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Abstract

Coronary blood flow is tightly regulated to ensure that myocardial oxygen delivery meets local 

metabolic demand via the concurrent action of myogenic, neural, and metabolic mechanisms. 

While several competing hypotheses exist, the specific nature of the local metabolic mechanism(s) 

remains poorly defined. To gain insights into the viability of putative metabolic feedback 

mechanisms and into the coordinated action of parallel regulatory mechanisms, we applied a 

multi-scale modeling framework to analyze experimental data on coronary pressure, flow, and 

myocardial oxygen delivery in the porcine heart in vivo. The modeling framework integrates 

a previously established lumped-parameter model of myocardial perfusion used to account for 

transmural hemodynamic variations and a simple vessel mechanics model used to simulate 

the vascular tone in each of three myocardial layers. Vascular tone in the resistance vessel 

mechanics model is governed by input stimuli from the myogenic, metabolic, and autonomic 

control mechanisms. Seven competing formulations of the metabolic feedback mechanism are 

implemented in the modeling framework, and associated model simulations are compared to 

experimental data on coronary pressures and flows under a range of experimental conditions 

designed to interrogate the governing control mechanisms. Analysis identifies a maximally likely 

metabolic mechanism among the seven tested models, in which production of a metabolic 
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signaling factor is proportional to MVO2 and delivery proportional to flow. Finally, the identified 

model is validated based on comparisons of simulations to data on the myocardial perfusion 

response to conscious exercise that were not used for model identification.

Introduction

The left ventricular myocardium extracts ∼70–80% of the oxygen delivered from the arterial 

blood under normal resting conditions. A consequence of this high degree of myocardial 

oxygen extraction is that increases in myocardial oxygen demand (such as during exercise) 

require proportionate increases in perfusion to the myocardium to maintain adequate 

tissue oxygenation. This tight coupling of myocardial oxygen delivery with metabolism is 

observed to occur not only during physiologic increases in myocardial oxygen consumption 

(MVO2), but also following perturbations to coronary perfusion pressure (CPP), which are 

crucial, especially in response to proximal stenotic lesions of epicardial coronary arteries.

Our understanding of the mechanisms underlying the balance between coronary blood 

flow and MVO2 remains limited. Putatively, coronary flow regulation is mediated via the 

concurrent action of three major control mechanisms: (1.) a myogenic mechanism where 

resistance arterioles constrict in response to increases in vascular wall tension; (2.) an 

autonomic mechanism were stimulation of β-receptors on arterial smooth muscle leads to 

vasodilation; and (3.) a metabolic mechanism where an increase in MVO2 promotes local 

vasodilation. These mechanisms work in parallel and converge on common end-effector 

pathways of coronary microvascular resistance, i.e., vascular smooth muscle tone. Moreover, 

the actions of these control mechanisms are influenced by structural and contractile 

properties of the myocardium and vary transmurally across layers of the myocardium 

(Bassingthwaighte et al., 2001). Precisely how these purported mechanisms work together 

dynamically and regionally, in the beating heart where cardiac contraction causes a 

constricting force on the vessels in the walls of the heart, impeding flow, particularly in 

the subendocardium, during systole merits further investigation. Furthermore, while several 

competing hypotheses exist, the specific nature of local metabolic mechanism(s) remains 

poorly defined.

The paradigm of local metabolic control of coronary blood flow centers around the 

hypothesis that vasoactive metabolites are produced in proportion to the prevailing level 

of myocardial oxygenation. This hypothesis is attractive in that it provides a mechanism 

directly linking increases in metabolism and reductions in tissue oxygen tension (typically 

indexed by coronary venous PO2) with commensurate changes in coronary blood flow (Dole 

& Nuno, 1986). However, this general framework offers little insight into if or how specific 

metabolites (e.g., adenosine and NO) or pathways (e.g., end-effector K+ channels) contribute 

to myocardial oxygen supply/demand balance. In addition, prior observations that coronary 

venous PO2 does not directly correlate with changes in coronary blood flow during increases 

in MVO2 (Duncker & Bache, 2008; Tune et al., 2020) or perturbations in CPP (Kiel et al., 
2018) fail to support the metabolic hypothesis as proposed. Thus both the general framework 

of as well as the specific molecular signals involved in the local metabolic control of 
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coronary blood flow continues to linger as one of, if not the most, highly contested mysteries 

of the coronary circulation to this day.

The goal of this study is to address these knowledge deficits through model-based analysis 

of experimental data on in vivo coronary flow regulation in response to changes in perfusion 

pressure, MVO2, and the oxygen carrying capacity of the blood. Specifically, a multi-scale 

model of coronary flow regulation was constructed to account for putative myogenic, 

neural, and metabolic mechanisms as well as transmural dynamics of blood circulation 

and ventricular-vascular interactions. Model simulations were compared to data on coronary 

flow and zero-flow coronary pressure recordings obtained distal to epicardial occlusions in 
vivo in pigs (Kiel et al., 2018) and subendocardial-to-subepicardial flow ratio. Coronary 

flow and zero-flow pressure transients were obtained over a range of initial perfusion 

pressures and under control conditions, hemodilution, and hemodilution with dobutamine 

infusion.

The model used to analyze these data is built based on the lumped three-layer model 

of myocardial perfusion (Mynard et al., 2014) and the myogenic autoregulatory vessel 

model of Carlson and Secomb (Carlson & Secomb, 2005), with additional components 

representing β-mediated vasodilation and a metabolic feedback mechanism. Several 

competing representations of the metabolic mechanism were implemented and tested against 

the data. Using maximal-likelihood structural and parametric model identification to rule 

out and refine hypotheses, we identify a novel formulation of the metabolic mechanism 

in which the metabolic signal is represented as proportional to metabolic rate and flow. 

This mechanism can be interpreted as representing an ephemeral metabolic signal for which 

production is proportional to MVO2 and delivery proportional to flow. Potential candidates 

for such a signal include short-lived reactive species such as H2O2 (Saitoh et al., 2006). 

The identified model is further validated based on comparisons of simulations to data on 

the myocardial perfusion response to conscious exercise that were not used for model 

identification.

Methods

Experimental Data for Model Identification and Validation

Experimental data for model identification were obtained from prior studies on coronary 

blood flow autoregulation, including measurements of distal pressure transients in the left-

anterior descending (LAD) arterial tree following proximal occlusion of the main LAD 

trunk in anesthetized pigs. The experimental details are described in Kiel et al. (Kiel et 
al., 2018). In brief, for a given experimental condition, the LAD was initially perfused at 

a constant baseline pressure by a servo-controlled pump. After a steady baseline flow at 

a given perfusion pressure was attained, the LAD trunk was occluded and the resulting 

decay in arterial pressure at a distal epicardial location was measured. The aortic pressure 

was continuously measured throughout the experiment via a femoral artery catheter. In 

addition, arterial and venous blood samples were collected to measure blood oxygenation 

and hematocrit.
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Example pressure transients obtained under control conditions (without dobutamine infusion 

or hemodilution) are illustrated in Figure 1A. In these data sets each of the six sub-panels 

in panel A corresponds to a different average initial perfusion pressure, ranging from 40 

to 140 mmHg. The perfusion pressure oscillated around the set CPP level in-sync with 

the measured arterial pressure. The upstream occlusion is induced at time approximately 

t = 7 seconds, resulting in a decay in pressure as blood drains from the arterial tree. The 

pressure oscillations, associated with myocardial contraction, continue during the decay. The 

final pressure attained after the approximately four-second transient decay is denoted the 

zero-flow pressure, Pzf, which is used as a metric of myocardial resistance vessel tone. In 

our analysis we match model simulations to the full time course of the zero-flow pressure 

experiment, as illustrated in Figure 1.

