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Abstract

Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated 

herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have 

oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. 

As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative 

diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect 

epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing 

sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal 

carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets 

of diffuse large B cell lymphoma, post-transplant lymphoproliferative disorder, and gastric 

carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric 

Castleman disease, and KSHV-positive diffuse large B cell lymphoma. Pathogenesis by these 

two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent 

lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV 

viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the 

pathogenesis and clinicopathology of their related neoplastic entities.
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Introduction

The human gammaherpesviruses Epstein-Barr virus (EBV; human herpesvirus-4 or HHV-4) 

and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus-8 or HHV-8) are 

etiologic agents of a specific set of lymphoid and non-lymphoid neoplasms [1]. Like other 

herpesviruses, EBV and KSHV are double-stranded linear DNA viruses that exhibit a 

biphasic lifecycle (i.e., lytic and latent forms). Infections tend to persist in the host. Both 

viruses are known to cause human cancers when the infected hosts are immunosuppressed. 

EBV infects ~90% of the world’s adults and is considered an oncogenic viral agent for 

several distinct human neoplasms, including nasopharyngeal carcinoma (NPC) [2], Burkitt 

lymphoma (BL) [3], classic Hodgkin lymphoma (CHL) [4], EBV-positive diffuse large 

B cell lymphoma (EBV+ DLBCL) [5], DLBCL associated with chronic inflammation 

[6], plasmablastic lymphoma (PBL) [7], lymphomatoid granulomatosis [8], and subsets 

of post-transplant lymphoproliferative disorder (PTLD) [9], gastric carcinoma (GC) [10], 

and leiomyosarcoma [11]. Of note, EBV was the very first human tumor virus identified. 

KSHV is implicated in Kaposi sarcoma (KS) [12], primary effusion lymphoma (PEL) [13, 

14], multicentric Castleman disease (MCD) [15], and KSHV-positive diffuse large B cell 

lymphoma [16]. The numerous neoplasms caused by EBV and KSHV are likely due to their 

large genomes that encode a myriad of viral genes, which in turn enable these viruses to 

express proteins that modify the cellular environment.

Viral life cycle and oncogenesis

The primary route of transmission for both EBV and KSHV is via bodily fluids including 

saliva [17–19]. The virus lifecycle can be delineated into two phases, latency and lytic 

replication (Figure 1). As the default viral lifecycle of EBV and KSHV, latency is key for 

these viruses to persist in the infected cells. During latency, the viral genomes assume a 

circular/ring structure known as an episome. The viruses are replicated during host cell 

division and then segregated into daughter cells [20]. Only few viral genes are expressed in 

the latent state and no virions are produced during the latent stage. In contrast, viral lytic 

replication occurs following reactivation from latency or following infection in some cell 

types depending on the virus. Infectious virions are produced as a result of lytic infection. 

During lytic replication, viral gene expression is highly orchestrated in three sequential 

phases, including the immediate early (IE), delayed early (DE), and late (L) phase. IE genes 

do not require protein synthesis to be expressed (indicating that host cell factors are capable 

of activating the promoters of IE genes) and most IE genes are viral transcription factors. 

DE gene expression is dependent upon protein expression but not DNA synthesis and DE 

genes e.g., DNA polymerase is involved in replication of the viral DNA. Finally, L genes 

are expressed after DNA synthesis. Late proteins generally encode viral capsid and envelope 

proteins, but also include tegument proteins that are able to function immediately upon 

infection.

Typically, in the immunocompetent host, EBV and KSHV persist in infected B cells 

for many years without causing noticeable pathology. However, such long-term viral 

persistence via latency is postulated to contribute to human cancer when the host becomes 
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immunocompromised. However, evidence suggests that certain lytic proteins are also 

involved through autocrine/paracrine effects that can enhance transformation [21–23].

Viral oncogenic signaling

EBV and KSHV have evolved to hijack multiple cellular signaling pathways involved in 

tumorigenesis and oncogenesis. Here we will focus on three major pathways modulated 

by viral proteins: i) phosphatidylinositol-4,5-bisphosphate 3 kinases (PI3K)/protein kinase 

B (Akt)/mammalian target of rapamycin (mTOR) pathway; ii) mitogen-activated protein 

kinase (MAPK) pathway; and iii) nuclear factor-κB (NF-κB) pathway (Figure 1). There 

is crosstalk amongst these pathways, adding to the complexity of the interplay between 

host cell factors and viral proteins [24–26]. We have decided to select the three pathways 

above because they are well-known in viral and non-viral oncogenesis and can be used 

to highlight the roles of EBV and KSHV oncoproteins. In addition to these three major 

pathways, there is a plethora of other cellular pathways perturbed by both viruses (e.g., 

Notch, Wnt/β-catenin, JAK/STAT, TGF-β, p53, Toll-like receptors, etc reviewed in [27–30], 

but they are beyond the scope of this review.

PI3K/Akt/mTOR pathway

There are four classes of PI3K (IA, IB, II, and III) [31]. Class IA and IB PI3Ks 

are heterodimeric proteins comprised of a regulatory subunit (p85α, p85β, p55α, p55γ 
and p50α) and a catalytic subunit (p110α, p110β, p110δ and p110γ) [32]. Classes 

IA and IB catalyze the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into 

phosphatidylinositol-3,4,5-triphosphate (PIP3). This enables pleckstrin homology (PH)-

domain containing proteins to localize to the plasma membrane [32]. As a phosphatase, 

phosphatase and tensin homology (PTEN) reverses the reaction, converting PIP3 back 

to PIP2 [33]. Loss of PTEN expression or function thus removes the brake on PI3K-

mediated signaling. PIP3 recruits phosphoinositide-dependent kinase 1 (PDK1) to the 

plasma membrane, where PDK1 activates Akt by phosphorylation. By inhibiting tuberous 

sclerosis complex 2 (TSC2), Akt activates mTOR complex 1 (mTORC1), resulting in 

induction of protein synthesis [34]. In brief, mTORC1 phosphorylates p70 S6 kinase 

(S6KB1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). The 

phosphorylation of p70 S6 kinase (S6KB1) leads to downstream phosphorylation of the S6 

ribosome for protein translation. Phosphorylated 4EBP1 unleashes 4EBP1’s inhibitory effect 

on eukaryotic initiation factor 4E (eIF4E) and this unlocks the cap-dependent translational 

machinery [35]. Thus, the PI3K/Akt/mTOR signaling axis activates biogenesis and cellular 

proliferation. mTORC1 signaling has also been shown to regulate lipid metabolism and 

autophagy [36]. Other Akt downstream effects also include promoting cell cycle progression 

via transactivation of MYC and CCND1 genes and repressing apoptosis (by inhibiting 

pro-apoptotic proteins such as Fas ligands) [37, 38].

MAPK pathway

The MAPK pathway can be physiologically initiated by growth factors, cytokines, and 

various stress (e.g. heat, oxidation, and radiation) [39]. In this signaling cascade through 

a series of phosphorylation events, a stimulus activates MAPKK kinase (MAPKKK) [24], 
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which in turn activates a MAPK kinase (MAPKK). The activated MAPKK subsequently 

phosphorylates and activates a downstream MAPK. The activated MAPK ultimately 

translocates into the nucleus and activates various transcriptions factors. Through this 

signaling cascade, the signal is dramatically amplified. The four canonical MAPK families 

in mammalian systems include extracellular-signal-regulated kinase (ERK) 1/2, ERK5, 

c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK), and p38 kinase 

[40]. For example, in the “classical” MAPK pathway, extracellular ligand (growth factor 

or cytokine) binds to a receptor (e.g., G protein-coupled receptor (GPCR)), which 

phosphorylates and activates the MAPKKK Raf. Phosphorylated Raf then phosphorylates 

and activates the MAPKK MEK1/2, which in turn phosphorylates and activates the 

MAPK Erk1/2. Activated Erk1/2 then activates the substrate p90 S6 kinase (RSK), which 

subsequently activates various transcription factors including AP-1 [24]. As mentioned 

above, RSK also activates S6 and eIF4B that are a part of the mTORC1 signaling. The 

MAPK signaling events are critical for cell proliferation, cell cycle regulation, migration, 

and survival [40, 41].

NF-κB pathway

There are two major NF-κB pathways, namely, the canonical/classical and non-canonical/

alternative pathways. The transcription factor (p65/p50 heterodimer) in the canonical 

pathway is inactivated and cytoplasmically sequestered by an inhibitor of NF-κB (composed 

of KKα/IKKβ/IKKγ (IKKγ is also known as NEMO)). The classical NF-κB pathway 

can be stimulated by tumor necrosis factor (TNF), IL-1, Toll-like receptor ligands, B 

cell receptor, or T cell receptor [42]. This is followed by activation of IκB kinase (IKK) 

complex, which then phosphorylates and degrades IκB via ubiquitination and proteasomal 

degradation. This subsequently enables the NF-κB heterodimer to translocate into the 

nucleus, whereby it activates several genes that are important for cell proliferation, 

angiogenesis, and inflammation [43].

The non-canonical NF-κB pathway can be induced by lymphotoxin, receptor activator of 

NF-κB ligand (RANKL), CD40 ligand, and B cell activating factor of the TNF family [42]. 

The NF-κB heterodimeric complex here is RelB/p52 instead of p65/p50. The non-canonical 

pathway is repressed by p100 in lieu of IκBα. Similar to IκBα in the canonical pathway, 

proteasomal degradation of p100 frees the NF-κB complex from cytoplasmic sequestration, 

permitting downstream activation of the pathway [44]. This alternative pathway is important 

for secondary lymphoid organ establishment and maintenance [43].

Individual KSHV/EBV viral proteins that modulate the above three major signaling 

pathways are described in subsequent sections of this review.

