
Metacell‑2: a divide‑and‑conquer metacell
algorithm for scalable scRNA‑seq analysis
Oren Ben‑Kiki, Akhiad Bercovich, Aviezer Lifshitz and Amos Tanay*   

Background
Since its initial development over 10 years ago, single-cell RNA-seq scaled rapidly from
the laborious and manual construction of a few dozens of Smart-seq [1] libraries to
fully automated and highly parallelized production pipelines [2, 3] capable of generat-
ing millions of single-cell profiles on diverse applications [4, 5]. The characteristics of
scRNA-seq profiles remained however largely unchanged since the deployment of
unique molecular identifiers (UMIs) for noise reduction [6, 7]. Each scRNA-seq profile
is characterized by a sparse sample of RNA molecules, where the majority of genes are
not sampled at all, or sampled in few copies. The inference of transcriptional programs
[8–10] and dynamics [11–14] at high quantitative resolution using methods of increas-
ing sophistication [15–19] relies heavily on the ability to group these sparse profiles
together.

We previously introduced Metacell [20] as a strategy for partitioning scRNA-seq data
into disjoint subsets (called metacells) that ideally represent repeated sparse sampling
from the same multinomial distribution as expected from a recurrent cell state. The
rationale underlying the metacell approach is that the summary of transcriptional maps
(or manifolds) using metacells, rather than single cells, lowers the risk for smoothing

Abstract 

Scaling scRNA-seq to profile millions of cells is crucial for constructing high-resolution
maps of transcriptional manifolds. Current analysis strategies, in particular dimension‑
ality reduction and two-phase clustering, offer only limited scaling and sensitivity to
define such manifolds. We introduce Metacell-2, a recursive divide-and-conquer algo‑
rithm allowing efficient decomposition of scRNA-seq datasets of any size into small
and cohesive groups of cells called metacells. Metacell-2 improves outlier cell detec‑
tion and rare cell type identification, as shown with human bone marrow cell atlas and
mouse embryonic data. Metacell-2 is implemented over the scanpy framework for easy
integration in any analysis pipeline.

Keywords:  Single-cell RNA-seq, Manifold learning, Large-scale transcriptional atlases

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Ben‑Kiki et al. Genome Biology (2022) 23:100
https://doi.org/10.1186/s13059-022-02667-1

*Correspondence:
amos.tanay@weizmann.ac.il
Department of Computer
Science and Applied
Mathematics,
and Department
of Immunology
and Reproductive Biology,
Weizmann Institute
of Science, Rehovot, Israel

http://orcid.org/0000-0001-9419-3824
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02667-1&domain=pdf

Page 2 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

artifacts (compared to imputation approaches), while still maximizing sensitivity and
resolution (compared to more coarse-grained clustering). This strategy becomes par-
ticularly effective when a large number of cells are sampled. It is thereby important to
ensure its scalability, as common scRNA-seq datasets are increasing in size from thou-
sands to millions of cells.

Here, we introduce a new and greatly improved Metacell algorithm (MC2) that sup-
ports practically unlimited scaling, using an iterative divide-and-conquer approach. In
addition to the divide-and-conquer scheme, the algorithm uses a new graph partition
score to avoid time-consuming resampling and directly control metacell sizes, imple-
ments a new adaptive outlier detection module for better robustness, and employs a
rare-gene-module detector ensuring very high sensitivity for detecting transcriptional
states that are present in as little as 0.01% of the data. Our efficient implementation of
the MC2 algorithm [21] can quickly compute metacells from any matrix to power quan-
titative and robust downstream analysis using scanpy [22], Seurat [23] or other toolsets
[24, 25], or interactive visualization with the metacell viewer/annotator [26].

Results
Scalable metacell analysis using a two‑phase divide and conquer (DAC)

MC2 works in two phases, where in each phase, the algorithm is recursive and paral-
lelized (Fig. 1, details in Additional file 1: Fig S1). The first phase produces low quality
metacells and groups them into metagroups. This is done by (a) working independently
(and in parallel) across a random partition of cells into small (~10,000 cells) piles, (b)
screening for outlier cells in all piles and applying the algorithm recursively on (one
or more) piles from them to force their grouping into metacells, and (c) applying the
algorithm recursively to the mean profiles of all derived metacells to generate meta-
groups. The output of phase I is a set of metacells and grouping of these metacells into

Fig. 1  Schematics of the MC2 algorithm. The input is a large UMI matrix, and the output is a partition of
cell into metacells and final outlier cells. MC2 is deriving a solution using recursive two-phase process.
It first divides the data into random piles and generates low-quality metacells and outliers from them. It
then (recursively) groups low-quality metacells into coherent piles and repartitions these piles to generate
high-quality metacells. The algorithm is ensuring high sensitivity of rare behavior detection by identifying
rare metacell through a pre-process, as well as through regrouping of outlier cells that are being pooled from
all piles at both phases of the algorithm

Page 3 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

metagroups. The second phase recomputes metacells, but uses piles constructed from
the metagroups computed by the first phase instead of random piles. Phase II is also
invoked recursively on outliers from all piles, but this time channels strong outliers to
remain ungrouped. MC2 final output is therefore a set of metacells (from phase II) and
identified “final” outliers.

Scaling of the algorithm is facilitated by working recursively—as long as there are
more elements (cells, outliers, metacells, metagroups of metacells) than the amount fit-
ting within one pile, the algorithm will subdivide them, independently (in parallel) group
the elements in each pile, collect the resulting groups from all piles, and invoke itself
recursively on these groups. This approach allows the algorithm to scale (O(N log N))
with the number of cells in run time. It also keeps the algorithm space complexity effec-
tively constant (although our implementation uses some compact structures that are
linear in the number of cells). Importantly, MC2 naturally enables a high degree of paral-
lelism between piles.