Experiments from Kiel et al. also provide data on total flow (before occlusion) at each 

level of initial perfusion pressure, as illustrated in Figure 1B for the baseline experimental 

condition for an individual animal. Finally, our model identification is constrained to match 

the experimentally measured baseline subendocardial-to-subepicardial flow ratio (ENDO/

EPI), as illustrated in Figure 1B.

The zero-flow pressure experiment was repeated under three different experimental 

conditions: (1) control; (2) hemodilution; and (3) hemodilution + dobutamine. Hemodilution 

was induced by gradually replacing equal volumes of blood with a synthetic plasma 

expander. Dobutamine was administered by an intravenous drip to increase heart rate to 

∼75–100% above baseline levels.

Additional experimental data on conscious animals are used for validation. Briefly, animals 

were chronically instrumented with an arterial catheter, a perivascular flow transducer 

around the left anterior descending coronary artery, and with a solid state pressure transducer 

in the left ventricle as previously described (Berwick et al., 2012). Following recovery 

from surgery, hemodynamic variables were continuously measured under baseline resting 

conditions and subsequently during treadmill exercise.

Overview of Model Formulation

Coronary blood flow regulation is simulated by integrating a lumped model for myocardial 

perfusion in subendocardial, midwall, and subepicardial layers of the myocardium (Model 

1) with a model of resistance vessel mechanics accounting for myogenic, autonomic, and 

metabolic regulatory mechanisms (Model 2). In practice, the integrated model is identified 

in a two-step process. First, the lumped model is fit to data from zero-flow pressure 

experiments, yielding estimates of vessel diameters as functions of transmural pressure 

in the different myocardial layers under different levels of perfusion pressure and oxygen 

demand, at different heart rates, and under different experimental conditions. Next, the 

vessel mechanics model (Model 2) identified by comparing a panel of model formulations 

representing competing hypotheses for the metabolic mechanism to estimated diameters 

obtained from Model 1. Finally, the identified vessel mechanics model is validated by 

combining the two models to simulate myocardial blood flow in exercise versus baseline 

resting conditions.
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Three-Layer Lumped Model of Myocardial Perfusion (Model 1)

To simulate myocardial perfusion, we adapt the lumped model developed by Spaan et al. 
(2000), Mynard et al. (Mynard et al., 2014; Mynard & Smolich, 2016), illustrated in Figure 

2. For the zero-flow pressure experiments, this model is used to simulate constant-pressure 

blood flow to the myocardium driven to the LAD by the extracorporeal servo-controlled 

pump, and the zero-flow pressure decay transient. The hydraulic properties of the perfusion 

tubing and epicardial vessels are governed by a series lumped resistance, blood inertance, 

and compliance, as illustrated in Figure 2. A venous resistance and compliance drain into the 

right-atrial pressure (PRA) downstream of a valve that prevents backflow in low perfusion 

pressures (Ho et al., 2004). The myocardial circulation is divided to three parallel circuits 

representing subepicardial, midwall, and subendocardial layers. Within each layer, three 

serial resistances represent arterial, capillary, and venous compartments. Using Poiseuille 

resistance-volume relationship, the arterial (i = 1) and venous (i = 2) resistances (R1 and R2 

in Figure 2) are computed

Rij t = R0, i
V 0, ij
V ij t

2
,   i ∈ 1,2 ,   j ∈ 1,2, 3 , 1

where R0, i and V0, i are reference resistance and volume, respectively, and the index 

j denotes myocardial layer: (1. subepicardial, 2. midwall, and 3. subendocardial). This 

resistance-volume relationship represents a major simplifying assumption of the model, 

where it is assumed that two representative lumped resistances govern conductivity 

to a given layer. Equivalently, this assumption implies that: (1.) perturbations in total 

microvascular blood volume are allocated throughout the elements of the microvascular 

network in proportion to the volume in those elements; (2.) the radii of all resistance vessels 

in the microcirculation are proportional to the square roots of the volume of blood in those 

vessels; and (3.) the pressure drops across these vessels is inversely proportional to the 

radius of vessel diameter.

The instantaneous volume V ij is (volume of compartment i in layer j) computed as

V ij t = max V 0 + CijPtm, ij t , V c , 2

where transmural pressure (Ptm, ij) is the difference between to blood pressure (P) and the 

intramyocardial pressure (Pim, j) (Mynard et al., 2014). Based on the analysis in Mynard et 

al. (2014), we assume

Pim, j = 1.2djPlv, 3

where dj is the relative depth of subendocardial (dj = 5
6 ), midwall (dj = 1

2) and subepicardial 

layers (dj = 1
6). To estimate Plv, we use half-sine functions constrained to match the 

measured aortic pressure where Plv = pao in the systolic phase and Plv = 5mmHg in diastolic 

phase. An example estimated ventricular pressure time course and corresponding measured 

aortic pressure time course are illustrated in Supplementary Figure S1.
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This model formulation allows for a potential collapse of vessels in cases of largely 

negative transmural pressures. This collapse is prevalent in the subendocardial layer and 

is characterized with a transmural pressure below which the vascular volume remains almost 

constant (V c) (Hoffman & Spaan, 1990; Kiel et al., 2018). Following Guiot et al. (1990), we 

assume that the laminar flow assumptions for the un-collapsed vessel (Eq. 1) are effectively 

valid for collapsed vessels.

Lastly, the middle resistance Rmj in each layer is computed using the resistance of the 

arterial and venous compartments

Rmj t = γR1j t + 1 − γ R2j t , 4

where γ is a parameter between 0 and 1. To ensure a physiologically realistic transmural 

flow, the reference resistance R0,1 and the arterial compliances C1j are scaled with two 

factors: subepicardial to subendocardial resistance factor rf and compliance factor cf.

To simulate changes in vascular tone (dilation/constriction) in response to changes in CPP in 

the lumped model a factor is fj is applied such that

C1j = fj × Cij
0 , 5

where fj > 1 represents vasodilation, fj < 1 vasoconstriction, and Cij
0  is a reference value 

corresponding to the baseline conditions taken to be CPP = 100 mmHg. The vasoreactivity 

factor is assumed to vary across different across the myocardium. To incorporate graded 

vasoreactivity, a parameter 0 < β < 1 is introduced such that

f1 = fCPP − β fCPP − 1 6

f2 = fCPP

f3 = fCPP + β fCPP − 1 ,

where fCPP  is the overall vasoreactivity factor.

To simulate the zero-flow pressure experiment, we divide the experiment to two parts: part 

1 when the pump is driving flow to the LAD perfusion region; and part 2 when the pump 

is off and the extracorporeal circuit is clamped. To simulate first part of the experiment, we 

assume that the output pressure from the pump is constant and set to the nominal CPP for 

simulation time 0 < t < toff, where toff when the pump is turned off and the extracorporeal 

circuit is clamped. For this first part of the experiment, the fixed driving pressure is used to 

drive the model and the resulting simulated flow is compared to the measured data.
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To simulate the second part of the experiment, flow is imposed, and the resulting pressure 

transient is simulated. Specifically, since the model cannot accommodate a step change in 

flow, a rapid continuous decrease to zero flow is imposed using the function

F t = F toff e−α t − toff ,  t > toff . 7

The rate of decay is set to the value α = 10 sec−1, to obtain a decay to zero flow that is 

effectively instantaneous compared to the timescale of the observed pressure decay.

