptosis, inhibited migration and invasion, affected, af In vitro HepG2 HepG2.2.15 Xia et al. (2018)
Quercetin 0–100 μM p38, MAPK, JNK, and MEK1 Induced apoptosis In vitro HepG2 Ding et al. (2018)
Quercetin 5–50 μM NF-κB Enhanced Antiproliferative effects and induced apoptosis In vitro SMMC-7721 Zou et al. (2018)
In vivo HepG2, HuH-7
Quercetin 10, 25, and 50 μΜ JAK, SHP2 phosphatase, and IFN-α Antiproliferative effect In vitro HepG2 Huh7 Igbe et al. (2017)
3′,4′,7-Tri-O quercetin 25 mg Stability indicator for hydrolytic degradation In vivo Bianchi et al. (2018)
3′,4′,5,7-Tetra-Oquercetin 29.9 mg Stability indicator for hydrolytic degradation In vivo Bianchi et al. (2018)
3′,4′-Di-O quercetin 38 mg Stability indicator for hydrolytic degradation In vivo Bianchi et al. (2018)
Quercetin + maleic anhydride derivatives 50 mM ROS, caspase-3, -9, and cytoskeletal actin Cytotoxic effect, Induced apoptosis, Cell cycle arrest, and modification in cytoskeletal actin and nucleus morphology In vitro HuH7, HepG2 Carrasco-Torres et al. (2017)
Quercetin 25 μg/ml IGF2BP1, 3, and miR-1275 Reduced viability In vitro Huh-7 Shaalan et al. (2018)
nano prototype + quercetin 0.10, 20, 50, and 100 mM IC50s Induced Apoptosis, necrosis, and antiproliferative effects In vitro HepG2 Abd-Rabou and Ahmed (2017)
Quercetin-3-O-rutinosidequercetin, -glucoside 2.5–100 μg/ml Cytotoxic effects against cancer cells In vitro HEPG2 Sobral et al. (2017)
Quercetin 0.67 μM Weak cytotoxic effects against cancer cells and antioxidant effects In vitro HepG2, Hep3B Ma et al. (2017)
Quercetin 100 mg/kg HSP70 Induced apoptosis In vivo Ma et al. (2017)
Quercetin nanoparticlee 1–50 μM Inhibited tumor growth effect In vivo HepG2 Wang et al. (2016a)
In vitro
Quercetin 6.25–100 μM HDAC8 Cytotoxic effects In vitro HepG2 Mira and Shimizu (2015)
Quercetin 5–200 µM GLUT-1 and BAX/BCL-2 Induced apoptosis In vitro HepG2, HuH7, and Hep3B2.1–7 Brito et al. (2016)
Quercetin 40 mg/kg Bad, Bax, Bcl-2, and survivin Induced apoptosis, enhanced 5-FU efficacy, and antiproliferative effects In vitro and In vivo HepG2 and SMCC-7721 Dai et al. (2016)
Quercetin-3-O-glucoside 20–500 μg/ml Antioxidant, cytotoxicity, and induced apoptosis In vitro HepG2 C. Maiyo et al. (2016)
Quercetin 0–100 µM PI3K, PKC, ROS, COX-2, p53, and BAX Cytotoxicity and anticarcinogenic actions In vitro HepG2 Maurya and Vinayak (2015)
Quercetin 0–50 µM F-actin Induced apoptosis and cell cycle arrest In vitro HepG2 Pi et al. (2016)
Quercetin-3-O-glucoside 100 µM Caspase-3 and DNA topoisomerase II Antiproliferative effects, cell cycle arrest, and induced apoptosis In vitro HepG2 Sudan and Rupasinghe (2015)
Quercetin 0–100 µM Specificity protein 1 (Sp1) Induced apoptosis and antiproliferative effects In vitro HepG2 Lee et al. (2015c)
Quercetin-3-O-glucoside 1–200 μM Human DNA topoisomerase II and caspase-3 Antiproliferative effects, antioxidant effects, cell cycle arrest, and induced apoptosis In vitro HepG2 Sudan and Rupasinghe (2014)
Nanocapsulated quercetin 8.98 μmol/kg TNF-α, IL-6, and MMP-13 Controlled diethylnitrosamine-induced carcinoma In vivo Mandal et al. (2014)
