Skip to main content
. 2021 Oct 5;34(2):125–133. doi: 10.4103/tcmj.tcmj_58_21

Figure 2.

Figure 2

Red blood cells and their derivatives regulate immune responses in sepsis. (a) red blood cells in the bloodstream, through their negatively charged membrane, attract the pathogens and engulf them. Toll-like receptor-9 recognizes the pathogen's mitochondrial DNA (mtDNA), leading to activation of inflammasomes to inhibit pro-inflammatory stimuli and suppress inflammation. (b) Red blood cells, through mitogenic stimulation, enhance mouse spleen cells and mononuclear cells to secrete Colony-stimulating factors (CSFs) and cytokines, such as interleukin-2 to increase T-cell proliferation. Under conditions without mitogenic stimulation, red blood cells directly increase interleukin-2 receptor expression, which results in T-cell proliferation through nonspecific interactions with the CD2 antigen on T cells. (c) During eryptosis, red blood cells release exosomes through budding, which, through APCs, modulate mitogens leading to CD4+/CD8+ T-cell proliferation. (d) During hemolysis, when red blood cells lyse hemoglobin, hemoglobin is degraded to heme through binding of the CD163 antigen, leading to macrophage-induced heme oxygenase 1 expression, resulting in heme metabolism to biliverdin, ferritin, and carbon monoxide, which then inhibits oxidative damage. (e) Hemoglobin and heme, through pathogen-associated molecular patterns (PAMPs), produce reactive oxygen species against pathogen infection, while heme decreases the production of nitric oxide to inhibit septic shock. (f) Hemoglobin is degraded by macrophage cathepsin D or neutrophil cathepsin G to the opioid peptide hemorphin, such as VV-hemorphin-7 or LVV-hemorphin 7. Studies have shown their anti-inflammatory effects, but not the exact pathway