Parameter Estimation for Model 1: Phasic tracings of perfusion pressure and flow for 

each experimental preparation are used to calibrate the myocardial circulation model. The 

perfusion pressure is measured continuously in both steps of the experiment using a cannula 

in the left anterior descending (LAD) coronary artery in both steps of the experiment. 

Accordingly, in our model the pressure measurements correspond to Pin in Figure 2. The 

model residual vector is defined as

rp tk = Pin tk − Pin
data tk

Pin
data tk

8

where Pin
data is the measured data at time tk. The flow across Rpa,  qin, is compared to the 

measured flow. Due to pump-induced noise in flow tracings, the average flow before closing 

the circuit (F−) is used in the objective:

rq = F− − F−data
F−data

, 9

where F−data the average of flow before the extracorporeal circuit is clamped. The cost 

function for the parameter estimation is a weighted sum of the error in time-resolved 

pressure tracings, average flow before clamping the perfusion circuit, and a penalty term to 

ensure a physiological subendocardial to subepicardial flow ratio (ENDO/EPI) for each CPP 

level

ECPP = w1rpTrp + w2rq2 + w3 ENDO/EPI − 1.25 . 10

The weights w1 and w2 are chosen such that the contribution of the pressure and flow to 

the cost function are the same order. The weight w3 is varied for CPP levels, assuming the 

largest weight for the CPP = 100 mmHg case, where the target ENDO/EPI ratio at rest is 

1.25, reflecting the approximate average of values reported in the literature (Breisch et al., 
1986a; Breisch et al., 1986b; Krombach et al., 1999). Finally, the total cost function for 

parameter estimation can be written as

E1 = ∑CPP ECPP . 11
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In this work, the model parameters corresponding to the venous components of the model 

were fixed, and the arterial component parameters were adjusted to minimize the objective 

function E1. Table 1 lists the adjustable parameters and their description.

Representative Vessel Model (Model 2)

In the representative vessel model, the arterial component in each layer is represented 

by a single vessel endowed with passive and active tension models as well as myogenic, 

metabolic, and autonomic regulatory mechanisms. Following Secomb et al. (Carlson & 

Secomb, 2005; Carlson et al., 2008), the vessel wall tension is sum of a passive tension Tpass
and an active tension Tact, which is the tension generated by the vascular smooth muscle 

cells (VSMs). The active tension is determined as the product of the maximal active tension 

Tact
max in a given vessel and the activation level A. Thus, the vascular tension can be written as

T = Tpass + A Tact
max . 12

The passive response of the vessel is expressed as a nonlinear function of diameter, by 

rearranging the nonlinear pressure-diameter relation in Young et al. (2012)

Tpass = D
2 ϕp + Cptan

π D
2 − Bp

Ap − Bp
− π

2 , 13

where Ap and Bp represent the asymptomatic maximum and minimum radii, Cp is the 

bandwidth between Ap and Bp, and ϕp corresponds to the pressure offset determining the 

half-way point between Ap and Bp. The maximal active tension generated by VSM is 

expressed by modifying the Gaussian function given in (Carlson & Secomb, 2005) so that 

the maximal possible active tension diminishes for small diameters.

Tact
max = ρm D

2 exp −Cm
D
2 − ϕm

2 14

Following Carlson et al. (2008), the activation level A depends on the total stimulus Stone in 

a sigmoidal manner

A = 1
1 + exp −Stone

, 15

where Stone is a net summation of stimuli from the myogenic Smyo, metabolic Smeta, 

autonomic SHR mechanisms, and an offset C0:

Stone = Smyo + SHR + Smeta + C0 . 16

We assume myogenic response is a linear function of the vascular tension, so we can write
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Smyo = CmyoT . 17

The autonomic response is assumed to be a function of the heart rate and to have only 

dilatory effects on the myocardial vessels. Moreover, a baseline offset HR0 is used to 

determine the threshold for autonomic signal generation.

SHR = − CHRmax HR − HR0, 0 . 18

Similarly for metabolic mechanism, we assume the stimuli linearly depends on the signal

Smeta = −CmetaMS, 19

where MS is the metabolic signal, and the negative sign corresponds to a vasodilatory 

response.

In this work we evaluated seven different representations of the metabolic signal:

1. ATP-dependent (ATP): ATP release from red blood cells provides the metabolic 

feedback signal for local control of perfusion. The ATP transport model of 

Pradhan et al. (2016) accounts for oxygen saturation-dependent leak of ATP 

from red blood cells and a flow-dependent washout of ATP from the circulation. 

From Pradhan et al., the metabolic signal is assumed proportional to venous ATP, 

which is governed by

MSatp = ATP v = ATP a + V capHctJ0S0
F−i

LV w Sa − Sv

e
Sa
S0 e

Sa − Sv
S0 − 1 ,

20

where ATP v and ATP a are arterial and venous plasma ATP concentrations, 

V cap is the capillary volume density, LV w is the left ventricle weight, J0 is the 

ATP release rate in coronary vascular bed, and S0 is the ATP release parameter 

of the model. The main assumptions of this model are: 1) the rate of ATP release 

into plasma decreases exponentially with RBC O2 saturation and is proportional 

to Hct; and 2) the ATP-dependent signal does not degrade across myocardial 

circulation.

2. Myocardial oxygen consumption (MVO2): Myocardial oxygen consumption 

determines the metabolic signal. Under given experimental conditions, total 

MVO2 in is approximated

MV O2 = F−
LV w × CaO2 − CvO2 , 21

where CaO2 and CvO2 are the arterial and venous oxygen content. Experimental 

studies have shown that that myocardial fiber shortening and energy demands 

in subendocardium are higher than those of subepicardium (Holtz et al., 1977). 
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This leads to variable oxygen consumption levels across the myocardium, with 

subendocardial to subepicardial MVO2 ratio (RM) of ∼1.5 (Holtz et al., 1977; 

Vinten-Johansen & Weiss, 1980). Based on these observations, we assume a 

constant RM and thus the layer-wise MVO2 is computed by dividing MVO2

MSMV O2 =

MV O2subendo = MV O2
2
3

RM
RM + 1

MV O2subepi = MV O2
2
3

RM
RM + 1

MV O2midwall = 1
2 MV O2subendo + MV O2subendo

22

3. Oxygen extraction (Sa − Sv): The arterial-venous difference in oxygen saturation 

acts as a signal for metabolic control. Assuming the oxygen extraction is uniform 

across the layers, the metabolic signal is expressed

MSEX = Sa − Sv 23

4. Layer-wise variable oxygen extraction (LSv): The regional arterial-venous 

difference in oxygen saturation acts as a signal for metabolic control. Using the 

layer-wise MVO2 (metabolic signal #2), we compute venous oxygen saturation 

and arterial-venous oxygen extraction in each of three layers of the myocardium.

Svj = Sa − MV O2j
Fj

LV w
· c0 · Hct

, forj ∈ subendo, midwall, subepi . ,
24

MSLSv = Sa − Svj,

where c0 is the oxygen content of fully oxygen saturated oxyhemoglobin in a red 

blood cell.

5. Flow times oxygen extraction (FΔS): The metabolic signal is the product of flow 

and oxygen extraction in each layer of the myocardium.