A key consideration in the design of MC2 is the need for sensitivity to detect rare tran-
scriptional states. The MC2 algorithm provides two mechanisms to address this. First,
the MC2 outlier detection scheme can trace single cells from rare cell types in random
piles, whenever these are not frequent enough for deriving a valid, coherent metacell.
The algorithm then pools such bona fide outliers in outlier piles that are becoming
enriched for rare behaviors, leading to their grouping into cohesive metacells when the
algorithm is applied recursively on these special piles. This scheme is highly effective
as demonstrated below, but can under-perform for rare cell types that are linked with
weakly expressed gene markers rather than clear outlier expression profiles. MC2’s sec-
ond mechanism of rare cell type detection addresses this problem using a gene-based
strategy. It runs a pre-process that screens for gene modules with weak but significant
correlation structure over all cells, identifies cells expressing specifically such mod-
ules, and forms metacells from them prior to the application of the full MC2 two-phase
procedure.

In summary, MC2 avoids PCA, global K-nn graph derivation, or the construction of
quadratic scRNA-seq similarity matrices and instead breaks the metacell derivation
problem into smaller problems that are being refined as the algorithm identifies which
cells should be analyzed together. The algorithm sensitivity relies on a combination of
explicit rare behavior detection and a hierarchical method for filtering and grouping rare
cellular states.

MC2 is sensitive and robust

We tested the robustness and sensitivity of the MC2 algorithm in a series of compari-
sons. Idealized metacells represent cells sampled from the same multinomial distribu-
tion and should therefore have intrinsic gene variance proportional to the gene mean.
We therefore assessed the quality of metacell solutions by quantifying the degree of nor-
malized variance per gene (inner normalized variance).

We first wished to ensure that the MC2 algorithm’s efficient graph partition algo-
rithm is not losing significant quality compared to the original, resampling-based
Metacell implementation (MC1) [20]. MC2’s graph partition is applied within each
pile and provides tight control over metacell sizes (which is measured in the total

Page 4 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

number of UMIs in addition to the number of cells). On the other hand, MC1’s usage
of resampling iterations, while not scaling well to large datasets, can potentially
enhance robustness. For direct comparison, we applied MC2 in one pile (no divide
and conquer) to 160K peripheral blood single-cell profiles on which MC1 was applied
before. We observed comparable inner-normalized-variance in the MC2 direct par-
titioning algorithm compared to the MC1’s resampling version (Fig. 2A, Additional
file 1: Fig S2). Somewhat lower variance was derived when using the divide-and-con-
quer mode of MC2 compared to the single-pile version (Fig. 2B). MC2 2D visualiza-
tion of large-scale data is based on plotting metacells rather than cells, facilitating
ease of interpretation (Fig. 2C). These data confirm MC2 and in particular the divide-
and-conquer strategy is deriving metacells at quality that is comparable to the original

Fig. 2  Robustness of the divide-and-conquer metacell algorithm. A Distribution of metacell normalized
inner variance for the PBMC dataset, using the Baran et al. algorithm (orange) vs. MC2 two-sided stability
score optimization, working on the entire data in a single pile (i.e., no divide and conquer, green). B
Distribution of normalized inner variance for the PMBC dataset using the full MC2 algorithms (blue) vs. the
single-pile algorithm (green). C Metacell graph derived by MC2 on the PMBC dataset. Annotation as in Baran
et al. D Distribution of metacell normalized inner variance for HSC and MPP cells, when using full MC2 on the
HCA bone marrow data set (orange) or when restricting analysis to MPP/HSC cells alone (blue). E Metacell
graph for the full HCA BM data set and for metacells computed on the zoomed-in HSC/MPP subset

Page 5 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

MC1 implementation for small datasets, while allowing practically unlimited scaling
and better control as discussed further below.

To test how well MC2 maintains local accuracy when working on a large dataset,
we studied ~380K human bone marrow cells from the human cell atlas [27]. We first
applied MC2 to the entire data. We then identified in a supervised fashion all metacells
with HSC or MPP characteristics (Additional file 1: Fig S3A-B) and generated a smaller
dataset including the 6666 cells from these metacells. We then compared the metacells
derived by MC2 to a set derived by applying the algorithm on a single pile consisting
only of HSC/MPP cells (Fig. 2D-E). This confirmed metacell cohesiveness is maintained
when analyzing large datasets, demonstrating the MC2 approach is not losing sensitivity
compared by the direct (but less scalable) approach.

MC2 is scalable to millions of scRNA profiles

We next tested the scalability of MC2 on datasets with millions of cells. We applied MC2
to ~1.8M cells acquired from mouse embryos during organogenesis stages [28] (E9.5-
E13.5), and compared the results to current popular pipeline using PCA and two rounds
of Louvain clustering as implemented in Seurat [7]. Using a single workstation with dual
CPUs of 14 cores each, we observed MC2 provides a major reduction in elapsed time
(~40 min for MC2 vs. ~150 min for PCA + 2-level Louvain clustering on ~1.8M cells).
The algorithm also supports graceful scaling in maximal memory (Fig. 3A, B) that is
permissive for running MC2 on much larger datasets, since except for a small amount
of linear (per input cell) data, the total memory used is a function of only the pile size
used and the number of piles computed in parallel, regardless of the dataset. Much of
the improvement in elapsed time is due to better parallelism of the algorithm, showing
potential for further (practically unlimited) scaling when using more than one compute
node.

When using a divide-and-conquer algorithm, we face a tradeoff between the size of the
piles used and the quality of the results (Fig. 3C). Increasing the pile size provides dimin-
ishing quality returns, at the cost of a rapidly increasing run-time. For the mouse atlas,
we have chosen a pile size that would generate (on average) 50 metacells per pile (this
parameter is adjustable by the user).