EBV lytic cycle

In order to enter epithelial cells, the virus binds to αvβ integrins and ephrin A2 receptor 

on epithelial cells [45, 46]. The viral glycoprotein gp350/gp220 allows EBV to bind CD21 

on B cells, and fusion is triggered by a complex composed of gH/gL (gp110/gp85) and gB 

(gp25) [47, 48]. Next, the viral capsid enters the cytoplasm through endocytosis, followed by 

transportation along the microtubule to the nuclear membrane [49], where the viral genome 
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is injected into the nucleus through the nuclear pore and viral replication ensues. Viral 

replication can also occur when EBV-infected cells are reactivated from latency (Figure 2).

The immediate early (IE) lytic genes BZLF1 (Zta or ZEBRA) and BRLF1 (Rta) initiate 

lytic EBV replication. EBV Zta has a preference for the CpG sequences on the methylated 

viral genome [50]. This results in upregulated expression of ~30 early lytic genes. Linear 

viral DNA is also replicated. EBV can be reactivated from latency by chemical or 

biological induction using reagents including 12-O-tetradecanoylphorbol-13-acetate (TPA), 

5-aza-deoxycytidine (5-aza), calcium ionophore, sodium butyrate, histone deacetylase 

inhibitor, anti-immunoglobulin, hypoxia, or TGF-β [51].

Following infection of epithelial cells, EBV can subsequently cross the mucosa and spread 

into the blood stream to infect primary B cells and memory B cells.

EBV latent cycle (0, I-III)

Latency is established after a brief period of abortive lytic replication [52–55]. Viral 

latency is classified into 4 types (types 0, I, II, and III) based on the latent genes 

expressed (Figure 2, Table 1). During latency 0 (exemplified in healthy individuals), 

EBER-1, EBER-2, and miRNAs are expressed. EBER-1, EBER-2, BARTs, miRNAs, and 

EBNA1 are expressed during latency I (e.g., Burkitt lymphoma). Latency II (exemplified by 

nasopharyngeal carcinoma and classic Hodgkin lymphoma) additionally includes expression 

of LMP1, LMP2A, and LMP2B. In latency III (characterized by EBV-positive large B 

cell lymphoma and EBV-positive post-transplant lymphoproliferative disorder), EBNA2, 

EBNA3A, EBNA3B, EBNA3C, and EBNA-leading peptide (LP) are expressed in addition 

to the genes expressed in latency II. Latency is primarily observed in infected B 

lymphoblasts [56]. The critical roles of EBV lytic and latent cycles during oncogenesis 

is nicely described in a review by Münz [57].

EBV oncogenic viral proteins

Latent membrane protein 1 (LMP1)

LMP1 is frequently detected in nasopharyngeal carcinoma, classic Hodgkin lymphoma, 

Burkitt lymphoma, HIV+ lymphomas, EBV+ PTLD, and EBV+ gastric carcinoma [58–62]. 

LMP1 functions as a constitutively active tumor necrosis factor (TNF) receptor CD40. It has 

been shown to activate the MAPK, PI3K (Akt), c-Jun N-terminal kinase (JNK), epidermal 

growth factor receptor (EGFR), and NF-κB signaling pathways, which regulate cellular 

proliferation, cell cycle progression, motility, and anti-apoptosis via BCL2 expression [63] 

(Figure 1). The carboxyl-terminal activating regions 1 (CTAR1) and CTAR2, have been 

identified within the cytoplasmic carboxy terminal domain of LMP1 that activates NF-κB: 

CTAR1 recruits the TNF receptor–associated factors (TRAFs such as TRAF1/2 or TRAF3/5 

heterodimers), which in turn activate NF-κB-inducing kinase (NIK) and inhibitor of κB 

kinase α (IKKα) leading to stimulation of the noncanonical NF-κB pathway, while also 

activating the canonical pathway [64–66]. CTAR1 also activates PI3K, which in turns 

activates Akt and glycogen synthase kinase 3β (GSK3β) [67]. CTAR2 recruits TRAF2 and 

TRAF6 using adapter molecules to activate the canonical NF-κB pathway [68].

Wen et al. Page 5

FEBS J. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LMP1 CTAR2 also activates c-Jun N-terminal kinase pathway by recruiting TRADD and 

TRAF2 [69, 70]. Furthermore, LMP1 downregulates the cyclin-dependent kinase inhibitors 

p27Kip1 and p16INK4a, as well as upregulates the inhibitor of differentiation 1 (Id1) and 

inhibitor of differentiation 3 (Id3), cyclin-dependent kinase 2 (CDK2), and retinoblastoma 

(Rb) [71–73].

LMP1 has transforming activity in epithelial cells, B cells, and fibroblasts in vitro [65, 74, 

75]. Of note, activation of the PI3K-Akt pathway, but not NF-κB, is required for Rat-1 

fibroblast transformation [76]. In NPC cells, LMP1 has been shown to inhibit necroptosis 

through targeting receptor-interacting protein kinase 1 (RIPK1) and RIPK3 ubiquitination 

[77]. In murine models, LMP1 expression induces B cell lymphoma [62].

Latent membrane protein 2A (LMP2A)

LMP2A maintains viral latency in infected B cells. LMP2A contains immunoreceptor 

tyrosine-based activation motifs (ITAM) that enable it to function like a B cell receptor 

(BCR) and activate PI3K/Akt pathway, via activation of the tyrosine kinases Src and Lyn 

and PY motifs [78–82] (Figure 1). It thus drives B-cell development and provides a survival 

signal for EBV-infected cells independent of BCR [82, 83]. Interestingly, a high level of 

LMP2A can block BCR expression and signaling by a dominant-negative effect [84, 85]. It 

effectively excludes BCR from lipid rafts and directs Lyn and Syk kinases away from the 

BCR and to the ubiquitin-proteasome degradation pathway [85–88]. LMP2A also enhances 

production of IL-10 by activating Bruton’s tyrosine kinase (BTK) and signal transducer and 

activator of transcription 3 (STAT3) [89]. LMP2A interacts with many cellular proteins as 

highlighted in a review on the LMP2A signalosome [90].

LMP2A expression is frequently detected in NPC, HL, and EBV+ gastric carcinoma [91–

93]. In a gastric carcinoma line, LMP2A overexpression can prevent apoptosis induced by 

TGF-β1 [94]. This appears to be due to up-regulation of survivin expression by LMP2A 

[95]. LMP2A transgenic mice were characterized by a lack of surface immunoglobulin 

rearrangement resulting in BCR-negative B-cells, and yet these B-cells developed and 

survived via LMP2A ITAM signaling without the need for normal BCR signaling [82, 96]. 

B-cells from the LMP2A transgenic mice were sensitive to apoptosis with specific inhibitors 

of Ras, PI3K, and Akt, suggesting that LMP2A activates these cellular molecules to enhance 

B-cell survival [97].

Epstein-Barr virus nuclear antigen (EBNA)1

EBNA1 protein is crucial for latency and replication of the EBV genome. It tethers the 

circularized EBV episomes via the latent origin oriP to the host chromatin during cell 

division [98–103]. Binding to host chromosomes is mediated by EBNA1’s RG-rich residues, 

arginine-rich and glycine rich regions, its association with EBP2 and other proteins, and/or 

G-quadruplex RNA binding action [100, 104–108]. This enables episomal maintenance in 

latently infected B cells [109–111]. In addition, EBNA1 can also enhance cellular and viral 

gene expression by binding to various promoters [112, 113].

EBNA1 is known to exert an indirect effect on the canonical NF-κB signaling pathway by 

inhibiting IKK phosphorylation and nuclear translocation of p65 [114]. In addition, EBNA1 

Wen et al. Page 6

FEBS J. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can interact with USP7 that modulates p53 and Mdm2 by preventing their degradation 

[115, 116]. EBNA1 can also lead to the disruption of promyelocytic leukemia (PML) 

nuclear bodies, resulting in destabilization of p53, inhibition of apoptosis, and impaired 

DNA damage repair [117]. By forming a complex with Sp1/Sp1-like proteins bound to their 

cis-element at the survivin promoter, EBNA1 up-regulates survivin and prevents apoptosis 

in EBV-infected B lymphoma cells [118]. EBNA1 also perturbs STAT1 and transforming 

growth factor-β (TGF-β) signaling [119].

Although some studies suggest a role for EBNA1 in tumor formation in murine models 

[120, 121], recent studies by Kang et al. [122, 123] did not find similar results in nude 

mice. It is possible that EBNA1’s main roles are in maintenance of viral genomes and gene 

expression that are needed for tumorigenesis, but that it does not directly exert an oncogenic 

effect. Regardless, the consistent expression of EBNA1 in all EBV-associated cancers makes 

it an attractive potential therapeutic target [124]. There are numerous cellular proteins that 

interact with EBNA1 that we cannot extensively cover here, and interested readers are 

encouraged to explore them in [125].

In terms of disease relevance, EBNA1 expression was associated with significantly enhanced 

CD25 expression in the Hodgkin lymphoma cell line L428 that could translate into increased 

likelihood for lymphomagenesis in nonobese diabetic-SCID mice [126]. The level of 

EBNA1 expression correlated with Burkitt lymphoma cells survival by modulating apoptosis 

[127]. Furthermore, RNA interference/suppression of EBNA1 inhibited proliferation of 

EBV-positive Burkitt’s lymphoma cells [128]. In NPC, EBNA1 altered protein expression 

involved in oxidative stress responses and metastasis [129]. EBNA1 can also degrade PML 

proteins leading to PML nuclear body loss in NPC and EBV+ gastric carcinoma [117, 130]. 

EBNA1 inhibitors have also been developed [124, 131, 132].

EBNA2 and EBNA leading peptide (EBNA-LP)

EBNA2 is critical and necessary for viral transformation and immortalization of primary 

B-cells [133–135]. Although it does not directly bind DNA, EBNA2 targets DNA through 

binding to the C-promoter binding factor 1 (CBF1) that interacts with RBP-Jκ, which 

also modulates DNA binding by Notch [136–138]. Thus, EBNA2 can functionally mimic 

dysregulated Notch1 [139, 140].