MSQΔS = Fj Sa − Svj ,  for  j ∈ subendo . , midwall, subepi . . 25

6. Flow times MVO2 (FM): The metabolic signal is the product of flow and MVO2 

in each layer of the myocardium.

MSFM = FjMV O2j,  for  j ∈ subendo . , midwall, subepi . . 26

In metabolic signals 5 and 6, similar to metabolic signals 2 and 4, the layer-wise 

oxygen extraction is computed assuming a constant RM.
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7. Oxygen consumption squared (MVO2
2): Since the calculation of MVO2 from 

experimental measurements of oxygen extraction depends on flow (Eq. 22), 

metabolic signal 6 is proportional to Fj
2 and oxygen extraction (CaO2 − CvO2). 

As a final candidate, we assume metabolic signal 6 to be proportional to the 

squares of both flow and oxygen extraction. Accordingly, the metabolic signal is 

written as the square of the myocardial oxygen consumption rate.

MSMV O22 = MSMV O2
2 27

Parameter Estimation for Model 2: Outputs of the parameterized Model 1, fit 

to data from the zero-flow pressure experiments, are used to estimate the layer-wise 

average diameters of representative resistance vessels, D−j, for each experimental condition 

(control, hemodilution, hemodilution+dobutamine), each level of CPP, in each layer of the 

myocardium, and for each of four experimental animals. Additional inputs to Model 2 are 

average hemodynamics (pressure and flow) and estimated tissue pressures in each layer of 

the myocardium, blood oxygenation measurements, and heart rate.

The layer-wise flow F−j,  transmural pressure Ptm, j, and resistance R−j are computed from the 

cycle-to-cycle averaged results of Model 1 for each experimental condition and each animal. 

The estimated Model-1 resistances R−i of the arterial components are used to determine 

representative vessel diameters:

Dj = 100   ⋅
R control, midwall, CPP = 100

Rj
⋅ μ

μ control, CPP = 100

1
4
, 28

where the diameter of midwall at CPP=100 mmHg level is assumed to be 100 μm. The 

effective blood viscosity μ is determined as a function of hematocrit using the relation 

(Snyder, 1971):

μ =  2.03 ⋅ exp 0.0322 −1.08e‐4  ⋅ Temp ⋅ Hct − 0.02 ⋅ Temp  , 29

where Hct and Temp are hematocrit and temperature, respectively.

Figure 3A shows how the estimated representative vessel diameter varies with transmural 

pressure in the midwall layer of an individual animal for the three different experimental 

conditions. To match the predictions of the vessel model (Model 2) to these estimated 

diameters, the following objective function is used for parameter estimation

E2 = Dj
Model 2 − Dj

Model 1 , 30

where Dj
Model 1 = Dj

control, Dj
anemia, Dj

anemia + dobutamine  is the vector of computed diameters 

representing the same pig/same layer, and Dj
Model 2 is the corresponding Model 2 

predictions. The adjustable parameters are listed in Table 2.
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Model 2 model selection: The parameter estimation is repeated using each of the seven 

different metabolic signal models. To compare the performance of each model formulation, 

we use a modified second order Akaike information criterion (AICc), which is used for 

model selection across multiple datasets with small sample size (Navakatikyan, 2007; 

Vinnakota et al., 2010)

AICc = Σi = 1 
N ni ⋅ ln RSS

ni
+ 2KN nt

nt − KN − N , 31

where RSS is the residual sum of squares (RSS = E2
2 , K is the number of parameters, N is 

the number of data sets (4 pigs x 3 layers = 12 datasets), and ni is the number of data points 

in each data set (Pig 1: 15, Pig 2: 12, Pig 3: 18, Pig 4: 18) and nt is the total number of data 

points (63). Then, a parameter Δ for each is computed as

Δk = AICck − AICcmin, 32

where AICck is the Akaike criterion for kth model, and AICcmin is the minimum AICc value. 

Finally, the relative likelihood (RLi), is given by

RLk = exp −0.5Δk , 33

which is the probability that a particular kth model is a better model than the model with the 

minimum AICc value.

A genetic algorithm is used for the parameter estimation in both models. For Model 1 

parameters, a population size of 600 and number of generations 1200 was used although 

the procedure converged before reaching the 1200 generations in all cases. For Model 2 

parameters, we fixed the population size and number of generations to 1000 and 10000, 

respectively. For both models, the cross-over and mutation probabilities were fixed to 0.8 

and 0.01, respectively, and the convergence tolerance was 10−8. The last generation was 

evaluated in each case to ensure unique results.

Simulating Coronary Flow in Rest versus Exercise Conditions

Once the coronary flow regulation model is constructed, the identified model framework, 

with Models 1 and 2 integrated together, is validated by simulating in vivo myocardial 

perfusion in resting and exercise conditions. These simulations are compared to data 

collected in conscious animals, for which aortic and left ventricular pressure and LAD flow 

were simultaneously measured. The measured aortic pressure was used to drive the model, 

and simulations of LAD flow compared to data. Since the parametric identification from the 

zero-flow pressure experiments yields different optimal parameter values for each individual 

animal, and since the conscious exercise experiments were conducted on different animals 

and under different experimental conditions, a subset of parameters was identified to adjust 

to match the conscious state data. The model formulation is validated by showing that the 

model formulation using the top-ranked metabolic mechanism is able to match the conscious 

state data markedly better than lower ranked models.
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To simulate myocardial perfusion in vivo the two model components are simulated 

iteratively until they reach convergence. The measured aortic and left ventricular pressure 

data are inputs to Model 1 for a given set values of resistance vessel parameter values, 

C11,  C12, and C13, representing vessel tones in the three myocardial layers. The predicted 

flow from Model 1, along with the given measured heart rate and estimated MVO2, is used 

to compute the metabolic signal for use with Model 2. Model 2 is simulated to estimate 

the vessel diameters in each layer, from which the average resistances and compliances are 

computed:

Rj = V 0
C1jptm, j + V 0

2
R0 ≈ V 0

C1j   ptm, j + V 0

2
R0 34

C1i =

R0
R−j

V0 − V0

P−tm, j
.

The computed compliance values are fed back into Model 1, and the iterative process 

is carried out until Models 1 and 2 agree and the predicted hemodynamic state reaches 

convergence.

To calibrate the model to simulate exercise, we perform the following analysis to identify a 

set of adjustable parameters that satisfy two criteria: (1.) parameters in the set are estimated 

from the zero-flow pressure experiments with a relatively high degree of uncertainty; and 

(2.) simulations of in vivo myocardial perfusion are sensitive to the values of parameters in 

the set of identified parameters.

The uncertainty of the values estimated from the zero-flow pressure experiments is 

quantified based on the coefficient of variation CoV

CoV θ = 100 σ θ
μ θ , 35

where σ and μ are the standard deviation and average of parameter θ used in Model 2. 