While it is natural to compare scaling of MC2 to the scaling of two-stage
PCA+Louvain clustering, the output of MC2 is different from the clustering solutions. It
provides a high-granularity model that is designed for use in downstream (quantitative)
analysis and not as a substitute for cell-typing and sub-typing. In particular, two-phase
clustering of the organogenesis dataset is not fully eliminating high variance within the
693 sub-clusters defined, compared to the higher granularity and more precise estima-
tion of quantitative states facilitated by the 9121 inferred metacells on the same data
(Fig. 3D). Following iterative elimination of doublet cells (Methods), MC2 provided a
metacell cover that supports a highly informative visualization of the organogenesis
manifold (Fig. 3E). Clustering of metacells using their parametric gene expression state
approximated the transcriptional space using 64 large-scale behaviors (K-means clus-
ters), which were generally but not perfectly consistent with previous cell type annota-
tion (Additional file 1: Fig S4). The derived model reflected temporal dynamics (Fig. 3F)
and broad germ-layer structure that is missing from common single cell PCA+UMAP

Page 6 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

Fig. 3  Scaling MC2 to millions of cells. A Graphs show scaling of MC2 (multi-pile) compared to a naïve
metacell on a single pile or a PCA+2-Phase Louvain clustering implementation in Seurat, using the PMBC
160K cell data (resampled to datasets of increasing sizes—X-axis). B Comparison of MC2 and two-phase
clustering performance for the organogenesis datasets (MOCA). C Effects of scaling the pile sizes on the
normalized inner variance for MC2 on the organogenesis data. D Distribution of normalized inner variance
for MC2 and PCA+Louvain original sub-clusters on the organogenesis data. E Marker heat map and metacell
graph projection of the organogenesis data. Clustering of metacells is used for coloring and cross-reference
purpose, in support of, but not in place of supervised annotation. F Distribution of metacells linkage with
different embryonic time points over the metacell graph. Color coding is based on metacell clustering as in
D. To compensate for differences in the number of cells, we randomly sampled 2000 points for each time
point and weighted by the fraction of the cells of each age in each metacells

Page 7 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

visualization. The derived structure also facilitates high-resolution in-depth characteri-
zation of the combinatorial and quantitative transcriptional gradients within types, as
exemplified for epithelial or endothelial cells (Additional file 1: Fig S5). Further analysis
of such large-scale metacell models is ideally interactive, as facilitated by our MCView
web-based visualizer program. Overall, MC2 efficiently converts very large-scale
scRNA-seq data into building blocks that can be used to create a working model of the
underlying transcriptional manifold.

MC2 outliers and rare type detection

One of the major challenges in analyzing very large-scale scRNA-seq is the sensitive
detection of rare behaviors. Such behaviors may be lost when sub-sampling data and
can require more statistical power for detection within vast samples of less informative
recurrent states. MC2 uses two mechanisms for detecting rare behaviors: the first involv-
ing a pre-process that searches for rare gene modules and the second using the MC2
divide-and-conquer algorithm outlier detection and the recursive analysis of detected
outliers for regrouping and inference of rare metacells. We screened the organogenesis
metacell cover to identify genes expressed in one metacell at least 8-fold higher than
in 99.8% of all other metacells. This resulted in identifying 260 genes spanning over 30
clusters with two or more genes, each representing a defined rare cell state (Fig. 4A). 47
of these genes were detected during the pre-process stage of MC2, while all others were
detected within piles of common outliers or as specific metacell state within a coherent
pile.

Figure 4B demonstrates MC2’s sensitivity and specificity on three rare behaviors
involving Lens cells, Mast cells, and Spermatogenic-like cells, all of which were identi-
fied through rare gene modules pre-screening. MC2 first identifies genes with globally
very low mean expression but still significant correlation to other genes over a few cells.
Groups of such correlated genes are used to form rare gene modules. MC2 then searches
for additional genes that are enriched in cells expressing the module and then moves
all cells with potentially significant expression of any (expanded) rare gene module to a
specialized pile in which rare metacells (and outliers) are being inferred. The accuracy
of detecting rare behaviors can be substantially higher than the accuracy enabled by the
standard two-phase clustering approach. In PCA + clustering, some of these rare behav-
iors are absorbed within subclusters that mix-specific rare cells with other, non-specific
cells (Fig. 4C). In conclusion, using a combination of a sensitive pre-process and the
divide-and-conquer strategy, MC2 ensures high sensitivity for detecting rare transcrip-
tional states while scaling naturally to very large datasets.

Discussion
We have introduced a new scalable algorithm for inferring metacell covers on large
scRNA-seq data, demonstrating its robustness and sensitivity for analysis of challeng-
ing datasets involving millions of cells. Metacells are groups of single-cell profiles that
provide sufficient coverage for inference of one quantitative transcriptional distribution.
Ideally, profiles within a metacell should be distributed as if the only source of variance
in the data is the sparsity of RNA sampling from single cells. As datasets becomes larger
and sampling of transcriptional states becomes saturated, this assumption becomes

Page 8 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

progressively more realistic. Larger data thereby provide strong justification for analysis
of metacell transcriptional states (which are quantitative and of more convenient size)
rather than direct analysis of single-cell profiles and their K-nn graphs or smoothed and
imputed single-cell profiles.