EBNA2 functions to activate host cell gene expression, including MYC, CD21, CD23 [141–

144]. MYC gene transactivation is thought to drive hyperphysiological B cell proliferation 

[145]. EBNA2 also transactivates viral latent genes via the promoters of LMP1, LMP2A, 

and LMP2B [146–153]. EBNA2 enhances transcription by recruiting transcription factors 

and cofactors through the activation domain as well as by association with hSNF5/INI1 

and recruitment of the human SWI-SNF complex [154–156]. EBNA2 also upregulates 

transcription of TET2 and physically binds to TET2 protein to demethylate genes important 

for B cell transformation [157]. Furthermore, EBNA2 can transcriptionally suppress the 

expression of immunoglobulin M expression [158]. In Burkitt lymphoma lines with t(8;14) 

translocation, expression of c-Myc is activated under the immunoglobulin chain locus, 

suggesting that EBNA2 uses the same mechanism to control both IgM and c-Myc expression 

[158].
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EBNA-LP is transcribed along with EBNA2 and has been shown to cooperate with EBNA2 

to cause G0/G1 transition during immortalization and to transactivate cellular genes (e.g., 

RBP-Jκ, MYC, Pu.1, and EBF1) and viral genes [159–161]. However, EBNA-LP transgenic 

mice did not show increased tumor development but exhibited dilated cardiomyopathy 

[162].

EBNA3 proteins (EBNA3A, EBNA3B, EBNA3C)

All three EBNA3 proteins can antagonize the effect of EBNA2 on viral gene 

transactivation [163–165]. EBNA3A and EBNA3C are important for inhibition of 

plasmacytic differentiation and induction of B cell transformation, as they have been 

shown to repress p16INK4A and p14ARF in lymphoblast lines [166]. EBNA3A can induce 

histone modifications of the chemokine genes, CXCL9 and CXCL10 [167, 168]. As a 

viral oncoprotein, EBNA3C can cooperate with activated Ras to immortalize and transform 

primary rodent fibroblasts and disrupt cell cycle checkpoint [169, 170]. EBNA3C has been 

shown to block p53-mediated apoptosis via different mechanisms including direct binding 

and inhibition of p53 and induction of Aurora kinase B [171–174]. Unlike EBNA3A and 

EBNA3C, EBNA3B is thought to be dispensable for B cell transformation in vitro [175, 

176]. EBNA3A and EBNA3C can recruit cellular proteins such as chromatin remodeling 

factors e.g. RBP-Jκ, histone deacetylases, and CtBP leading to deregulated gene expression 

[177–183]. Additional details of EBNA3 proteins are reviewed in [184–186].

EBV-encoded small RNAs (EBERs)

EBERs (EBER1 and EBER2) are confined to the nucleus and the most abundant viral 

transcripts during EBV latency (> 1 million copies per infected cell), which allow for 

very sensitive detection of EBV infection using in situ hybridization on tissue [187–191]. 

The EBERs modulate cellular proliferation, cell survival, and production of cytokines/

autocrine factors [192]. They have been shown to interact with cellular La protein and 

the ribosomal protein, L22 [193, 194]. EBERs were shown to contribute to IL10-induced 

growth, malignant phenotypes, and resistance to apoptosis in BL [192, 195]. In addition, 

EBERs have been shown to induce the expression of insulin-like growth factor 1 (IGF-1) 

in EBV-positive gastric carcinoma cells, and nasopharyngeal carcinoma-derived cells, IL-9 

in EBV-infected T cells, and IL-6 in lymphoblastoid lines [196–199]. EBERs released 

from EBV-infected patient sera can activate signaling from Toll-like receptor 3 in EBV-

transformed lymphocytes and peripheral mononuclear cells, thus activating the type I 

interferon response [200, 201]. Additional roles of EBERs in EBV infection, oncogenesis, 

and modulation of immunity are reviewed in [191, 202, 203].

KSHV lytic lifecycle

KSHV is known to infect multiple cell types, including epithelial cells, endothelial cells, and 

various hematopoietic cells such as B cells, T cells, dendritic cells, and monocytes [204–

206]. Multiple cellular receptors have been discovered for KSHV entry. They include the 

cysteine transporter xCT, ephrin receptor tyrosine kinase A2, DC-SIGN, and integrins [207–

211]. KSHV enters the host cells primarily through clathrin- or actin-mediated endocytosis 

[212]. The envelope glycoproteins gB, gH, and gL of KSHV are necessary for fusion of 

the viral and cell membranes [213, 214]. KSHV binding to integrin also stimulates focal 
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adhesion kinase (FAK) [215], which activates a host of downstream signaling cascades 

(including the PI3K/Akt and MAPK, and NF-κB pathways). These events are important 

for viral entry (e.g., PI3K), viral capsid transition along the microtubule by utilizing 

dynein motors to the nuclear membrane (e.g., PI3K), cell survival, and viral and host gene 

expression (e.g., MAPK and NF-κB) [216–220]. After the linear KSHV genomic DNA 

enters the nucleus through the nuclear core complex, it can be replicated via the lytic 

pathway or enter the latent state with the formation of viral episomal DNA.

Lytic replication is essential for the release and spread of KSHV to other cells (Figure 

2, Table 2). The KSHV IE gene known as replication and transcription activator (RTA) 

is encoded by open reading frame (ORF)50. RTA alone is necessary and sufficient to 

initiate lytic replication [221, 222]. Alternatively, KSHV reactivation from the latent state 

can be triggered by caspase 3-dependent apoptotic stress, in the absence of RTA activity 

[223, 224]. KSHV can also chemically switch from latency to lytic replication by 12-O-

tetradecanoylphorbol-13-acetate (TPA), valproic acid (VPA), and sodium butyrate (NaB) 

[225, 226]. Examples of oncogenic viral proteins in the lytic cycle include K1, K15, viral 

interleukin 6 (vIL-6), and viral G protein-coupled receptor (vGPCR).

There is good evidence that viral latent proteins play oncogenic roles, by inducing cellular 

proliferation, inhibiting apoptosis, and evading immunity. However, KSHV lytic viral genes 

have also been shown to contribute to oncogenesis, as use of the nucleoside analogue 

ganciclovir could markedly lower the risk of KS in acquired immunodeficiency syndrome 

(AIDS) patients [227]. It is postulated that during lytic infection, inflammatory and 

angiogenic factors are induced, exerting an autocrine/paracrine effect on proliferation.

KSHV latent lifecycle (Figure 2, Table 2)

During KSHV latency, a handful of viral genes are expressed including latency-associated 

nuclear antigen (LANA), viral cyclin (vCyclin), and viral FADD-like interleukin-1-beta-

converting enzyme-inhibitory protein (vFLIP), Kaposin, and microRNAs. In addition, viral 

interleukin-6 (vIL-6), K1, and K15 are expressed at a low level. LANA is needed to 

maintain latent replication, by spatially linking the viral episome with host chromatin [228, 

229]. LANA can also serve as a transcriptional modulator of multiple viral and cellular 

genes [230]. LANA also binds to the promoter of RTA and other lytic genes to shut off their 

expression [230]. Of note, latently infected tumor cells make up the majority of KS and PEL 

tumors, while MCD displays more lytic gene expression.

KSHV oncogenic proteins

K1

The K1 transmembrane protein is expressed at low levels during latency but at much 

higher levels during the lytic cycle [231]. Like the B cell receptor and EBV LMP2A, 

the cytoplasmic tail of K1 contains a functional ITAM for signal transduction [232–235]. 

Unlikely BCR signaling which is transient, K1 constitutively activates the PI3K (via its p85 

regulatory unit)/Akt/mTOR pro-survival pathway [236–238] in the absence of ligand and 

blocks Fas induction of apoptosis in B cells that is dependent upon heat shock proteins [239, 
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240] (Figure 1). Like vGPCR, K1 expression stimulates production and release of VEGF. 

This provides a positive feedback loop to activate PI3K/Akt/mTOR signaling [232–235, 

241] via the ITAM signaling domain of K1 [232–235]. To activate MAPK signaling, K1 

phosphorylates SH2-containing signaling molecules such as spleen tyrosine kinase (Syk), 

which signals through the MEK1/2-ERK1/2 pathway and PLCγ2 to mobilize calcium, 

leading to downstream nuclear localization of NFAT and NFAT binding with AP-1 [235]. 

More recently K1 has been reported to bind the γ subunit of 5’adenosine monophosphate-

activated protein kinase (AMPKγ1) which was important for K1’s ability to enhance 

cell survival [237]. K1 oncogenicity was demonstrated by its ability to transform rodent 

fibroblasts [233] and immortalize primary human umbilical vein endothelial cells [241]. 

K1-expressing transgenic mice developed sarcomatoid tumor and/or lymphoma, thought to 

be mediated by activation of NF-κB and the B-cell transcription factor, Oct2 [242, 243].

K15

Similar to the K1 protein, K15 is a transmembrane viral protein. K15 activates the mitogen-

activated protein kinase (MAPK) pathway, NF-κB pathway, and PLCγ1 through tumor 

necrosis factor receptor-associated factor 2 (TRAF2)’s interaction with its SH2-binding site 

[244, 245] (Figure 1). K15 shares signaling activities of both LMP1 and LMP2A [238, 

244–246]. Like LMP2A, K15 can block BCR signaling [247]. It can bind to HAX-1 in vitro 
and in vivo to exert an antiapoptotic effect [248]. K15 has been shown to be important for 

viral lytic replication and is expressed in KS, PEL, and MCD [247–249].

Latency-associated nuclear antigen (LANA)

ORF73 encodes for LANA, which is crucial for maintaining the KSHV episome as well 

as promoting latent viral replication [250]. LANA binds to histones and this allows KSHV 

to tether the viral episomes to the host chromatin [14]. LANA has pleiotropic effects on 

various important cellular pathways, such as p53 [251], retinoblastoma-E2F [252], mitogen-

activated protein kinase (MAPK) [252], c-Myc [253, 254], β-catenin/Wnt [255], and Notch 

[256] signaling. These various pathways have been implicated in oncogenesis. LANA-

expressing transgenic mice developed B-cell hyperplasia reminiscent of MCD [257, 258]. Of 

note, only a subset of older LANA-expressing transgenic mice developed B cell lymphomas 

highlighting that although LANA can promote cell survival, it may need additional genetic 

alterations or other viral/cellular oncoproteins for lymphomagenesis [257].