Next, we calculate parameter sensitivities using rest and exercise simulations (Pradhan et al., 
2016)

Xi θ = 10
pi θ pi θ + 0.1θ − pi θ 36

where prediction vectors pi are simulation results; 

p1 = Frest t , p2 = Fexer . t ,   p3 = ENDO/EPI rest, p4 = ENDO/EPI exer .   correspond to 

flow and ENDO/EPI flow ratio in rest and exercise. The sensitivity index Xi represents 

the ratio of change in error relative to a change in parameter value. For instance, a 

sensitivity value of 1 means 1% change in parameter corresponds to 1% change in the model 
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prediction. Finally, the model sensitivity S to each parameter is computed is the sensitivity 

of each prediction

S θ = ∑i Xi θ , 37

To find the set of adjustable parameters, we find the parameters θ with CoV θ > 30% and

 S θ > 0.1. To estimate the parameters, we define model residual errors as

rr tk = Frest tk − Frest
data tk

Frest
data tk

, 38

re tk =
Fexer . tk − Fexer .data tk

Fexer .data tk
,

where Frest
data and Fexer .

data  are LAD flow data in rest and exercise. Then, the cost function for 

the parameter estimation is

E3 = wf rrTrr + reTre + we ENDO/EPI rest − 1.25 , 39

with weights wf and we.

Results

Model 1 Identification

Figure 1 shows an example data set for the zero-flow pressure experiment along with a fit 

of model 1 for an individual animal under control conditions. The top two rows show the 

pressure tracings at different levels of CPP. At roughly t = 7 seconds, the LAD flow is 

occluded and the decay of pressure at a distal site is recorded for approximately 4 seconds. 

The bottom panels show data and model predictions of average flow and ENDO/EPI flow 

ratio measured before the occlusion. Supplementary Figures S2−S13 show model fits to the 

zero-flow pressure time course data for all animals and experimental conditions.

Figure 4 shows the measured and model-predicted total flow data for the four individual pigs 

for the three different experimental preparations. In control and hemodilution conditions 

flow is maintained at roughly constant values over an autoregulatory range of CPP values 

between 60 and 120 mmHg. The total flow is elevated in hemodilution compared to 

control to maintain oxygen delivery. Infusion of dobutamine significantly increases the flow 

compared to the control and hemodilution conditions and tends to abolish the autoregulatory 

response in all animals.

The Model-1 fits yield estimates of resistance vessel diameter at each CPP level under 

each experimental condition for each animal. These diameter estimates are illustrated in 

Figure 3 for all three experimental conditions for the midwall layer for one experimental 
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animal. Analogous predictions for all myocardial layers and for all animals are plotted in 

Supplementary Figures S14−S25.

Model 2 (Representative Vessel Model) Identification

Model-1 fits to the zero-flow pressure data are analyzed using Model 2 to determine if and 

how the competing versions of the representative vessel model are able to capture the in 

vivo autoregulatory behavior underlying the zero-flow pressure dynamics. As illustrated in 

Figure 3A and in Supplementary Figures S14−S25, Model 1 yields estimates of resistance 

vessel diameter as functions of transmural vessel pressure for three different experimental 

conditions, for three myocardial layers, and four individual animals at each of six values of 

CPP. Each of the seven competing versions of Model 2 (representing different formulations 

of the metabolic mechanism) are fit to this data set to determine the most likely model best 

able to represent the data. Example fits, associated with the flow-times-MVO2 metabolic 

mechanism, are shown in Figure 3A.

Table 3 lists the estimated AICck, Δk, and RLk values for the seven models, illustrating that 

the flow-times-MVO2 metabolic mechanism is the highest ranked model, identified as the 

maximally likely among the models tested.

Figure 3 also plots the regulatory signals predicted by the model for the fits to the midwall 

myocardial layer show in panel A. For all three experimental conditions, the resistance 

vessel constricts with increasing the transmural pressure. In control and hemodilution 

conditions, the total activation level A steadily increases from 0 for low CPPs (full dilation) 

to 0.8–0.9 for high CPPs. With the addition of dobutamine, the overall activation is 

shifted down. Panels C-E show the variation of each mechanism in response to changes 

in CPP and experimental conditions. The myogenic contribution increases with increasing 

the transmural pressure, with the greatest values in hemodilution+dobutamine case. The 

predicted autonomic contribution is nearly constant over the observed range of CPP because 

the heart rate is nearly constant for each experimental condition. The autonomic contribution 

is elevated in the hemodilution+dobutamine case due to a higher the heart rate for this 

condition compared to other cases.

The metabolic signal is predicted to be an order of magnitude smaller than the myogenic 

and autonomic signals for the midwall layer for this animal under these conditions. Panel C 

shows that the strongest contributor to the pressure autoregulatory response is the myogenic 

mechanism, with Smyo increasing from 0 at the lowest CPP to 8 at the CPP = 140 mmHg 

(corresponding to average transmural pressure of approximately 60 mmHg in the midwall 

region). The autonomic signal makes the biggest contribution to increasing diameter under 

hemodilution+dobutamine compared to other cases. This prediction is similar to that of 

Pradhan et al. (2016), who predicted that the open-loop autonomic signal contributes more 

to the response in coronary flow to increasing demand in exercise than the metabolic 

feedback signal.

Figures 5, 6, and 7 illustrate how the predicted resistance vessel diameters and regulatory 

signals vary with CPP in each layer of the myocardium, summarizing predictions for all 

experimental animals. In the subepicardium (Figure 5), diameter decreases with increasing 
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CPP under all experimental conditions. This trend is reversed in the subendocardium 

(Figure 7), where an increase in vasodilation with increasing perfusion pressure counters 

the action of increasing transmural pressure. In the hemodilution+dobutamine experiments, 

in particular (Figure 7B), the subendocardium is predicted to be nearly fully vasodilated 

across all values of CPP.

As expected, the myogenic mechanism (panel C of Figure 5, 6, and 7), makes the 

greatest contribution to the pressure autoregulatory response in the subepicardium, and 

smaller contributions in the midwall and subendocardial layers. The autonomic signal 

contribution (panel D of Figure 5, 6, and 7) is not predicted to vary substantially with 

CPP, indicating that this signal does not represent an important factor in eliciting the 

pressure autoregulation response simulated here. This prediction is expected because heart 

rate does not substantially change with CPP in these experiments. Thus we conclude that 

sympathetic outflow to vascular smooth muscle also does not substantially change with 

CPP in these experiments. However, the baseline of the autonomic signal increases from 

the subepicardium to the subendocardium, indicating that the subendocardium may be more 

sensitive to changes in sympathetic tone that the other layers.

In all layers the metabolic signal (panel E of Figure 5, 6, and 7) is predicted to make a far 

greater contribution to the vasoregulation in the hemodilution+dobutamine case compared to 

the other experimental conditions. In all layers the metabolic signal tends to increase with 

CPP, and tends to be slightly greater under hemodilution conditions compared to control. 

The magnitude of the increase with CPP is greatest for the hemodilution+dobutamine case 

because the oxygen demand is greatest in this condition.

Model Validation: Simulating Exercise

The ability of the top performing metabolic signal model, F M, is validated by evaluating its 

ability to simulate coronary flow regulation in conscious resting versus exercise conditions. 

Figure 8 shows input data on aortic and left-ventricular pressures obtained under resting 

(panel A) and moderate treadmill exercise (2–4 mph, 0% grade, panel B). These pressure 

data are used to drive the model to match the measured LAD flows illustrated in Figure 9.

Under resting conditions, the animal’s heart rate was observed to be 84 beats min−1, with 

systolic and diastolic aortic pressures approximately 149 and 102 mmHg, with developed 

pressure in the ventricle matching peak systolic aortic pressure. During exercise heart rate 

increases to 114 beats min−1 and aortic pressures to 162 and 118 mmHg. We assume a 

resting average myocardial oxygen consumption rate of 60 μL O2/min/g based on Kiel 

et al. (2018). Based on the observed aortic pressures and heart rates, we estimate that 

left-ventricular mechanical power output increases by 32% in exercise compared to control 

(Holmberg et al., 1971). And based on the expected linear scaling of power output and 

oxygen demand, we approximate the exercise oxygen consumption rate to be 79.2 μL 

O2/min/g in exercise.