The implementation of MC2 and the original metacell algorithm is tuned for the
typical distributions observed in scRNA-seq, and their application to other single-cell
genomics data (e.g., scATAC-seq, scBIS-seq) is recommended only if adequate similarity

Fig. 4  MC2-sensitive detection of rare behavior. A Correlation matrix between log gene expression
frequency of 260 genes with rare expression signatures (see text). We highlight several gene clusters at the
left. B Each bar graph show specificity (left) and fold change enrichment (right) of top genes separating three
exemplified rare transcriptional behaviors. Also shown for each rare behavior are the distribution of total gene
expression of rare genes per single cell within the top-enriched metacell(s) (shades of green) and within the
top enriched PCA+Louvain subcluster (orange). C Shown are single-cell gene expression for rare behavior
marker genes and for genes correlated and anticorrelated with them, plotted for cells within the most
strongly enriched PCA+Louvain sub-cluster for the observed behavior

Page 9 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

metrics and feature selection strategies are developed. Such adaptation is not described
here. It is however natural to use the divide-and-conquer strategy introduced here for
scaling analysis of large-scale single-cell omics of multiple types.

MC2 provides effective building blocks for understanding complex transcriptional
manifolds. Metacells’ transcriptional states can be assumed to be quantitative and
describe the distribution of gene expression in an idealized cell state given sufficient
sampling and guaranteed homogeneity. The MC2 underlying model remains however
non-parametric and extremely simple, as it avoids any assumptions on the linkage
between metacell states. Further work must be channeled toward refined models of the
linkage between transcriptional states, but such work, in our mind, should move away
from the K-nn, non-parametric approaches that are commonly used in the literature,
and toward a principled and quantitative model that put transcriptional states and the
connection between them in an interpretable (and ideally mechanistic) context. With
more parametric models linking metacells into proper quantitative models, it will be
possible to envision the routine usage of large-scale transcriptional atlases as universal
references for the interpretation of experiments generating new scRNA-seq data follow-
ing perturbation, stimulation, patient sampling, and more.

Conclusions
Metacell-2 is an effective and scalable solution for transforming sparse large-scale single-
cell RNA-seq dataset into quantitative metacell models. The algorithm divide-and-con-
quer approach is implementing a strategy for detecting rare behaviors that maintain very
high sensitivity even for large datasets. The tool can be easily incorporated into pipelines
performing additional downstream modeling of transcriptional manifolds and atlases.

Methods
Relationship to MC1

MC2 can be thought of as a combination of (i) an improvement of the previous version
of Metacell algorithm (MC1) and (ii) overall divide and conquer and outlier cell routing
scheme that is running parallel independent instances of the improved basic algorithm.
Overall, this allows processing large data sets efficiently. The description below will focus
on the novel components of MC2: the detection of rare modules, graph partition goal
function and optimization, outlier filtering scheme, and the overall divide-and-conquer
design. We will also outline briefly components that are based more heavily on MC1,
including mainly the feature gene selection and balanced K-nn graph construction.

Rare gene modules detection

MC2 primarily detects rare cell types by screening through random data partitions while
classifying and grouping outlier behaviors as described below. But in some cases, low
UMI count in marker genes of rare behaviors makes it impossible to detect rare cells as
outliers in small random cell subsets, even though they would be detected when pro-
cessing all the cells at once (as in MC1).

To handle such cases, MC2 implements a rare gene module detector that efficiently
pre-processes the entire UMI matrix and enhances sparse gene features. This stage
detects rare gene modules, collects the cells that express these modules, and invokes

Page 10 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

the divide-and-conquer algorithm on the cells of each such module separately from
the rest of the cell population. The resulting metacells are passed to the final output.
The overall flow is working as follows (default main parameters are also specified in
Additional File 1: Table T1):

1.	 Identify rare genes—genes that are observed in a small fraction of the cells (default
p=1e−3), but are still observed abundantly (at least 7 UMIs) in at least one cell.

2.	 We compute the correlation matrix of between all rare gene expression r and then
compute its second order correlation matrix defined as r2 = cor(r). We then perform
hierarchical clustering of r2 using Ward’s method.

3.	 For each subtree of the hierarchical clustering, we compute the mean r2 of gene pairs
within it. We next consider all maximal sub-trees on at least 4 genes with mean r2 of
at least 0.1 as candidate gene modules.

	 We next repeat the following stages (4–7) for each candidate gene module M.
4.	 Identify all cells C with one or more UMIs from the genes in M.
5.	 Add to M all genes whose UMI frequencies in the cells C are at least 128-fold higher

than their frequencies over all cells, as long as this increases the number of cells
expressing the gene module by a factor of less than 4.

6.	 Screen for all cells (including C and others) with at least 4 UMIs observed for genes
in the (expanded) module M. Denote these as CM.

7.	 Modules for which|CM| < 12 are discarded since these do not suffice to create even a
single metacell. Modules for which |CM| > T are considered to be too common and
are discarded as well. T is defined as the total number of cells required to give rise to
(on average) at least 48 cells in a random pile (as described below).

All the threshold parameters used above are tuned to maximize complementarity
between this rare gene module detection pre-processing, and phases of outlier cell
detection and re-clustering within the main MC2 divide-and-conquer algorithm. We
do not anticipate scenarios requiring adjustment of these parameters.

Feature election

MC2 uses the same feature selection method as MC1, but feature selection is per-
formed independently in each divide-and-conquer pile. Therefore, in the later phases
of the algorithm, when all the cells in a pile are similar, MC2 can focus on genes that
distinguish sub-types of the common cell type, providing additional sensitivity over a
global algorithm.

Genes are used as features if they satisfy all of the following criteria, computed after
downsampling all the cells to the same size:

1.	 They are not explicitly forbidden from being selected as feature genes by the user;
2.	 Their normalized expression variance (variance/mean) is at least 0.1 higher than the

median of the 100 genes with the most similar expression level;
3.	 They express a total of at least 50 UMIs in the cells of the pile;
4.	 They express at least 4 UMIs in at least 3 cells of the pile.

Page 11 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

Graph construction

To compute the metacells, MC2 first constructs a K-nearest-neighbors graph similarly to
MC1. We pick K to be the median number of cells needed to reach the target metacell size
(by default, 160,000 UMIs).