LANA expression can be detected in KS, PEL, and MCD in vivo [259]. For clinical 

diagnostic purposes, immunohistochemistry for LANA protein is used to establish KSHV 

infection in its associated malignancies [250, 260, 261].

Viral cyclin (vCyclin)

vCyclin (ORF72) is a viral homologue of cellular cyclin D [262, 263]. Physiologically, 

cyclin D forms a complex with cyclin-dependent kinases (CDK)6 and CDK4 to 

phosphorylate Rb, resulting in the release of the E2F transcription factor. KSHV vCyclin 

interacts with cyclin-dependent kinase (CDK)6 and, to a lesser extent, other CDKs, 

to degrade CDK inhibitors, phosphorylate Rb and histone H1, and promote cell cycle 

progression [264–266]. Unlike cellular cyclin D1, vCyclin/CDK complexes are insensitive 
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to CDK inhibitors and can degrade the CDK inhibitor p27Kip [264, 267]. vCyclin/CDK6 

complex can phosphorylate the histone chaperone, nucleophosmin leading to genomic 

instability [268]. vCyclin is also necessary to overcome replicative senescence in primary 

human lymphatic endothelial cells [269].

In the absence of p53, lymphomagenesis was noted in vCyclin transgenic mice, implicating 

p53 loss is important to expand neoplastic clones with vCyclin-induced aneuploidy [270, 

271]. In KS, pro-apoptotic vCyclin/CDK6 complex can phosphorylate and inactivate Bcl-2, 

suggesting that in addition to cell proliferation, modulation of apoptosis in infected host 

cells may also be important for the development of Kaposi’s sarcoma [266, 272].

Viral FADD-like interleukin-1-beta-converting enzyme-inhibitory protein (vFLIP)/K13

vFLIP/K13 (ORF71) blocks apoptosis induced by death receptors in KS lesions [273, 274] 

and PEL cells [275]. vFLIP structurally resembles the short form of cellular FLIP by not 

possessing the caspase-like domain of the long form of cellular FLIP. Mechanistically, 

vFLIP contains two death-effector domains to interact with the adaptor protein FADD, 

and this inhibits the recruitment and activation of the protease FLICE by the CD95 death 

receptor [273]. As a result, vFLIP-expressing cells can be protected from apoptosis induced 

by CD95 or other death domain-containing receptors [273]. vFLIP can promote cellular 

transformation through interaction of TRAF2 and TRAF4 that lead to activation of NF-κB 

that likely confers anti-apoptotic effect and pro-survival benefit [273, 275–277] (Figure 1). 

This also contributes to the spindle cell morphology and proinflammatory cytokine milieu 

as seen in KS [278]. In PEL cell lines, vFLIP can lead to constitutive activation of NF-κB 

and induction of cellular IL-6 expression by persistently phosphorylating and activating 

IKBα [279, 280]. In line with this, treatment of PEL cells in a murine system with an 

NF-κB inhibitor induced apoptosis, suppressed tumor growth, and prolonged survival [281]. 

Furthermore, by interacting with Atg3, vFLIP can prevent cell death from autophagy and 

this protective effect can be reversed using FLIP-derived short peptides that bind vFLIP 

and Atg3 [282]. Viral FLIP binds heat shock protein 90 (Hsp90), which is important for 

signaling and tumorigenicity [283]. Thus, targeting vFLIP could be a potential therapeutic 

option for KSHV-associated malignancies.

Transgenic mice expressing vFLIP exhibited B cell transdifferentiation and acquired 

expression of histiocytic/dendritic cell markers. These mice showed hematologic features 

typical of PEL and MCD [284]. vFLIP expression in endothelial cells of transgenic mice 

resulted in increased proinflammatory cytokine (e.g., IL6 and IL10) expression as well 

as aberrantly increased myeloid cells that might support a role in establishing the tumor 

microenvironment of various KSHV-associated lesions [285].

Viral G protein-coupled receptor (vGPCR)

vGPCR encoded by ORF74 is a chemokine receptor and cellular homologue of interleukin 

8 (IL-8) receptors such as CXCR1 and CXCR2 [286–288]. Unlike its cellular homologue, 

vGPCR is constitutively active and does not respond to ligands [286–288]. As a viral 

oncoprotein expressed in the lytic cycle, vGPCR has been shown to transform endothelial 

cells and induce sarcomagenesis by hijacking the PI3K/Akt/mTOR pathway [289–293], 
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MAPK pathway [294, 295], and NF-κB pathway [288, 296, 297] (Figure 1). Specifically, 

vGPCR constitutively activates p44/p42 MAPK signaling and PI3K/Akt signaling [295]. 

The signaling activity of vGPCR results in phosphorylation of regulatory tyrosine residues 

in Shp2, which is required for vGPCR-mediated activation of MEK in the MAPK pathway, 

NF-κB, and AP-1 [288]. Through MAPK signaling, vGPCR can also stimulate HIF-1α 
transcription [294]. In addition, vGPCR has also been shown to activate the canonical 

β-catenin/Wnt pathway [298]. KSHV vGPCR activates Rac1 and VEGF, both important for 

KS angiogenesis via autocrine/paracrine growth factor secretion [294, 299, 300]. Transgenic 

expression of vGPCR induced KS-like angioproliferative disease in a mouse model [301–

303]. Conversely, siRNA knockdown of vGPCR in a KSHV bacterial artificial chromosome 

(BAC) cell culture system inhibited angiogenesis and KS-like tumorigenesis [304]. These 

studies indicate a critical role of vGPCR in the pathobiology of KS.

Viral protein kinase (vPK)

vPK is encoded by ORF36 and its expression can be induced by a hypoxic environment 

[305, 306]. It is a nuclear protein with serine-threonine kinase activity [305]. Functioning 

as a cyclin-dependent kinase (CDK), vPK has been shown to phosphorylate retinoblastoma 

and lamin A/C proteins [307]. In addition, it can phosphorylate mitogen-activated kinases 

4 and 7 (MKK4 and MKK7), thereby activating c-Jun N-terminal kinase (JNK) pathway 

[308]. KSHV vPK was reported to structurally and functionally mimic the cellular protein 

S6 kinase (S6KB1) [309]. For example, it can phosphorylate the ribosomal S6 protein 

and eukaryotic initiation factor 4E (eIF4E) downstream of the PI3K/Akt/mTOR pathway, 

resulting in enhanced global protein synthesis, anchorage-independent cellular proliferation, 

as well as endothelial tubule formation [309] (Figure 1). Transgenic vPK mice were prone to 

developing lymphoproliferative disorder and lymphoma of B cell origin [310].

Clinical Diseases associated with EBV and KSHV

Clinicopathologic presentation of human neoplastic diseases associated with EBV

Burkitt lymphoma—Burkitt lymphoma (BL) is a highly aggressive B cell lymphoma that 

tends to involve extranodal sites and patients can present with tumor lysis [311]. While 

highly proliferative, with a doubling time of about a day, BL is frequently curable due 

to its high sensitivity to chemotherapy. Intensive chemotherapy confers long-term overall 

survival in the vast majority of cases. EBV can be variably detected in the three clinical/

epidemiologic BL variants (more than 95% in endemic BL, 20–30% in sporadic BL, 

and 30% in immunodeficiency-associated BL). EBV exhibits a latency I program in BL, 

expressing EBNA1, LMP2, EBER, and BART miRNA. Endemic BL is most common 

in children (male-to-female ratio of 2:1) in equatorial Africa and Papua New Guinea [3, 

312, 313]. In addition to EBV, it is associated with polymicrobial infections with malaria 

and arboviruses [314–316]). Endemic BL involves facial bones (e.g., mandible and orbit) 

in more than 50% of cases. Sporadic BL has a low incidence and accounts for 1–2% 

of tumors in western countries. It tends to involve the abdomen but may also destroy 

facial structures. Immunodeficiency-associated BL is most common in the setting of human 

immunodeficiency virus (HIV) infection and often presents in the lymph nodes and bone 
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marrow. Its incidence has decreased since the introduction of highly active antiretroviral 

therapy (HAART) for HIV/AIDS[317].

Under the microscope, BL shows a diffuse proliferation of intermediate-sized lymphoid cells 

with round to mildly irregular nuclear contours, few nucleoli, deeply basophilic and often 

vacuolated and “squared off” cytoplasm. Scattered tingible-body macrophages are often 

noted in the background, imparting a “starry-sky” pattern (Figure 3, A–B). There tend to 

be many mitotic figures and apoptotic debris. The neoplastic cells express B cell antigens, 

such as CD20, PAX5, and CD79a. They demonstrate a germinal center phenotype (CD10 

and BCL6 positive) and lack BCL2 [318, 319] (Figure 3, C–D). By definition, BL expresses 

c-Myc protein, which correlates with the rearrangement of the MYC oncogene at t(8;14), 

t(2;8), or t(8;22), and has a very high Ki-67 proliferative index by Ki-67 (virtually 100%) 

[319]. Next-generation sequencing frequently reveals mutations in TCF3 (that modulates 

germinal center gene expression and B cell receptor signaling via the PI3K pathway) or its 

negative regulator ID3 [320–322].

Classic Hodgkin lymphoma—Classic Hodgkin lymphoma (CHL) accounts for 90% 

of Hodgkin lymphomas. It exhibits a biphasic age distribution with the first peak at 

15–35 years and second peak in older adult age. CHL tends to present with localized 

lymphadenopathy. Cervical lymph nodes are the most common affected (~75% of cases). 

Constitutional B-symptoms are noted in ~40% of patients.

In CHL, latency II is observed, with EBV expressing EBNA1, LMP1, LMP2, and EBER. 