Given the measured driving pressures and the estimated myocardial oxygen consumption 

rates, the integrated model can be used to simulate myocardial perfusion in resting 

and exercise conditions. However, parameters estimated based on the zero-flow pressure 

Gharahi et al. Page 16

J Physiol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments (Tables 1 and 2) show a degree of variability and uncertainty. Moreover, they 

are estimated for different individual animals. Thus, to match the conscious data of Figures 

8 and 9, a subset of adjustable parameters was identified, as described in the methods. 

Adjustable parameters for the conscious experiments are listed in Table 4.

Simulated total LAD flow, obtained using the identified F.M model, is compared to 

measured data for baseline rest (panel A) and exercise (panel C) conditions in Figure 9. The 

model effectively captures both the pulsatile nature of the flow and the dynamics of flow 

recruitment in exercise. Panels B and C of Figure 9 show the predicted flow to each of the 

three myocardial layers, revealing that that the subendocardial flow is positive only during 

diastole, and becomes negative during systole. In contrast, the subepicardial flow shows 

positive peaks during both systole and diastole. During exercise, when the driving aortic 

systolic pressure increases, the systolic peak becomes more important in the subepicardium.

Model predictions of average flow and of the subendocardial-to-subepicardial perfusion 

ratio are compared to experimental data on Figure 10. In fitting the flow data, the 

model correctly predicts the transmural variations in perfusion in rest versus exercise. For 

comparison predictions associated with the best fit of the MSLSv (ranked 5 in Table 3) 

model are shown in panels A and B. This model is able to match the measured flow, but in 

doing so predicts subendocardial-to-subepicardial perfusion ratios that are much lower than 

physiological. These results represent a validation of our identified model and of our model 

selection procedure. Moreover, the modeling framework provides predictions of transmural 

constriction/dilation of vessels in terms of their overall vascular tone (e.g., activation A), 

and normalized diameter (Figure 10 C & D). Subendocardial layer tone is predicted to 

decrease to almost full vasodilation in exercise while the subepicardial layer tone increases. 

The overall increase in tone in the subepicardial layer is overcome by the pressure-induced 

dilation (panel D).

Figure 11 illustrates how each regulatory signal contributes to the overall predicted 

response to exercise. The figures plots the exercise-induced change in each stimuli 

(ΔS = Stone
exercise − Stone

rest) in each layer of the myocardium for the F.M model. The model-

predicted vasoconstriction in the subepicardium in exercise is shown to be due to a 

myogenic response to elevated perfusion pressure. The autonomic vasodilation signal (SHR) 

is predicted to preferentially influences the subendocardium, with a negligible on the 

subepicardium.

Discussion

The physiological balance between coronary blood and myocardial oxygen consumption 

(MVO2) is preserved over a variety of physiological and pathophysiological conditions, 

including in the response to exercise where increases in oxygen demand are met by 

corresponding increases in oxygen delivery.

Modeling framework and the overall approach –

This study integrates a lumped approach to simulating ventricular-vascular interaction and 

myocardial perfusion adapted from Spaan et al. (2000), and Mynard et al. (Mynard et al., 
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2014; Mynard & Smolich, 2016), a vasoregulation model adapted from Carlson and Secomb 

(2005), and a panel of competing mechanisms representing metabolic control of myocardial 

blood flow. The multi-scale modeling framework is illustrated in Figure 2. The model 

components are identified based on analysis of data from zero-flow pressure experiments, 

as illustrated in Figure 1. Based on their relative ability to match the experimental data, 

ranked based on goodness of fit and degrees of freedom in the models, the maximally likely 

metabolic mechanism is identified, and further validated based on simulations of conscious 

response to exercise (Figures 8, 9, and 10). One of the major novelties of our study is 

the application of established tools for model discrimination in the context of multi-scale 

systems with high degrees of uncertainly and structural and parametric freedom.

Identification of hypothetical metabolic signal –

Data from three conditions and four experimental animals were analyzed with model 

formulations that integrated seven competing hypotheses for the nature of the metabolic 

feedback signal. The competing hypotheses are summarized in Table 3, along with a 

summary ranking of most-to-least likely mechanism. These results illustrate a combined 

structural and parametric model identification, with several competing models ruled out as 

not viable. In the top-ranked model, the metabolic signal is represented as proportional to 

metabolic rate and flow. Our preliminary interpretation of this result is that it represents 

an ephemeral metabolic signal for which production is proportional to MVO2 and delivery 

proportional to flow. Potential candidates for such a signal include short-lived reactive 

species such as H2O2 (Saitoh et al., 2006).

Predicted resistance vessel diameters are plotted as functions of transmural pressure at 

different CPP values for the midwall layer in one experimental animal in Figure 4. 

Predicted diameters are plotted as functions of CPP for all animals under all conditions in 

Supplementary Figures S14−S25. Simulations consistently show a greater resistance vessel 

diameter for the hemodilution compared to control case. These differences are small but 

important because they are consistently required to match the data on flow and pressure. 

In fact, the reason why the ATP-mediated metabolic model (Metabolic Signal #1, Table 

3) cannot effectively match data from the zero-flow pressure experiment is that it cannot 

capture this phenomenon. In other words, even with arbitrarily adjusting parameters, the 

output of the model capturing the ATP hypothesis cannot be made to be consistent the 

observed pressure response to upstream occlusion. Therefore, by combining the lumped 

microcirculation model, a simple vessel mechanics model, and our ATP-mediated metabolic 

control model to analyze these data, our analysis argues against the hypothesis that ATP 

derived from red blood cells represents the primary metabolic signal for coronary blood 

flow regulation. Rigorously, discarded models are judged as non-viable only in the form 

that they are implemented for this analysis. Nevertheless, this finding highlights the sort of 

novel insight that comes from analyzing time-dependent data using even a relatively crude 

multi-scale and spatially distributed modeling framework.

Thus although we do not interpret the top-ranked model as “proven” or “correct”, the 

disproof of the alternatives usefully narrows the scope of possibilities. Furthermore, even if 

the basic formulation of the F·M model correctly represents the basic action of metabolic 
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mechanism, this analysis does not identify the molecular mechanism underlying the putative 

mechanism. Rather, we interpret the ephemeral metabolic signal F·M model as a working 

hypothesis to test and refine with further experiments and models that represent the 

metabolic and signaling mechanisms with more mechanistic resolution. The validity of 

this working hypothesis is supported by the ability of the associated model to simulate the 

response in myocardial perfusion to exercise.

Matching demand in exercise –

The ability of the ephemeral signal hypothesis, when integrated in this modeling framework, 

to effectively simulate the dynamics of myocardial perfusion in the transition from resting 

state to exercise is illustrated in Figures 8, 9, and 10. Because lower-ranked models (e.g., 

Metabolic Signal #5) predict a greater than physiological drop in subendocardial perfusion 

with exercise, these results represent a validation of the maximal-likelihood evaluation 

process: the top-ranked model captures behavior not used for identification, while lower 

ranked models fail.

Simulation of the exercise response also yields novel hypotheses regarding the regional 

response to increasing exercise demand. For example, simulations predict that subepicardial 

vascular tone is higher during exercise than at rest, due to a myogenic response to 

elevated perfusion pressure. Another prediction associated with the exercise simulations 

is that sympathetic-mediated vasodilation preferentially influences the subendocardium. 