1.	 We start with a symmetric matrix of correlations between the feature genes of all the
cells.

2.	 We convert it to an asymmetric matrix of outgoing ranks.
3.	 We convert it back to a symmetric matrix containing in each element the geometric

mean of it and the matching transposed matrix element.
4.	 We pre-prune all elements whose value is lower than

√

10 K.
5.	 We prune the matrix to keep at most 3 K incoming edges for each cell.
6.	 We further prune the matrix to keep at most K outgoing edges for each cell.

A two‑sided stability score for graph partitioning

MC2 constructs metacells by partitioning the constructed graph, independently in paral-
lel for each pile of cells in the data or recursively over groups of metacells. The goal is to
partition the graph into subsets with high connectivity and homogeneous size distribu-
tion. Compared to MC1, we wish to avoid computationally expensive resampling iterations
and define an explicit score function to stabilize the original local optimization steps and
cooling strategy. On the other hand, in contrast to the popular modularity metric [29–32]
and its different flavors, in MC2, we wish to discourage inclusion of a node in a partition if
its internal connectivity is very asymmetric (e.g., only outgoing edges to members of the
metacell).

Define a cell graph G with nodes (cells) V and weighted edges E, we : E → R+ as defined
above. Defined src(e), targ(e) as the source and target node of an edge, respectively. We will
denote the incoming and outgoing neighbors sets as Nin(v), Nout(v), and score a partition
into M metacells mc(v) : V → [0, M − 1], Mm = mc−1(m).

We first compute for each node its probability for staying inside a partition assuming a
random walk starting from the node (using outgoing edges) or a similar probability assum-
ing the process is working in reverse (using incoming edges):

We wish to compare these probabilities to the uniform distribution (assuming a random
walk on a fully connected, weight-less graph):

Importantly, we now define two ratios of stability (forward and reverse) separately:

pstableoutv =

∑
e∈Nout (v) s.t. targ(e)∈Mmc(v)

we
∑

e∈Nout (v) we
, pstableinv =

∑
e∈Nin(v) s.t.src∈Mmc(v)

we
∑

e∈Nin(v) we

punifv =
| Mmc(v) |

| V |

stableinv =

pstableinv
punifv

, stableoutv =

pstableoutv

punifv

Page 12 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

And consider our goal function, denoted as the two-sided stability score, by a non-lin-
ear (geometric mean) summation of these scores over all nodes:

We note that when using this scoring scheme, the cost of keeping an edge inside or
outside a partition is not constant as it would be in the modularity metric, which is mak-
ing optimization somewhat more computationally difficult. Nevertheless, the two-sided
stability score does more strongly discourage the inclusion of nodes in partition if their
connectivity to the partition is highly non-symmetric.

Generation of partitions with optimized two‑sided stability score

Given a weighted graph G = (V, E, w), our algorithm is searching for a partition mc
with an optimized two-sided stability score(mc) and the metacell size restrictions
|Mm| ≥ 12,Ulow ≤

∑
v∈Mm

u′v ≤ Uhigh . Metacell size is defined by the total number of
UMIs in its cells uv, but in order to avoid highly asymmetric cell sizes leading to meta-
cells with very few cells, we cap all u′v = min(uv, medianv(uv) ∗ 2). Restriction on meta-
cell sizes is determined using a user parameter defining the target metacell size Utarg, as
Ulow =

Utarg

2 ,Uhigh = 2Utarg . We are however increasing Utarg beyond user request for
datasets with large cells, if it implies less than twelve cells on average per metacell.

The algorithm works using the following steps:

1.	 Seeding: Choosing P =

⌈∑
v u

′

v
Utarg

⌉
seeds similarly to the MC1 algorithm. This involves

iteratively sampling nodes that are disconnected from the nodes selected so far and
their neighbors. Seeding ends up with a partition mc.

2.	 Optimization: This step is incrementally improving the score by moving nodes
between the partitions until no such steps are possible. To improve the opti-
mizer robustness, we start the optimization sequence allowing also sub-opti-
mal changes in node v metacell association, by adding to the difference in overall
score(mcnew) additional contribution from difference in the v individual stability
�
[
log

(
stableinv

)
+ log

(
stabeoutv

)]
 . The parameter λ is starting at high levels, which

are allowing nodes to switch to a partition that provides more connectivity even if
this result in reduction in the stability of other nodes in its current partition. The
parameter is gradually reduced to 0, and in its final stages, the algorithm is directly
optimizing the goal function.

3.	 Max-size control. We identify all metacells exceeding size restriction
∑

v∈Mm
u′v ≥ Uhigh and dissolve each of them. We return to steps 1–2 by re-seeding

only the dissolved cells and re-optimizing the partition (keeping the size-valid meta-
cells initially intact). For efficiency we use λ = 0 for all the non-dissolved nodes dur-
ing this re-optimization.

4.	 Connectivity control. If no metacells were dissolved by step 3, we identify metacells
whose sub-graph can be split using a standard min-cut algorithm, such that the
mean weight of edges (originally unconnected pairs are assumed to have weight 0) in
the cut is less than 10% of the mean weight of edges not in the cut. If the smaller par-

score(mc) =
1

2|V|

∑

v

[
log

(
stableinv

)
+ log

(
stableoutv

)]

Page 13 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

tition contains less than 7 cells, we simply disassociate these cells from the metacell;
otherwise, we dissolve it similarly to step 3 above.

	 We iterate steps 3+4 until all metacells meet the maximal size restriction and are
well-connected.