The neoplastic Hodgkin/Reed-Sternberg (HRS) cells tend to be the minor population that 

is admixed in a background of inflammatory cells. HRS cells appear to have arisen from 

late germinal center or early postgerminal center B cells. These cells harbor crippling 

immunoglobulin genes rearrangements and would normally die, but they are rescued by 

NF-κB activation through LMP1 and LMP2 [83, 323, 324]. Furthermore, LMP1 induces 

Bmi-1 expression via NF-κB to provide a survival advantage for CHL [325].

Based on the inflammatory and fibrotic background, CHL has 4 different histologic 

subtypes: nodular sclerosis (NS), mixed cellularity (MC), lymphocyte-rich (LR), and 

lymphocyte-depleted (LD). EBV is detected more frequently in the mixed cellularity and 

lymphocyte-depleted subtypes than the nodular sclerosis and lymphocyte-rich subtypes [4]. 

EBV infection is implicated in blocking apoptosis in these cells. Hodgkin cells contain 

a single large nucleus with vesicular chromatin, a single large eosinophilic nucleolus, 

and abundant cytoplasm. Reed-Sternberg cells are binucleate/multinucleate with otherwise 

similar cytomorphology.

NS CHL is the most common CHL subtype in the United States and developed countries 

and accounts for 70% of cases. It is grossly and histologically characterized by thick fibrous 

bands surrounding nodules composed of inflammatory cells and neoplastic HRS cells. The 

inflammatory milieu frequently comprises eosinophils, neutrophils, lymphocytes, plasma 

cells, and histiocytes. EBV can be detected in neoplastic HRS cells in 10–25% of cases. 

Mixed cellularity (MC) subtype is the second most common subtype of CHL, accounting for 

20–25% of cases. In patients with HIV, the MC subtype comprises the majority of all CHL 
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subtypes, especially as CD4 counts decrease [326]. The neoplastic cells are often positive for 

EBV (75% of cases) (Figure 3, E–J). It is also characterized by a polymorphous background, 

but prominent fibrous bands of the NS subtype must be absent. Lymphocyte-depleted (LD) 

subtype is the rarest subtype of CHL and tends to present at older age and late stage 

[327]. It has an abundance of HRS cells. Similar to the MC subtype, EBV is frequently 

present in HRS cells (~75% of cases) [327]. In the LR subtype of CHL, EBV is detected 

more frequently than the NS subtype but less commonly than the MC and LD subtypes. 

Regardless of histologic subtype, the HRS cells express strong diffuse CD30 and dim PAX5 

in virtually all cases and CD15 in most cases [328, 329] (Figure 3, E–J). However, HRS 

cells have a downregulated B cell program and lack most other B cell markers, such as 

CD79a, OCT2, and Bob.1 that is thought be related to the reprogramming effect of LMP1 

[330]. CD20 expression may be absent or present with variable intensities [328, 329, 331].

EBV-positive diffuse large B-cell lymphoma—EBV-positive diffuse large B cell 

lymphoma (DLBCL), not otherwise specified (NOS) was previously termed “EBV-positive 

diffuse large B cell lymphoma (DLBCL) of the elderly” by the World Health Organization 

(WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues [332–335]. 

It is thought to arise due to immunosenescence. EBV-positive DLBCL, NOS can present 

in lymph nodes or extranodally, such as the gastrointestinal tract or lungs [336]). It is 

clinically aggressive and has a poor prognosis compared to EBV-negative DLBCL [336–

338], although younger ages confer much better prognosis [333]. The prevalence of EBV 

in DLBCL varies with age from 6.7% for individuals younger than 50 years old [334] to 

20–30% in patients more than 90 years old [339].

By definition, this diagnostic entity is a large B cell lymphoma with EBV expression (Figure 

4A). EBV-positive DLBCL exemplifies latency III, where EBNA1, LMP1, LMP2, EBER, 

EBNA2, and EBNA3A/3B/3C are expressed. It may contain some HRS-like cells or show 

histopathologic resemblance to PTLD, despite the fact that clinically there should be no 

history of immunosuppression. By immunohistochemistry, the lymphoma cells express pan-

B cell markers such as CD20, PAX5, and CD79a (Figure 4, B–D). They show non-germinal 

center phenotype (e.g., CD10 negative, BCL6 positive, and MUM1) [333, 340, 341]. They 

can be CD30-positive but CD15 is usually negative. In situ hybridization for EBV is positive 

in numerous lymphoma cells.

Another type of DLBCL associated with EBV is termed DLBCL associated with chronic 

inflammation. The transformation and proliferation of EBV-positive cells are thought 

be stimulated by cytokine-mediated local immunodeficiency as a result of prolonged 

chronic suppuration/inflammation within a restricted anatomic space. The prototypic 

type of this aggressive lymphoma is pyothorax-associated lymphoma (PAL), a heavily 

male predominant disease that has been most frequently reported in Japan [6, 342]. 

Other body cavities can be involved by DLBCL associated with chronic inflammation. 

The morphological and immunophenotypic features of DLBCL associated with chronic 

inflammation are similar to those of EBV-positive DLBCL.

Plasmablastic lymphoma—Plasmablastic lymphoma (PBL) is a highly aggressive 

large B cell type lymphoma with plasmacytic differentiation. It arises in the setting of 
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immunodeficiency. It most frequently occurs in HIV/AIDS individuals but is also present 

in other immunosuppressive states including autoimmune therapy, transplant therapy-related 

immune suppression, and immune senescence [7, 343, 344]. The prognosis is poor with 

a median survival of less than 1 year [345, 346]. EBV is quite frequently detected in the 

neoplastic cells. Clinically, PBL commonly presents as an extranodal mass, with the oral 

cavity/head and neck region being the most common site (44% of PBL), followed by the 

gastrointestinal tract mucosa (14% of PBL). [347]. Nodal involvement is much less common 

(7% of all PBL) but is the most common site of PBL presentation in the post-transplant 

setting [345, 348]. Of note, a small subset of cases has been reported in immunocompetent 

individuals [347]. Latency I is typically noted in PBL with EBV expressing EBNA1 

and EBER; however, latency III can be seen in those patients with HIV infection or 

posttransplant PBL [345]. PBL is treated aggressively with CHOP (cyclophosphamide, 

doxorubicin, vincristine, prednisone) chemotherapy regimen and/or radiation [345]. In an 

AIDS-associated PBL cell line, IL-6 dependence on cell survival and proliferation was 

observed, with apoptosis induced by an mTOR inhibitor [349].

On microscopic examination, PBL has two morphologic variants: 1) “monomorphic” variant 

composed predominantly of immunoblasts with prominent single nucleoli and minimal 

to no plasma cell differentiation and 2) “plasmacytic” variant with marked plasmacytic 

differentiation. PBL is a very aggressive lymphoma, with high mitotic activity and a 

proliferative index measured by Ki-67 labeling is >90%, and karyorrhexis is often noted 

(Figure 4, E–F). Numerous tingible body macrophages with a starry-sky pattern are quite 

common. The large neoplastic cells have a plasma cell immunophenotype. They are positive 

for CD138, MUM1, CD38, BLIMP-1, and CD79a (weakly positive in ~50% of cases) [347, 

350] (Figure 4, G–J). In 75% of the cases, in situ hybridization for EBER is positive, 

whereas LMP1 antigen is negative (EBV latency type 1), although rare cases do express 

LMP1 (EBV latency type 3) typically in the HIV-positive or post-transplant settings [345]. 

Unlike “HHV-8/KSHV positive large B-cell lymphoma”, KSHV is negative in all cases of 

PBL [347, 351]. PBL is typically negative or very weak for the B cell antigens CD20, 

CD22, and PAX5. These features help distinguish PBL from diffuse large B cell lymphoma, 

which should express several markers of B-cell lineage. Other markers that are frequently 

expressed in PBL cells are c-Myc (which is related to MYC gene rearrangement), CD30, 

and epithelial membrane antigen (EMA).

Nasopharyngeal carcinoma—Nasopharyngeal carcinoma (NPC) has a high prevalence 

in southeast Asia and the southern part of China [352]. It is most common in the 4th to 

6th decade with a male predominance (male-to-female ratio of ~ 2–3:1). NPC tends to 

metastasize to locoregional lymph nodes [353]. The 5-year overall survival for stage IV is 

about 75%. It is a squamous cell carcinoma arising in the nasopharynx and has a very strong 

association with EBV infection (>95%) with an increasing incidence in the United States 

[2, 354]. Other risk factors include dietary intake of nitrosamine in fermented salt-preserved 

food, cigarette smoking, and exposure to radiation or chemicals such as formaldehyde in the 

occupational setting [355, 356]. Prognostic factors include older age, male gender, cranial 

nerve involvement, metastatic disease, high serum lactate dehydrogenase prior to therapy, 

certain HLA types, EGFR overexpression, and high neutrophil-to-lymphocyte ratio. NPC is 
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clinically treated with radiation and/or chemotherapy [357]. In NPC, EBV exhibits a latency 

II program, expressing EBNA1, LMP1, LMP2, EBER, BART miRNA, but LMP1 protein 

expression can be absent in some cases (likely related to the BART miRNA interaction with 

the nonterminal region of LMP1) [358–360].

Interestingly, expression of LMP1 can promote epithelial–mesenchymal transition via its 

positive effect on Snail that suppresses E-cadherin expression and may predict metastasis of 

NPC [361]. As a potential immunotherapy for NPC, EBV-specific cytotoxic T cell (CTL) 

lines can be generated from NPC patients, which showed promising safety and antitumor 

activity with good clinical responses [362].

Microscopically, syncytial neoplastic cells in nests, sheet, or dispersed tumor cells with the 

morphology of keratinizing (WHO type I) or nonkeratinizing (WHO type II) squamous cell 

carcinoma are present (Figure 5A). The nonkeratinizing type is strongly associated with 

EBV. The neoplastic cells have large nuclei, vesicular chromatin, and prominent nucleoli. 