The physiological role of sympathetic activation in the control of myocardial perfusion 

is much more complex than the simplified way it is treated in the current model, which does 

not take into account a potentially heterogeneous distribution of α-mediated constriction 

effectors (Duncker & Bache, 2008; Goodwill et al., 2017). Moreover, measurement of 

β2−adrenergic receptor densities show transmurally uniform expression in the human 

myocardium (Murphree & Saffitz, 1989; Beau et al., 1993). Furthermore, subepicardial 

resistance arterioles from pig have been observed to show a greater vasodilation response to 

selective β2 stimulation and have greater β2 receptor density than subendocardial resistance 

arterioles (Hein et al., 2004). At the same time, there is evidence to support that α-mediated 

vasoconstriction acts to preferentially distribute flow to the subendocardium during exercise 

(Huang & Feigl, 1988; Morita et al., 1997). However, this maintenance of ENDO/EPI 

ratio appears to occur under conditions in which heart rate (≥ 240 beats/min) and MVO2 

(> 500 μl O2/min/g) are very high as alternative studies at lower levels of exercise have 

failed to support the preferential redistribution of blood flow toward the endocardium under 

normal physiologic conditions (Gwirtz et al., 1992; Baumgart et al., 1993). Regardless, 

it is apparent that α-constriction does facilitate this redistribution of coronary flow in 

the setting of ischemia (Nathan & Feigl, 1986; Chilian & Ackell, 1988). Our model 

lumps α- and β-mediated effects on resistance vessels into a single signal, SHR. Thus 

the model prediction that the gain associated with this signal is greater in the subendo- 

compared to subepicardium is consistent with the interpretation that the overall response to 

sympathetic stimulation is relatively more vasodilatory in the subendocardium compared to 

the subepicardium. Moreover, this overall transmural gradient in the response of vascular 

tone in exercise is undoubtedly influenced by regional heterogeneities in responses of 

vessels of different sizes and transmural depth to metabolic, myogenic, and autonomic 
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signals. A deeper investigation of how these factors work together in vivo may be possible 

by combining models with more anatomically resolved detail (Namani et al., 2020) with the 

regulatory mechanisms analyzed here.

Limitations of the study –

The current model uses a simplified lumped-parameter of myocardial circulation 

downstream of the LAD, capturing regional differences in perfusion only in terms of a 

relatively coarse representation of transmural heterogeneity in the LV free wall. Previous 

applications of this approach have coupled the myocardial perfusion model to a 1D 

hemodynamics models of epicardial vessels to simulate regional perfusion, for example 

in the left-ventricular free wall versus the septum (Mynard et al., 2014; Mynard & Smolich, 

2016). Moreover, the target transmural flow distribution (ENDO/EPI ratio) in the current 

study is estimated from literature reports, which consistently report ENDO/EPI at only 

one experimental point (control, CPP=100 mmHg). More data on variation of transmural 

perfusion with CPP would be valuable in constraining and testing model behavior. More 

broadly, a rigorous uncertainty quantification will be useful in analyzing measurement 

errors propagated to the final model predictions. Finally, the current model assumes the 

intramyocardial pressure is a linear function of left ventricular pressure in all cases. This 

assumption has to be re-examined especially for dobutamine experiments which involve 

elevations in the myocardial contractility, which directly influences the intramyocardial 

pressure via changes in the myocyte shortening induced pressure (Algranati et al., 2010).

Finally, although our analysis points to a single candidate mechanism as representing the 

metabolic signaling pathway for control of myocardial perfusion, it is possible and even 

likely that multiple different specific mediators operate under the aegis of this general 

framework. Moreover, the analysis conducted here is limited to considering each putative 

metabolic mechanism on its own and does not rule out the likely possibility of multiple 

mechanisms acting in parallel. Most concretely, this analysis reveals which of the tested 

mechanisms are unable to effectively explain the observed in vivo autoregulatory behavior, 

and does not unambiguously identify the correct mechanism that is operative in vivo. 

How coronary perfusion is regulated to be directly proportional to oxygen demand is 

a fundamental question in coronary physiology. The general framework that survives 

testing against these data explicitly invokes a direct proportionality between a vasodilatory 

signal and oxygen consumption rate. Thus this framework may ultimately prove to be a 

convenient temporary placeholder against which to judge more detailed specific hypotheses. 

Alternatively, it may prove to be the mechanistically correct foundation on which to build 

more detailed specific hypotheses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• While several competing hypotheses exist, we lack knowledge of specific 

nature of the metabolic mechanism(s) governing regional myocardial 

perfusion.

• Moreover, we lack and understanding of how parallel myogenic, adrenergic/

autonomic, and metabolic mechanisms work together to regulatory oxygen 

delivery in the beating heart.

• We have developed a multi-scale modeling framework to test competing 

hypotheses against experimental data on coronary pressure, flow, and 

myocardial oxygen delivery in the porcine heart in vivo.

• Analysis identifies a maximally likely metabolic mechanism among seven 

tested models, in which production of a metabolic signaling factor is 

proportional to MVO2 and delivery proportional to flow.

Gharahi et al. Page 24

J Physiol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
An example data set used to identify Model 1 for an individual animal under control 

conditions. A. Pressure recordings obtained at 6 levels of CPP following occlusion of left 

anterior descending (LAD) artery. The artery is occluded at ∼7 sec and the decay distal 

to the occlusion is recorded. B. Total LAD flow, measured at different values of CPP. C. 

Myocardial subendocardial-to-subepicardial (ENDO/EPI) flow ratio before the occlusion. 

Data in Panels A and B are from Kiel et al. (Kiel et al., 2018). Measured ENDO/EPI flow 

ratio under baseline control conditions is targeted to 1.25 (see text for details). Measured 

data in panels is plotted in black; model simulations in red.
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Figure 2. 
Schematic of the modeling approaches. Model 1: The myocardial circulation model 

which determines the flow and pressure in each layer of the myocardium. Model 2: A 

representative vessel model endowed with regulatory mechanisms to determine the level of 

vascular tone in each layer.
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Figure 3. 
Vasoregulation as a function of transmural wall pressure. A. Model predictions of relative 

resistance vessel diameters are shown for the midwall layer for pig C for the midwall 

layer. Diameters for the three experimental conditions, associated with the fits of Model 

1 to the zero-flow pressure experiment, are plotted as “+” markers: blue for control; 

green for hemodilution; and red for hemodilution + dobutamine. The matches of Model 

2-based predictions (using the ‘F M’, flow times MVO2, metabolic signal) to the diameter 

estimates are plotted as “o” markers connected by dashed lines. B. Predicted total smooth 

muscle activation is plotted as a function of transmural pressure in the zero-flow pressure 

experiment. C. Predicted myogenic activation signal is plotted as a function of transmural 

pressure in the zero-flow pressure experiment. D. Predicted autonomic activation signal 

is plotted as a function of transmural pressure in the zero-flow pressure experiment. E. 
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Predicted metabolic activation signal is plotted as a function of transmural pressure in the 

zero-flow pressure experiment.
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Figure 4. 
Measured versus model-predicted LAD flow for each of four experimental animals under 

three different experimental conditions. In control and hemodilution conditions, coronary 

autoregulation impedes a significant increase in flow with increases in CPP (60–120 

mmHg). However, the overall myocardial blood flow is elevated with hemodilution. 