Quercetin 1, 5, 10, 20, and 50 mM Cytotoxicity In vitro HepG2 Varshosaz et al. (2014)
Quercetin 1–50 mM Anticancer effects In vitro HepG2 Varshosaz et al. (2014)
Quercetin 1–50 mM Anticancer effects In vitro HepG2 Varshosaz et al. (2014)
Quercetin 50 μM P16 Antiproliferative effects and induced apoptosis In vitro HepG2 Zhao et al. (2014)
Quercetin 1–10 μg/ml - Cytotoxicity In vitro HepG2 Mohamed Al-Taweel et al. (2012)
Quercetin 5 μg/ml - Anti-inflammatory and antioxidant In vitro HepG2 Isa et al. (2012)
Quercetin 50 μmol/L Heat shock proteins-90, 70, 90α, 76, 60, aand 27 Antiproliferation and inhibited all heat shock proteins In vitro HepG2 Zhou et al. (2011)
Quercetin 50 μM Akt, pAkt, Bcl-2, caspase-3, and -9 Induced apoptosis In vitro HepG2 and Hep3B Sharma and Bhat (2011)
Quercetin + BB-102 3.125–100 μmol/L p53, GM-CSF, and B7-1 Antiproliferation and induced apoptosis In vitro BEL-7402, HuH-7, and HLE Shi et al. (2003)
Nanoliposomal quercetin 100 mg/kg/d Induced apoptosis and inhibited formation of malignant ascites In vivo Yuan et al. (2006)
Quercetin dissolved in DMSO 0, 40, 60, or and 80 μM Enhanced apoptotis cell cycle arrest In vitro HA22T/VGH HepG2 Chang et al. (2006)
Quercetin and/or Ni nanoparticles 5.0, 25 and 50 μmol/L Antiproliferative effects In vitro SMMC-7721 Guo et al. (2009)
Quercetin 0–200 µM DR5, c-FLIP, and Bcl-xL Recovered TRAIL sensitivity and induced apoptosis In vitro HepG2, SK-Hep1, SNU-387, and SNU-449 Kim et al. (2008)
ANBE includes quercetin 100 and 200 mg/kg CAT, SOD, GPx, GST, ALT, ALP, TBL, AFP, and CEA Antioxidant effects and induced apoptosis In vivo Singh et al. (2009)
Quercetin 200 mg/kg p53 Decreased oxidative stress In vivo Seufi et al. (2009)
Quercetin 40 and 80 μM SOD and MnSOD Antiproliferative effects and induced apoptosis In vitro HA22T/VGH HepG2 Chang et al. (2009)
Quercetin 22 µL p27(Kip1) Induced apoptosis, cell cycle arrest, and inhibited topoisomerase IIα activity In vitro HepG2 Naowaratwattana et al. (2010)
Quercetin 0–100 μM CYP1A1 Increase cytotoxicity, protective effect against DNA strand breaks, and antioxidant activity In vitro HepG2 Kozics et al. (2011)
Quercetin, nanoencapsulated quercetin 8.98 and 1.898 mmol/ml Cytochrome c Antiproliferative effects, antioxidant activity, and induced Apoptosis In vivo Ghosh et al. (2012)
Quercetin μg/ml PI3K-AKT Inhibited proliferation In vitro HepG2 and Huh-7 Pan and Pan (2021)
Quercetin 50 mg/kg P16 Ineffective against age-associated NAFLD-induced HCC In vitro and In vivo DEN/HFD mouse model Raffaele et al. (2021)
Quercetin 100 μg/ml PEPCK and G6Pase Antioxidant effect In vitro HepG2 Pasachan et al. (2021b)
Quercetin 100 mg/kg Nrf2/Keap1 pathway Antioxidant effect In vitro and in vivo HepG2 and male Kunming mice Zhang et al. (2020)
Quercetin 100 μM Antiproliferative effect, induced apoptosis, G0/G1, G2/M, and S phase cell cycle arrest In vitro KIM-1, HAK-1A, HAK-1B, HAK-2, and HAK-3 Hisaka et al. (2020)
Quercetin 3, 7 μM TGF-α, p38 MAPK, and AKT Suppressed migration In vitro HuH7 Yamada et al. (2020)