Mitotic figures are present. They are often accompanied by reactive lymphoplasmacytic 

infiltrate (Figure 5A). The neoplastic cells show strong reactivity to squamous markers, 

including cytokeratin (CK) 5/6, p63, and p40 [363] (Figure 5, B–D). Markers for epithelial 

differentiation/carcinoma, including AE1/3 and CAM5.2, are also positive.

NPC is characterized by latent expression of EBNA1, LMP1, LMP2, EBER, and BART 

miRNA. In situ hybridization for EBER is very sensitive for highlighting the neoplastic cells 

(Figure 5C) but is negative in the background lymphocytes and plasma cells [364, 365].

Post-transplant lymphoproliferative disorder—EBV-positive post-transplant 

lymphoproliferative disorder (PTLD) exemplifies latency III, with expression of EBNA1, 

EBNA2, EBNA3A/3B/3C, LMP1, LMP2, and EBER. PTLD is a lymphoid proliferation that 

arises from immunosuppression in the setting of solid organs or hematopoietic stem cell 

(HSC) transplantation. It more commonly occurs within the first year after transplantation. 

Of note, solid organ transplantation (host-derived PTLD) has a higher risk for PTLD 

than HSC transplantation (donor-derived PTLD). The risk factors include negative EBV 

serostatus in the transplant recipients, type of allografts (e.g., incidence rate of ~20% in 

intestinal organ recipients versus 2% in renal organ recipients), pediatric population, and 

intensity/type of immunosuppressive agents [366]. Many cases (>90%) are serologically 

EBV-positive. Interestingly, EBV-negative cases tend to occur later, ~ 4–5 years post-

transplant, and have a worse prognosis [367, 368]. Some EBV-negative PTLD cases were 

shown to be KSHV associated [369–371]. The clinical presentation and symptomatology are 

variable and include constitutional symptoms (such as fatigue, fever, and weight loss) and 

lymphadenopathy, likely related to involvement site (e.g., nodal vs. extranodal) and PTLD 

type.

Pathologically, PTLD is quite heterogeneous and includes 4 major categories per the current 

WHO classification. They include non-destructive PTLD and destructive PTLD (further 

subclassified into polymorphic, monomorphic, and classic Hodgkin lymphoma PTLD). Non-

destructive PTLD has preserved tissue architecture and includes plasmacytic hyperplasia, 
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infectious mononucleosis, and florid follicular hyperplasia PTLD. Non-destructive PTLD 

generally responds well to attenuation or cessation of immunosuppressives.

By definition, polymorphic PTLD does not fulfill the criteria for any lymphoma or plasma 

cell neoplasm. Instead, it displays a full range of B cell maturation, from immunoblasts 

to plasma cells (Figure 5, H–J). The atypical cells are predominantly small to intermediate-

sized lymphoid cells, but occasional larger cells and HRS-like cells may be present. 

Monomorphic PTLD consists of transformed cells typically at one stage of maturation and 

is classified according to the WHO-defined lymphoma or plasma cell neoplasm it most 

recapitulates. The most common form is diffuse large B-cell lymphoma (DLBCL) (Figure 

5, E–G), which is followed by NK/T cell lymphoma, plasma cell neoplasm, and classic 

Hodgkin lymphoma. Monomorphic DLBCL type can have plasmacytic differentiation and 

HRS-like cells that impart some polymorphic appearance; however, the predominant cells 

should be transformed large cells. For monomorphic B cell PTLD, the atypical lymphoid 

cells are positive for the B cell markers (such as CD20, PAX5, and CD79a) and show 

frequent expression of CD30 (Figure 5, E–G). EBER stain is very useful to detect EBV 

status in tissue for clinicopathologic assessment of PTLD (Figure 5J). In EBV-positive 

cases, PTLD tends to show non-germinal center phenotype. By contrast, EBV-negative 

cases usually have a germinal center phenotype. Almost all cases of destructive PTLD have 

clonal immunoglobulin gene rearrangement, which is usually not detected in non-destructive 

PTLD. Polymorphic PTLD tends to be driven largely by EBV, whereas monomorphic PTLD 

may have secondary driver genetic alterations [372–375]. Most polymorphic PTLD and a 

smaller subset of monomorphic PTLD may regress with reduction of immunosuppressive 

regimen. With more localized presentation, surgery and/or radiation therapy may be given to 

the patients. For more persistent/refractory cases, anti-CD20 therapy (rituximab) or R-CHOP 

(rituximab-CHOP) can be used. It is unclear why a subset of PTLD (20–40%) are EBV 

negative. It may be related to technical difficulties, other viral (e.g., KSHV) or antigenic 

induction of PTLD, or loss of EBV after transformation (“hit-and-run” hypothesis) [368, 

370, 371, 376].

Extranodal natural killer (NK)/T cell lymphoma, nasal type—Like CHL, latency II 

is observed in extranodal NK/T cell lymphoma, nasal type. Expression of EBNA1, LMP1 

(variable), LMP2, and EBER is often observed. Extranodal NK/T cell lymphoma, nasal type 

is the most common lymphoma in the sinonasal tract [377]. It is most frequently seen in 

Asia, but also common in Mexico and South American countries [377, 378]. There is a male 

predominance. The typical presentation is a low-stage locally destructive lesion in the nasal 

cavity involving maxillary sinuses and palate of older patients. EBV-encoded small RNA 

is detected in virtually all cases [378]. Interestingly, a low viral titer in serum or tissue is 

associated with a more favorable prognosis. Survival is approximately 25–50% at 5 years.

Pathologically, the neoplastic cells display variable sizes with vesicular chromatin and 

prominent nucleoli. Increased mitotic figures and angiocentricity or angioinvasion growth 

patterns are often present (Figure 6, A–C). Increased expression of cell adhesion 

molecules and chemokine receptors has been observed and correlated with LMP1 

expression, highlighting its putative role in angiogenesis [379]. There is also a polymorphic 

inflammatory infiltrate and necrosis [378, 380]. In situ hybridization staining for EBV-
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encoded small RNA can help highlight the neoplastic NK/T cells (Figure 6D). The 

neoplastic cells are often diffusely positive for CD56 and the cytotoxic markers such as 

TIA-1, granzyme B, and perforin [378, 380] (Figure 6, E–H).

Gastric carcinoma associated with EBV—Gastric carcinoma with lymphoid stroma 

is also known as medullary carcinoma or lymphoepithelioma-like carcinoma. This is a rare 

subtype of gastric adenocarcinoma that is associated with EBV and accounts for 10% of 

all gastric carcinoma [381, 382]. It shows a male predominance and a predilection for 

arising in the proximal stomach [383]. The mean patient age is 60 years. EBV positivity in 

gastric carcinoma is associated with a more favorable prognosis compared to EBV-negative 

cases [384]. Gastric carcinoma associated with EBV is characterized by type II latency and 

typically expresses EBNA1, LMP1, LMP2A, and EBER.

The tumor can be grossly ulcerated or saucer-like with thickened wall. The neoplastic 

epithelial cells often proliferate in sheets and are associated with dense lymphoid infiltrate 

and intraepithelial lymphocytes (Figure 6I). The inflammatory background is composed 

of lymphocytes, histiocytes, neutrophils, and plasma cells and likely related to the 

immunogenic effects of EBV infection. The neoplastic cells contain abundant amounts of 

cytoplasm, enlarged nuclei, vesicular chromatin, and often prominent nucleoli. Interestingly, 

approximately one third of gastric carcinoma with lymphoid stroma cases are positive for 

EBV-encoded small RNA [385] (Figure 6J).

Clinicopathologic presentation of human neoplastic diseases associated with KSHV

Kaposi sarcoma—Kaposi sarcoma is an endothelial neoplasm. This is different 

from primary effusion lymphoma and multicentric Castleman disease, which are 

lymphoproliferative disorders of B cell origin. All the neoplastic endothelial cells are 

infected by KSHV [386, 387]. The classic presentation of Kaposi sarcoma (KS) is that 

of an elderly Mediterranean man (“classic KS”). AIDS-associated KS is the most common 

and aggressive form currently, although the advent of antiretroviral therapy for AIDS has 

reduced its incidence [388]. Other forms include endemic KS (e.g., children or African 

descents) and post-transplant/iatrogenic KS. Like PTLD, reduction of immunosuppressives 

may be efficacious for iatrogenic KS. KS lesions can involve skin, mucous membranes, 

and visceral organs. They often present as violaceous patches, plaques, or nodules. 

Interestingly, the mTOR inhibitor rapamycin showed dramatic KS remission in transplant 

recipients, highlighting the importance of activating the PI3K/Akt/mTOR pathway by viral 

oncoproteins in KS tumorigenesis [389, 390].

Histologically, KS is characterized by proliferation of spindle-shaped endothelial cells 

forming slit-like vascular spaces (Figure 7A). Extravasated red blood cells with hemosiderin 

and associated inflammatory cells can often be identified. Immunohistochemistry for LANA 

protein highlights KSHV-positive cells with classic speckled/punctate nuclear staining 

pattern. The endothelial origin can also be confirmed by immunohistochemistry for vascular 

markers such as ERG (Figure 7, B–D).