5.	 Min-Size control: we identify all metacells with at least one gene showing a mean
expression that is 8-fold higher than the mean over all metacells. We dissolve all
small metacells

∑
v∈Mm

u′v ≤ Ulow (for metacell without a strong maker gene) or
∑

v∈Mm
u′v ≤ 0.5Ulow (for metacell with a strong marker gene). In any case, we dis-

solve metacells with |Mm| < 12. We then return to steps 1–2 by reseeding them with
one less seed than the number of dissolved metacells and re-optimizing similarly to
step 3. We iterate this until all metacells meet the minimal size restriction or until the
next iteration causes the creation of a too-large metacell.

Deviant (outlier) cell detection

We generally wish to ensure metacells include cells for which all genes are following one
multinomial UMI distribution. Previously, we suggested to identify deviant (outlier) cells
as those with at least one gene that is severely over expressed (fold factor over 8) com-
pared to the mean expression in the metacell. However, using this criterion can result in
massive (or even complete) dissolution of metacells in many datasets, due to high noise
level, inter-individual differences, or other effects. We therefore developed a new adap-
tive deviant cell removal algorithm that tunes two critical parameters: Tdev

fold the minimal
fold factor of deviant gene expression, and Tdev

N the maximal number of cells that can be
defined as deviants based on the expression of one gene.

Given these parameters, we define deviant genes as those with maximal fold factor at
least Tdev

fold and score each cell using the minimal rank of its fold factors over all deviant
genes. Following this, deviant cells are specified as those having minimal rank of at most
Tdev
N  . It is easy to see this ensure that no more than Tdev

N cells are removed due to outlier
behavior of any single gene.

To select Tdev
fold , we set its baseline at 8 and increase it while not more than 3% of the

genes are defined as deviant for one or more cells.
To tune Tdev

N  , we set its baseline at 1 and increase it while not more than 25% of the
cells are deviant.

After removing deviant cells, we repeat the process (unless we have reached the
threshold of 25% total deviant cells), to ensure the remaining cells are compatible with
the updated gene expression in each metacell.

After removing the deviant cells, we may end with some metacells that are too
small. We completely dissolve any such too-small metacells, using the same method as
described in step 4 (min-size control) above. We mark all the deviant and dissolved cells
as outliers and move them to later re-analysis within the hierarchical divide-and-con-
quer scheme we next describe.

The Metacell‑2 overall algorithm: divide and conquer

A divide-and-conquer algorithm is needed to compute metacells from large dataset
using a reasonable amount of CPU and memory. The complexity of the direct graph

Page 14 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

partition algorithm is O(N2) since it requires computing similarities between all the
cells. The complexity of the divide-and-conquer algorithm we describe below is O(N
log N), where N is the number of cells. The algorithm works in three phases (see Fig. 1,
details in Additional file 1: Fig S1):

Preliminary phase

In this phase, we assign the cells to random piles of a manageable size. We pick a pile
size so that the expected number of metacells in each pile would be 100 and enforce it is
between 10K and 30K cells (these parameters are adjustable by the user).

We then invoke the basic algorithm independently in parallel for each pile. The pile
algorithm selects feature genes, constructs a graph, and partitions it into metacells, fol-
lowed by detection of outlier cells. Processing of each pile is serial, with the exception of
implicitly parallel matrix operations. We combine the outliers reported by all the piles
into a new (much smaller) matrix and repeat the process (random pile-partition and
metacell derivation) until we have a final single outlier pile. We group the remaining sin-
gle outlier pile into metacells while forcing 100% coverage (that is, without removal of
outliers). This results in a complete partition of the cells into metacells. However, the
quality of this partition, being based on random piles, can be low.

Metagroup phase

In this phase, we consider each of the metacells computed by the preliminary phase
to be a single observation (using the total UMI counts over each metacell). We recur-
sively invoke the full divide-and-conquer algorithm to group these metacells into meta-
groups (forcing 100% coverage as above). We note that more than one recursive iteration
is needed when the dataset is larger than 0.5M cells (over ~10K metacells of ~50 cells
each). Also note that in terms of enforcing partition size, at the metagroup phase, we
restrict partition size between 5000 and 12,500 cells rather than Utarg UMIs in the meta-
cell phase.

Final phase

In this phase, we construct from each metagroup a new pile (consisting of the cells
within its metacells). We now invoke the direct algorithm to compute metacells for each
of these piles. We again combine the outliers from all the piles and recursively repeat the
process; however, in this phase, we stop recursion after one level and designate the outli-
ers detected in outlier piles as final outliers.

This concludes the algorithm, which is reporting metacells derived from the rare gene
modules pre-process, combined with metacells derived by the main algorithm, and a
limited number of remaining un-clustered final outlier cells.

Post‑processing Metacells

Computing Metacells, as of itself, is not a complete scRNA analysis method. Rather, it
is meant to be an (early) step in the analysis process. The promise of metacells is that it
makes further analysis easier; instead of grappling with many individual cells with a very
weak and noisy signal of few hundred UMIs in each, one can analyze fewer complete
metacells with a strong signal of tens of thousands of UMIs, which allows for robust

Page 15 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

estimation of their gene expression levels. MC2 therefore supports exporting a metacell
umi matrix that can be then loaded into standard downstream analysis tools as a scalable
and rich substitute for very large and sparse single-cell count matrices. This can serve as
the basis for deriving atlas layout, inferring possible trajectories or studying differential
gene expression.

scRNA‑seq data sources and pre‑processing

•	 PBMC: We used PBMC160k data as previously described (Baran et al.). We excluded
all-zero genes, mitochondrial genes, and IGHMBP2, IGLL1, IGLL5, IGLON5,
NEAT1, TMSB10, and TMSB4X. We then excluded all cells with less than 800 UMIs,
more than 8000 UMIs, or with more than 10% of their UMIs from the excluded
genes. This left us with 22,617 out of the original 32,738 genes and 149,825 out of the
original 163,234 cells.