Dobutamine infusion significantly increases the flow compared to the control and 

hemodilution conditions and largely abolishes the autoregulatory response in all animals.

Gharahi et al. Page 29

J Physiol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Vasoregulation in subepicardial vessels. A. Predicted mean and standard error of 

subepicardial resistance vessel diameter is plotted as a function of CPP. B. Predicted mean 

and standard error of total vessel activation is plotted as a function of CPP. C. Predicted 

mean and standard error of myogenic activation signal is plotted as a function of CPP. D. 

Predicted mean and standard error of autonomic activation signal is plotted as a function of 

CPP. E. Predicted metabolic activation signal is plotted as a function of CPP.
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Figure 6. 
Vasoregulation in midwall vessels. A. Predicted mean and standard error of subepicardial 

resistance vessel diameter is plotted as a function of CPP. B. Predicted mean and standard 

error of total vessel activation is plotted as a function of CPP. C. Predicted mean and 

standard error of myogenic activation signal is plotted as a function of CPP. D. Predicted 

mean and standard error of autonomic activation signal is plotted as a function of CPP. E. 

Predicted metabolic activation signal is plotted as a function of CPP.
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Figure 7. 
Vasoregulation in subendocardial vessels. A. Predicted mean and standard error of 

subepicardial resistance vessel diameter is plotted as a function of CPP. B. Predicted mean 

and standard error of total vessel activation is plotted as a function of CPP. C. Predicted 

mean and standard error of myogenic activation signal is plotted as a function of CPP. D. 

Predicted mean and standard error of autonomic activation signal is plotted as a function of 

CPP. E. Predicted metabolic activation signal is plotted as a function of CPP.
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Figure 8. 
Measured aortic and left-ventricular pressure time courses for a conscious pig in rest (left 

panel) and exercise (right panel).
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Figure 9. 
Coronary flow dynamics in rest versus exercise. A. Model-predicted total LAD flow under 

resting control conditions is compared to measured flow. B. Predicted contributions of 

subendocardial, midwall, and subepicardial flow to total LAD flow under resting conditions 

are shown. C. Model-predicted total LAD flow under exercise conditions is compared to 

measured flow. D. Predicted contributions of subendocardial, midwall, and subepicardial 

flow to total LAD flow under exercise conditions are shown. In both rest and exercise 

conditions the model simulations reflect the integrated model using the top-ranked using the 

‘F M’, flow times MVO2, metabolic signal.
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Figure 10. 
Regulation of coronary flow in exercise. A. Comparison of measured to model-predicted 

total LAD flow in resting versus exercise condition. B. Comparison of measured to model-

predicted subendocardial-to-subepicardial (ENDO/EPI) flow in resting versus exercise 

condition. In panels A and B fits from competing metabolic model are illustrated, showing 

that the lower ranking model fails to capture the ENDO/EPI flow ratio. C. Predicted total 

vascular tone activation in each layer of the myocardium for resting and exercise conditions. 

D. Predicted representative resistance vessel diameter in each layer of the myocardium for 

resting and exercise conditions.
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Figure 11. 
The change in total, myogenic, metabolic, and autonomic stimuli in response to exercise. 

The gray bars show the net total change in stimulus in each layer exercising compared 

to rest conditions. The individual contributors to the stimuli signal—myogenic, autonomic, 

and metabolic—sum to the total in each layer. The total stimulus in the subepicardium is 

higher in exercise than in rest, resulting in an increased activation. The primary contributor 

to the increased activation in the subepicardium in exercise is the myogenic stimulus. In 

the subendocardium exercise causes an overall reduction in vascular tone, caused by a 

combination of metabolic and autonomic stimuli.
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Table 1.

List of adjusted parameters for Model 1.

Parameter Mean and (Range) of Estimated Values Unit Description

Lpa 1.737 (0.129–3.976) mmHg / (mL s−2) Blood inertance in perfusion circuit and epicardial vessels

Rpa 2.729 (0.367–8.511) mmHg / (mL s−1) Resistance in perfusion circuit and epicardial vessels

Cpa 0.0211 (0.009–0.042) mL / mmHg Compliance in perfusion circuit and epicardial vessels

V 0 0.455 (0.218–0.643) mL Reference volume

V c 0.194 (0.020–0.599) mL Collapsible volume

R0,3 104.00 (46.33–217.43) mmHg / (mL s−1) Reference subendocardial arterial resistance

C13 0.0044 (0.001–0.010) mL / mmHg Subendocardial arterial compliance

cf 0.8686 (0.716–0.999) − The ratio of subepicardial to subendocardial compliance

rf 1.4549 (2.047–1.006) − The ratio of subepicardial to subendocardial resistance

β 0.3360 (0.034–0.819) − Degree of graded vasoreactivity

fCPP
[7.43 (1.006–19.522), 7.11 (2.015–12.183),

2.55 (1.163–6.221),
0.38 (0.002–0.999),
0.30 (0.003–0.999)]

− Vasoreactivity factor for CPP=40,60,80,120,140 mmHg
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Table 2.

List of adjustable parameters for Model 2

Parameter Subepicardial* Midwall* Subendocardial* Unit Description

Ap 103.639 88.173 91.765 − Maximum asymptotic radius

Bp 12.653 17.925 19.225 − Minimum asymptotic radius

Cp 13.310 4.171 30.677 mmHg Bandwidth between Ap and Bp

ϕp 2.212 −5.933 −14.544 mmHg Pressure offset

ρm 344.551 302.345 164.330 mmHg Magnitude of active tension

Cm 86.355 77.231 133.991 − Spread of Gaussian

ϕm 142.857 126.668 112.545 − Center of Gaussian

Cmyo 22.554 11.446 10.776 mmHg−1 Myogenic coefficient

CHR 0.026 0.034 0.081 min Autonomic coefficient

HR0 92.302 79.642 75.657 min−1 Heart rate offset

Cmeta 0.467 0.196 0.195 [Model dependent] Metabolic coefficient

S0 0.0157 0.0100 0.0133 − ATP release parameter (only for ATP-dependent 
case)

C0 −6.351 −2.429 −0.752 − Tone offset

*
Mean parameter estimate listed for the top-ranked model, except for S0, which is a parameter only for the ATP-dependent model
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Table 3.

Models are ordered by their AICc value with the best model ranked 1.

Metabolic Signal # Metabolic Signal AICck Δk RLk Rank

6 F M, flow times MVO2 542 0 1.00 1

5 F ΔS, flow times oxygen extract. 556 14 2.86e-02 2

2 MVO2, metabolic rate 610 68 4.66e-08 3

3 Sv, venous oxygen saturation 614 72 1.68e-08 4

4 LSv, Regionally varying Sv 617 75 8.14e-09 5

1 ATP, ATP release from RBC’s 627 85 5.62e-10 6

7 MVO2
2, nonlinear metabolic 688 146 1.50e-16 7
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Table 4.

List of adjustable parameters and estimated values for in vivo simulations

Parameter Layer CoV Sensitivity Estimated Value

ϕm Midwall 0.3084 1.38 133.577

Cmyo Midwall 0.3075 0.13 13.923

C0 Midwall 0.3405 2.07 −3.296

ϕp Subepicardial 7.6885 0.29 20.736

ϕm Subepicardial 0.3633 2.53 75.439

Cm Subepicardial 0.5246 1.32 107.652

Cmyo Subepicardial 0.3010 0.28 27.483

C0 Subepicardial 0.5264 0.46 −9.735
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