Primary effusion lymphoma—Primary effusion lymphoma (PEL), also known as body 

cavity-based lymphoma, is a highly aggressive and fatal disease that is mainly seen in 
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severely immunocompromised AIDS individuals [387, 391, 392]. All cases are high stage 

and patients have a median survival of less than 6 months [393]. The lymphoma is typically 

seen in body cavities (e.g., pleural, pericardial, and peritoneal effusion fluids) but it can 

also present as an extranodal mass (so-called extracavitary or solid variant). [391, 394, 

395]. Additionally, these patients may have concurrent KS or multicentric Castleman disease 

[391, 396, 397]. PEL cells are of post-germinal center origin. By definition, the neoplastic 

cells are KSHV-positive. Indeed, PEL cells harbor KSHV genome at a high copy number 

(50–150 per cell) [394]. Many KSHV latent products such as LANA, vCyclin, vFLIP, 

Kaposin, vIRF3 can be detected in PEL cells. Coinfection with EBV is commonly detected, 

particularly in the HIV setting, therefore, EBV is likely a cofactor, but is not causative 

[398, 399]. PEL cells are highly addicted to the PI3K/Akt/mTOR and MAPK pathways, 

and single or dual inhibitors of these kinases were tested in vitro which showed promising 

results [26, 400, 401]. The proteasome inhibitor bortezomib targets the NF-κB pathway and 

was found to be efficacious by inducing apoptosis in PEL cells [402–404]. More recently, 

inhibitors of fatty acid synthase and sphingosine kinase 2 also induced apoptosis in PEL 

cells, suggesting the potential therapeutic relevance of targeting dysregulated pathways of 

metabolism [405, 406].

Histologically, PEL cells are large sized with pleomorphic nuclei, prominent nucleoli, and 

abundant amounts of basophilic/amphophilic cytoplasm with or without vacuoles (Figure 

7, E–F). They may resemble plasmablasts, immunoblasts, or occasional Hodgkin/Reed-

Sternberg cells (binucleated/multinucleated forms). Stains for KSHV (LANA and viral IL-6) 

and EBV (e.g., in situ hybridization for EBV-encoded RNA) are useful, with detectable EBV 

co-infection in about half of the cases [398, 399]. They are often negative for B cell markers 

(CD20, PAX-5), but can be detected by CD45 and plasmacytic markers (CD138, CD38, 

MUM1, EMA) [395, 407] (Figure 7, G–J). Increased c-Myc expression is also a known 

phenomenon and has been shown to be driven by KSHV LANA [253, 254].

Multicentric Castleman disease—Multicentric Castleman disease (MCD) is 

also called multicentric angiofollicular hyperplasia. Clinically, the patient often 

shows systemic symptoms, including fever, night sweats, weight loss, generalized 

lymphadenopathy, hepatomegaly, splenomegaly, and autoimmune phenomena. Interestingly, 

serum interleukin-6 (IL-6) can be detected, at least in part, due to the effect of viral IL-6 

and LANA [408]. The plasma cell variant of MCD has a very strong association with 

KSHV infection, especially in the AIDS setting [15, 387]. Tocilizumab and siltuximab, 

both monoclonal antibodies against human IL-6 receptor, have been investigated to treat 

MCD and found to produce clinical responses without severe toxicities or complications 

[409–412]. Unlike KS and PEL, KSHV lytic proteins are more commonly expressed in 

MCD [413]. A small pilot study investigated the utility of targeting the two KSHV lytic 

genes ORF36 and ORF21, using zidovudine and valganciclovir in KSHV+ MCD, showed 

promising clinical responses and survival [414]. This highlights the potential of targeting 

lytic KSHV infection in KSHV-associated MCD.

Morphologically, the lymph node shows extensive vascular proliferation in the germinal 

centers. Plasma cells and plasmablasts are increased in the mantle zones and interfollicular 

areas (Figure 7, K–N). Atypical plasmacytoid cells known as plasmablasts in the mantles 
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are often present and they are often monotypic for IgM heavy chain and lambda light chain 

expression (Figure 7, K–N).

HHV-8/KSHV-positive diffuse large B-cell lymphoma, NOS—Large B-cell 

lymphomas can be positive for KSHV LANA antigen and found in patients with a systemic 

KSHV infection [16, 351, 407, 415, 416]. They are termed “HHV-8/KSHV-positive diffuse 

large B-cell lymphoma, NOS” [16]. They most commonly arise from MCD, and the patients 

often present with splenomegaly as well as other KSHV-associated lesions such as KS 

and PEL [351, 396, 397, 415]. However, they can occasionally be seen without evidence 

of MCD [407, 415]. The neoplastic cells efface the architecture of the involved lymph 

node, spleen, or other sites such as marrow and peripheral blood [16, 351, 416]. They 

morphologically resemble plasmablasts (or immunoblasts); they are positive for LANA, 

cytoplasmic IgM, and lambda light chain but negative for CD45 and CD20 [16, 351, 407, 

416]. However, immunoblastic morphology has also been reported. These patients often 

have other KSHV-associated lesions such as KS and PEL [396, 397].

Finally, KSHV and EBV have been concurrently associated with germinotropic 

lymphoproliferative disorder [415, 417], which is not associated with HIV/AIDS and is 

not considered a malignant neoplasm. It is thus not further discussed in this review.

Concluding remarks

Both KSHV and EBV are oncogenic gammaherpesviruses that are implicated in several 

human neoplastic diseases. Oncogenesis by either virus is related to the viral oncoproteins 

of the lytic and latent states that are both crucial for the viruses to replicate, propagate, and 

persist in in a lifelong manner. These viral proteins function by perturbing physiologic 

signaling pathways, thereby enhancing pro-survival, anti-apoptotic, and immunoevasive 

properties of EBV and KSHV. As highlighted in this review, animal models have generated 

very informative data for understanding the oncogenic properties of these viral proteins in 
vivo. The neoplastic diseases seen in mouse models appear to mirror the histopathology 

observed in the human counterparts. Although current mainstay therapies do not target the 

lifecycles and viral proteins of EBV and KSHV, rational design of drugs and vaccines that 

prevent viral entry into specific cell types, lytic and latent replication, and the oncogenic and 

immune evasive function of various EBV and KSHV proteins may enable more effective 

prevention and treatment of the human cancer associated with these viruses.

Acknowledgements

We apologize that we had to omit many important publications due to space restrictions. The authors are supported 
by NIH grants CA096500, DE028211, CA163217, CA228172, CA254564, and CA019014.

Abbreviations:

4EBP1 4E-binding protein 1

5-aza 5-aza-deoxycytidine

AIDS acquired immunodeficiency syndrome
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Akt protein kinase B

BL Burkitt lymphoma

BTK Bruton’s tyrosine kinase

CDK cyclin-dependent kinase

CHL classic Hodgkin lymphoma

CHOP cyclophosphamide, doxorubicin, vincristine, prednisone

CK cytokeratin

DE delayed early

DLBCL diffuse large B cell lymphoma

EBNA Epstein-Barr virus nuclear antigen

EBERs EBV-encoded small RNAs

EBV Epstein-Barr virus

EGFR epidermal growth factor receptor

eIF4E eukaryotic initiation factor 4E

ERK extracellular-signal-regulated kinase

GC gastric carcinoma

GPCR G protein-coupled receptor

HAART highly active antiretroviral therapy

HHV-4 human herpesvirus 4

HHV-8 human herpesvirus 8

HIV human immunodeficiency virus

HRS Hodgkin/Reed-Sternberg

HSC hematopoietic stem cell

IE immediate early

Ig immunoglobulin

IL interleukin

ITAM immunoreceptor tyrosine-based activation motifs

JNK c-Jun N-terminal kinase

KSHV Kaposi sarcoma-associated herpesvirus
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L late

LANA latency-associated nuclear antigen

LD lymphocyte-depleted

LMP Latent membrane protein

LR lymphocyte-rich

MAPK mitogen-activated protein kinase

MC mixed cellularity

MCD multicentric Castleman disease

MKK mitogen-activated kinase

mTOR mammalian target of rapamycin

NaB sodium butyrate

NF-κB nuclear factor-κB

NK natural killer

NPC nasopharyngeal carcinoma

NS nodular sclerosis

ORF open reading frame

PAL pyothorax-associated lymphoma

PDK1 phosphoinositide-dependent kinase 1

PBL plasmablastic lymphoma

PEL primary effusion lymphoma

PH pleckstrin homology

PI3K phosphatidylinositol-4,5-bisphosphate 3 kinase

PIP2 phosphatidylinositol-4,5-bisphosphate

PIP3 phosphatidylinositol-3,4,5-triphosphate

PTEN phosphatase and tensin homology

PTLD post-transplant lymphoproliferative disorder

RANKL receptor activator of NF-κB ligand

Rb retinoblastoma

R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone
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RSK p90 S6 kinase

RTA replication and transcription activator

S6KB1 p70 S6 kinase

SAPK stress-activated protein kinase

STAT3 signal transducer and activator of transcription 3

TGF-β transforming growth factor-β

TNF tumor necrosis factor

TPA 12-O-tetradecanoylphorbol-13-acetate

TRAF tumor necrosis factor receptor-associated factor

TSC2 tuberous sclerosis complex 2

vCyclin viral cyclin

vFLIP viral FADD-like interleukin-1-beta-converting enzyme-inhibitory 

protein

vGPCR viral G protein-coupled receptor

vIL-6 viral interleukin 6

VPA valproic acid

WHO World Health Organization
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Figure 1. 
Key signaling pathways modulated by Epstein-Barr virus (EBV) and Kaposi sarcoma-

associated virus (KSHV) proteins. The pathways shown include PI3K/Akt/mTOR, MAPK, 

and NF-ΚB. KSHV oncoproteins (K1, K15, vGPCR, vFLIP, vPK) are in orange boxes, 

whereas EBV oncoproteins (LMP1, LMP2A) are colored green. Please refer to the main text 

for detailed description of these pathways. Figure was created using artwork images from 

https://smart.servier.com/image-set-download/.
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Figure 2. 
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated virus (KSHV) latency and 

reactivation. A) During EBV latent infection, very limited numbers of viral gene such 

as Epstein-Barr nuclear antigen-1 (EBNA1) and latent membrane proteins (LMP1 and 

LMP2) are expressed. EBNA1 (red circle) tethers the EBV episome (green ring) to the 

host chromosome. When reactivation is triggered, immediate early genes (e.g., BZLF1 and 

BRLF1) initiate lytic viral transcription, resulting in the orderly expression of immediate 

early (IE) genes, delayed early (DE) genes, and late (L) genes. Linear viral DNA molecules 

are replicated. Viral particles (blue pyramid structures) are produced and then released. 