•	 HCA.BM: We downloaded the HCA bone marrow data from the Human cell atlas
census of immune cells [33]. We excluded all-zero genes, mitochondrial genes, as
well as MALAT1 and XIST. We then excluded all cells with less than 800 UMIs,
more than 25,000 UMIs, or with more than 30% of their UMIs from the excluded
genes. This left us with 27,261 out of the original 33,694 genes and 302,766 out of the
original 378,000 cells.

•	 MOCA: We downloaded the MOCA organogenesis dataset [34]. We excluded all-
zero genes, mitochondrial genes, and MALAT1 and NEAT1. We also excluded
1700007G11Rik, 1700019B21Rik, Cmtm8, Col4a4, Fem1b, Gm11375, Gm28826,
Gm43298, Kyat3, Lancl2, Minpp1, Olfr1062, Parn, Poldip3, Sirpb1b, Syt16, and
Vmn2r-ps49 as genes which were both “noisy” (had normalized variance/mean
above 2.5) and “lonely” (had correlation of less than 0.1 with all other genes). We
then excluded all cells with less than 300 UMIs, more than 3000 UMIs, or more than
20% of their UMIs from the excluded genes. This left us with 26,143 out of the origi-
nal 26,183 genes and 1,798,929 out of the original 2,058,652 cells. We then run the
MC2 algorithm and marked as doublets all cells detected as such in the atlas, as well
as all cells inside metacells where at least 1/8th of the cells were detected as doublets
in the dataset. This left us with 1,658,637 cells.

All further analysis was done on the above filtered data.

Metacell QC metrics

An ideal metacell contains UMI vectors that are generated by sampling from the same
multinomial distribution. We test how well a given metacell solution is following this
hypothesis by computing the normalized variance (variance over mean) over the (down-
sampled) cells of each metacell, for genes with at least 40 UMIs in total, and take the
95th percentile (over all genes) of these values as the inner normalized variance of each
metacell.

The above measure is sensitive to the sizes of metacells, and this can skew the results
when comparing datasets with different metacells’ size distributions. To mitigate this
effect, we adjust metacell size distributions prior to comparison, working separately on

Page 16 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

each annotated cell type. For each such type, we separately sort the metacells by their
size in each dataset. We then adjust metacell sizes (by sampling cells from them) such
that the size distributions of metacells in the two datasets is similar. We note that we can
robustly compare more than two datasets when this normalization scheme is applied to
all of them simultaneously.

Rare behaviors

MC2 output includes a set of rare gene modules that are being used to identify rare cell
types and derive metacells enriched for them.

Distinct genes

For each rare gene module, we consider as “real positive” the cells that belong to meta-
cells that were computed from cells identified as expressing the module by the MC2
algorithm as described above. We then compute the AUROC for using each gene as a
classifier for these cells and show the highest AUROC and fold factors genes, as well as
the original genes, in the module identified by the MC2 algorithm.

Score distributions

For each such gene module, we score all cells using the total fraction of UMIs from this
module out of all UMIs. Given any cell partitioning (metacells or sub-clusters), we iden-
tify the metacell/subcluster with the highest mean score and set a score threshold to be
50% of the median score for cells within it. All cells with scores of at least the threshold
are considered “real positive” cases. We next show the distribution of these scores in the
metacells/clusters most enriched for these cells.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02667-1.

Additional file 1. Supplementary figures and table.

Additional file 2. Review history.

Acknowledgements
We thank people in the Tanay group for discussion. Research was supported in part by the ERC (project scAssembly), The
EU Braintime project, Chan Zuckerberg Initiative, and the Kahn foundation.

Review history
The review history is available as Additional file 2.

Peer review information
Barbara Cheifet and Stephanie McClelland were the primary editors of this article and managed its editorial process and
peer review in collaboration with the rest of the editorial team.

Authors’ contributions
Oren Ben-Kiki: Designed the study and the algorithms, wrote the software, performed analysis, and wrote the paper.
Akhiad Bercovich: Provided input for algorithmic design. Helped with the analysis. Aviezer Lifshitz: Helped with the analy‑
sis and software implementation. Amos Tanay: Designed the study and the algorithms, performed analysis, and wrote
the paper. The authors read and approved the final manuscript.

Author’s information
Twitter handles: @orenbenkiki (Oren Ben-Kiki); @Akhiad6 (Akhiad Bercovich); @aviezer_l (Aviezer Lifshitz)

Funding
Research in AT group was supported by the European Research Council (scAssembly), by the Chen Zuckerberg Initiative
and the Israeli Science Foundation precision medicine program (IPMP).

https://doi.org/10.1186/s13059-022-02667-1

Page 17 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100 	

Availability of data and materials
• PBMC: https://​suppo​rt.​10xge​nomics.​com/​single-​cell-​gene-​expre​ssion/​datas​ets
• HCA.BM: https://​data.​human​cella​tlas.​org/​explo​re/​proje​cts/​cc95f​f89-​2e68-​4a08-​a234-​480ec​a21ce​79?​catal​og=​dcp1
• MOCA: https://​oncos​cape.​v3.​sttrc​ancer.​org/​atlas.​gs.​washi​ngton.​edu.​mouse.​rna/​downl​oads
• Metacells-1: https://​tanay​lab.​github.​io/​metac​ell/
• Metacells-2 (MIT Licence) [21]:
◦ https://​pypi.​org/​proje​ct/​metac​ells (latest published version)
◦ https://​github.​com/​tanay​lab/​metac​ells (latest development version)
◦ https://​doi.​org/​10.​5281/​zenodo.​64105​71 (archived release sources)

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 August 2021 Accepted: 6 April 2022

References
	1.	 Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using

Smart-seq2. Nat Protoc. 2014;9:171–81.
	2.	 Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling

of single cells. Nat Commun. 2017;8:14049.
	3.	 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profil‑

ing of individual cells using nanoliter droplets. Cell. Elsevier. 2015;161:1202–14.
	4.	 Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat

Protoc. 2018;13:599–604.
	5.	 Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017;541:331–8.
	6.	 Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute numbers of molecules

using unique molecular identifiers. Nat Meth. 2012;9:72–4.
	7.	 Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for

marker-free decomposition of tissues into cell types. Science (New York, NY). 2014;343:776–9.
	8.	 Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol.