B) During KSHV latent infection, very limited number of viral genes such as LANA 

(orange circle) are expressed. Latency-associated nuclear antigen (LANA) tethers the KSHV 

episome (green ring) to the host chromosome. When reactivation is triggered, the immediate 

early gene, RTA/ORF50 initiates lytic viral transcription, resulting in the orderly expression 

of immediate early (IE) genes, delayed early (DE) genes, and late (L) genes. Viral particles 

(blue pyramid structures) are produced and then released. Figure was created using artwork 

images from https://smart.servier.com/image-set-download/.
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Figure 3. 
Burkitt lymphoma (A-D) and classic Hodgkin lymphoma, mixed cellular type (E-J). (A) At 

medium power of H&E (200x), a characteristic starry-sky pattern is present. The “stars” 

(arrowheads) are represented by tingible-body macrophages and the “sky” is composed of 

neoplastic lymphoid cells. (B) At high magnification of H&E slide (400x), the neoplastic 

cells are intermediate-sized, with slightly irregular nuclear contours, few nucleoli, and 

basophilic cytoplasm. Arrowheads mark tingible-body macrophages. Many mitotic figures 

and apoptotic debris are also present. (C) The neoplastic cells are strongly positive for 
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the B cell marker CD20 (200x). (D) They are strongly positive for CD10 (400x) and 

BCL6 (not shown) consistent with a germinal center phenotype. (E) In this lymph node, 

the high-power magnification of H&E (400x) shows binucleate Reed-Sternberg (RS) cells 

(highlighted by arrowheads) and mononucleate Hodgkin (H) cells within a polymorphous 

background composed of small lymphocytes, histiocytes, eosinophils, and plasma cells. (F) 

A higher power magnification of H&E (600x) shows similar morphologic features, with an 

arrow pointing to a binucleate Reed-Sternberg H&E (600x). (G) Immunohistochemistry for 

CD30 (200x) highlights scattered RS and H cells (arrowheads). (H) Immunohistochemistry 

for CD15 (200x) highlights scattered RS and H cells (arrowheads). (I) The neoplastic RS 

and H cells (arrowheads) demonstrate variably weak positivity for PAX-5 immunostain. (J) 

The neoplastic RS and H cells (arrowheads) in this case are positive for EBV-encoded small 

RNA by in situ hybridization (400x).
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Figure 4. 
EBV-positive diffuse large B cell lymphoma, not otherwise specified (NOS) (A-D) and 

plasmablastic lymphoma (E-J). (A) H&E section (400x) of this case shows variable sizes, 

but there is a significant number of large cells. (B) CD20 immunostain (400x) highlights 

diffuse proliferation of neoplastic cells. (C) These lymphomatous cells are positive for 

EBV-encoded small RNA (400x). (D) Ki-67 immunostain (400x) exhibits a very high 

proliferative index. (E) At this medium power of H&E (200x), the plasmablastic lymphoma 

shows a diffuse pattern with scattered tingible-body macrophages. (F) At this higher power 
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magnification of H&E (400x), the lymphomatous cells show pleomorphism with vesicular 

chromatin. Some nuclei contain single prominent nucleoli (immunoblastic morphology). 

Mitotic figures and karyorrhectic debris are frequently present. (G) In situ hybridization 

(ISH) for EBV-encoded small RNA (400x) shows positivity in essentially all lymphoma 

cells. (H) Kappa ISH (400x) in this case demonstrates that the tumor cells express the 

immunoglobulin kappa light chain. (I) Lambda ISH (400x) in this same case is negative 

in lymphoma cells, confirming kappa light chain restriction. (J) The PBL cells typically 

show diffuse and strong nuclear expression of MUM1/IRF-4 (400x). In this case, CD138 

(syndecan-1) is also diffusely positive (not shown) to support plasmacytic differentiation.
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Figure 5. 
Nasopharyngeal carcinoma (NPC) (A-D) and posttransplant lymphoproliferative disorder 

(PTLD) (E-J). (A) In this medium power H&E image (200x), the NPC grows in syncytial 

nests and show a spindled cell morphology. The neoplastic cells are large with oval nuclei, 

vesicular chromatin, and prominent nucleoli. (B) CK5/6 immunostain (200x) is diffusely 

and strongly positive in tumor cells, supporting squamous differentiation. (C) EBV-encoded 

small RNA (200x) is virtually positive in all tumor nuclei. (D) The tumor nuclei are 

also diffusely and strongly positive for p63, another squamous cell marker (200x). (E-G): 
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Monomorphic PTLD (diffuse large B-cell lymphoma type) in the central nervous system 

of a patient with prior renal transplant (15 years ago). (E) H&E (200x) shows a diffuse 

infiltrate of atypical large lymphoid cells with vesicular chromatin. Abundant apoptotic 

debris and mitotic figures are present. (F) CD20 immunostain (200x) confirms B-cell origin 

and large cell sizes. (G) Ki-67 (200x) immunohistochemistry highlights numerous neoplastic 

lymphoid cells with a very high proliferation index. (H-J) Duodenal polymorphic PTLD 

in a patient who had multiple stem cell transplants. (H) H&E section at a low power 

magnification (100x) shows mucosal involvement by a mixed hematolymphoid infiltrate. (I) 

CD20 (100x) demonstrates that the majority of cells are B-cells with variable sizes. (J) In 
situ hybridization for EBV-encoded small RNA (100x) highlights numerous EBV-positive 

lymphoid cells.
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Figure 6. 
Extranodal natural killer (NK)/T cell lymphoma, nasal type (A-H) and gastric carcinoma 

associated with EBV (I-J). (A & B) H&E sections (200x) show angiodestruction by invading 

lymphoma cells with associated necrosis and karyorrhectic debris (arrow in Panel A). (C) 

In this high-power H&E image (400x), most lymphoma cells are small to intermediate-

sized with irregular nuclear contours/folds. Many cells possess moderate amounts of clear/

vacuolated cytoplasm. (D) In situ hybridization for EBV-encoded RNA (200x) is positive 

in the nuclei of most lymphoma cells. (E) CD3 (200x) demonstrates that the majority of 
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the lymphoid infiltrate is T cells. (F) CD8 immunostain is positive in the neoplastic T 

cells with angiocentric pattern (200x). (G) CD56 immunostain highlights the angiocentric 

lymphoma cells (200x). (H) TIA-1 immunostain highlights the angiocentric lymphoma cells. 

(I-J) Gastric carcinoma associated with EBV: Gastric carcinoma with lymphoid stroma. 

(I) H&E (200x) slide shows epithelioid tumor cells in fused glands and cords. There are 

intraepithelial lymphocytes as well as mature lymphocytes scattered in the background. (J) 

In situ hybridization for EBV-encoded RNA (200x) is positive in the nuclei of the neoplastic 

epithelial cells but not the background lymphocytes.
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Figure 7. 
Kaposi sarcoma (A-D), primary effusion lymphoma (PEL) (E-J), and multicentric 

Castleman disease (K-N). (A) H&E image (100x) of a lymph node involved by Kaposi 

sarcoma shows intersecting fascicles of spindled cells. There are intervening slit-like/sieve-

like spaces with entrapped red blood cells. (B) ERG immunostain (100x) is positive 

in essentially all spindled cells. Other vascular markers such as CD31 and CD34 are 

also positive in KS (not shown). (C) KSHV LANA immunostain (100x) is positive in 

virtually all nuclei of Kaposi sarcoma cells. (D) KSHV LANA immunostain at a high 
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power (400x) demonstrates the classic punctate/speckled staining of KS nuclei. Primary 

effusion lymphoma (PEL) (E-J). (E) H&E image at high power field (600x) displays 

large and pleomorphic PEL cells with anaplastic nuclei, variably prominent nucleoli, and 

abundant cytoplasm. There is plasmablastic morphology. Mitotic figures and mummified 

cells are easily identified. (F) KSHV LANA stain (600x) shows positive staining in PEL 

nuclei, a key to the diagnosis. (G) In situ hybridization stain for EBV-encoded small 

RNA (600x) highlights neoplastic cells in this PEL case. (H) CD30 immunostain (600x) 

shows diffuse and strong membranous and cytoplasmic staining of PEL cells. (I) MUM1/

IRF-4 stain (600x) demonstrates plasmacytic differentiation. (J) Ki-67 immunostain (600x) 

demonstrates a high proliferation index. Multicentric Castleman disease (K-N). (K) H&E 

image (200x) shows a regressed germinal center concentrically involved (“onion skinning” 

pattern) by numerous lymphoid cells and plasma cells/plasmablasts. (L) H&E image (200x) 

demonstrates numerous plasma cells in clusters and increased vessels (arrows). (M) KSHV 

LANA stain (200x) highlights plasmablasts. (N) Lambda immunostain (200x) highlights 

monotypic plasmablasts.
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Table 2.

Example of HHV-8/KSHV respective gene/protein expression in its associated human cancers [1–3].

KS PEL MCD

LANA (ORF73) + + +

K8 + + +

K10 −/+ + +

K11 + +

K15 +

ORF59/PF8 + +

ORF65 +

K2 + +

vIL6 + +

K12/kaposin + + +

vFLIP + + +

vCyclin + + +

K9/vIRF-1 +

K10.5/LANA2 + +

K10 −/+ + +

1.
Katano, H., Sato, Y., Kurata, T., Mori, S. & Sata, T. (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary 

effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease, Virology. 269, 335–44.

2.
Chen, D., Gao, Y. & Nicholas, J. (2014) Human herpesvirus 8 interleukin-6 contributes to primary effusion lymphoma cell viability via 

suppression of proapoptotic cathepsin D, a cointeraction partner of vitamin K epoxide reductase complex subunit 1 variant 2, J Virol. 88, 1025–38.

3.
Abere, B., Mamo, T. M., Hartmann, S., Samarina, N., Hage, E., Ruckert, J., Hotop, S. K., Busche, G. & Schulz, T. F. (2017) The Kaposi’s 

sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic 
target, PLoS Pathog. 13, e1006639.
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