2015;16:241.
	9.	 Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-

cell RNA-seq data. Nat Commun. 2018;9:284.
	10.	 Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol.

2016;34:1145–60.
	11.	 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate deci‑

sions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.
	12.	 Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell

snapshots. PNAS. 2018;115:E2467–76.
	13.	 Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, et al. Optimal-transport analysis of single-cell

gene expression identifies developmental trajectories in reprogramming. Cell. 2019;176:928-943.e22.
	14.	 Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data.

Bioinformatics. 2015;31:2989–98.
	15.	 Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical

modeling. Nat Biotechnol. 2020;38:1408–14.
	16.	 Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al. MOFA+: a statistical framework for compre‑

hensive integration of multi-modal single-cell data. Genome Biol. 2020;21:111.
	17.	 Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe’er D. Characterization of cell fate probabilities in single-cell

data with Palantir. Nat Biotechnol. 2019;37:451–60.
	18.	 Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of single-cell multi-omic

data with totalVI. Nat Methods. 2021;18:272–82.
	19.	 La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature.

2018;560:494–8.
	20.	 Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, et al. MetaCell: analysis of single-cell RNA-seq

data using K-nn graph partitions. Genome Biol. 2019;20:206.
	21.	 Ben-Kiki O. Metacells2. 2022. Available from: https://​pypi.​org/​proje​ct/​metac​ells/ , https://​github.​com/​tanay​lab/​

metac​ells, https://​doi.​org/​10.​5281/​zenodo.​64105​71
	22.	 Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15.

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79?catalog=dcp1
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
https://tanaylab.github.io/metacell/
https://pypi.org/project/metacells/
https://github.com/tanaylab/metacells
https://doi.org/10.5281/zenodo.6410571
https://pypi.org/project/metacells/
https://github.com/tanaylab/metacells
https://github.com/tanaylab/metacells
https://doi.org/10.5281/zenodo.6410571

Page 18 of 18Ben‑Kiki et al. Genome Biology (2022) 23:100

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	23.	 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell
data. Cell. 2019;177:1888-1902.e21.

	24.	 Fan J, Salathia N, Liu R, Kaeser GE, Yung YC, Herman JL, et al. Characterizing transcriptional heterogeneity through
pathway and gene set overdispersion analysis. Nat Methods. 2016;13:241–4.

	25.	 Gayoso A, Lopez R, Xing G, Boyeau P, Wu K, Jayasuriya M, et al. scvi-tools: a library for deep probabilistic analysis
of single-cell omics data. Bioinformatics; 2021 Available from: http://​biorx​iv.​org/​lookup/​doi/​10.​1101/​2021.​04.​28.​
441833

	26.	 Lifshitz A. MCView. 2022. Available from: https://​github.​com/​tanay​lab/​MCView
	27.	 HCA Data Browser. [cited 2021 Jul 7]. Available from: https://​data.​human​cella​tlas.​org/​explo​re/​proje​cts/​cc95f​f89-​

2e68-​4a08-​a234-​480ec​a21ce​79?​catal​og=​dcp1
	28.	 Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mam‑

malian organogenesis. Nature. 2019;566:496–502.
	29.	 Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. Am Physical Soc.

2004;69:026113.
	30.	 Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, et al. On Modularity Clustering. 2008.
	31.	 Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech.

2008;2008:P10008.
	32.	 Fogaça M, Kahng AB, Monteiro E, Reis R, Wang L, Woo M. On the superiority of modularity-based clustering for

determining placement-relevant clusters. Integration. 2020;74:32–44.
	33.	 Regev A. Human cell atlas census of immune cells. 2022. Available from: https://​data.​human​cella​tlas.​org/​explo​re/​

proje​cts/​cc95f​f89-​2e68-​4a08-​a234-​480ec​a21ce​79?​catal​og=​dcp1
	34.	 Mouse RNA Atlas. [cited 2021 Jul 1]. Available from: https://​oncos​cape.​v3.​sttrc​ancer.​org/​atlas.​gs.​washi​ngton.​edu.​

mouse.​rna/​downl​oads

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://biorxiv.org/lookup/doi/10.1101/2021.04.28.441833
http://biorxiv.org/lookup/doi/10.1101/2021.04.28.441833
https://github.com/tanaylab/MCView
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79?catalog=dcp1
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79?catalog=dcp1
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79?catalog=dcp1
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79?catalog=dcp1
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads

	Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis
	Abstract
	Background
	Results
	Scalable metacell analysis using a two-phase divide and conquer (DAC)
	MC2 is sensitive and robust
	MC2 is scalable to millions of scRNA profiles
	MC2 outliers and rare type detection

	Discussion
	Conclusions
	Methods
	Relationship to MC1
	Rare gene modules detection
	Feature election
	Graph construction
	A two-sided stability score for graph partitioning
	Generation of partitions with optimized two-sided stability score
	Deviant (outlier) cell detection
	The Metacell-2 overall algorithm: divide and conquer
	Preliminary phase
	Metagroup phase
	Final phase

	Post-processing Metacells
	scRNA-seq data sources and pre-processing
	Metacell QC metrics
	Rare behaviors
	Distinct genes
	Score distributions

	Acknowledgements
	References

