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Abstract

Diffusion MRI-derived brain structural connectomes or brain networks are widely used in the 

brain research. However, constructing brain networks is highly dependent on various tractography 

algorithms, which leads to difficulties in deciding the optimal view concerning the downstream 

analysis. In this paper, we propose to learn a unified representation from multi-view brain 

networks. Particularly, we expect the learned representations to convey the information from 

different views fairly and in a disentangled sense. We achieve the disentanglement via an approach 

using unsupervised variational graph auto-encoders. We achieve the view-wise fairness, i.e. 
proportionality, via an alternative training routine. More specifically, we construct an analogy 

between training the deep network and the network flow problem. Based on the analogy, the fair 

representations learning is attained via a network scheduling algorithm aware of proportionality. 

The experimental results demonstrate that the learned representations fit various downstream tasks 

well. They also show that the proposed approach effectively preserves the proportionality.
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1 Introduction

Human brain connectomes [6] are models of complex brain networks and can be 

derived from diverse experimental modalities and tractography algorithms. Large-scale 

brains connections convey important insights for understanding the underlying yet largely 

unknown mechanisms of many mental disorders [11,15,26,7]. Nevertheless, the apparent 

characteristics of brain networks are profoundly influenced by the tractography algorithms. 

The designs of tractography algorithms, including tensor-based deterministic algorithms 

[2], probabilistic approaches [18], random forest [17] and Deep Neural Network (DNN) 

[20], and regularized methods guided by biologically plausible fascicle structures [3], are 

inspired by specific experimental questions [5], e.g., different tractography algorithms are 
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used for predicting or classifying neurodegenerative or neurodevelopmental conditions based 

on various brain abnormalities. For example, the selection and accuracy of the extracted 

fibers are different for different tractography algorithms, and the relevance of the extracted 

fiber bundles depend on the different tasks and questions being addressed. Therefore, it is 

elusive to decide a universally optimal modality of brain networks and associated processing 

pipeline for distinct diagnostic tasks [5,23].

Multi-view methods can leverage the available information from diverse tractography 

algorithms simultaneously, and tentative studies have demonstrated that multi-modal brain 

networks can provide complementary viewpoints for the classification tasks, e.g., multi-

view graph convolutional network [25] is found to have state-of-the-art performance in 

classifying Parkinson’s disease (PD) status. However, previous multi-view methods have 

two restrictions regarding general prediction tasks of neurodegenerative conditions. First, 

many methods are designed for some specific tasks. If one want to tailor these methods 

to other tasks, it is necessary to carefully tune the hyperparameters. Second, though some 

methods learn representations from multi-view brain networks, the learning is guided by 

some predefined prediction tasks, which may introduce bias to overemphasize a particular 

modality. As such, the learned embeddings cannot represent multi-modal brain networks 

comprehensively, and their application to the related analysis in a broader scope is 

potentially constrained.

To address these problem, we propose to learn unified representations from multi-modal 

brain networks via unsupervised learning techniques. To extend the generalization ability of 

the learned representations to different downstream analysis, the representations shall be of 

disentanglement and proportionality concerning different modalities. Here, disentanglement 

refers to the representations encoding salient attributes of data explicitly, which can help the 

analysis of the prediction tasks and the modalities. Proportionality refers to a balanced 

contribution to the representations of each modality, which avoids the potential bias 

on specific modalities. In other words, in our approach the learned representations can 

fairly convey the information from different modalities and can be exploited by various 

downstream analysis. More specifically, in this paper we propose a multi-view graph auto-

encoder to learn the disentangled graph embeddings from brain networks. We formulate 

the proportionality-awareness in multi-view representation learning as a network scheduling 

problem via an analogy between training deep networks and the graph flow problems. The 

experimental results demonstrate the effectiveness of the proposed method.

2 Methodology

The proposed method is illustrated in Fig. 1. For each view, a Variational Graph Auto-

encoder (VGAE) [10] is exploited. Let G(v) denote the brain networks of the vth view, 

f(v) and g(v) the corresponding encoder and decoder, [μ(v)|σ(v)] = f(G(v)) is the estimated 

mean and variance of the encoder. The unified representations are computed by max-out 

the stacked μ(v) by the position, which can be denoted as μ = maxpool1d([μ(v)]). The 

reparameterization for the vth view is then computed using μ and σ(v). μ ∈ ℝk is also used 

as the embeddings. According to the structure of VGAE, σ(v) ∈ ℝk. Besides the view-wise 

VGAE loss, we push μ and μ(v) to be close so that the learned embeddings for different 
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views are consistent. The disentanglement of the representations is acquired via introduce 

the β-VAE loss [8]. Disentangled representations are compact and interpretable [4]. The 

objective for our multi-view GVAE is:

ℒ = ∑
v ∈ V

B log P G(v) + βKL P z(v) ∣ N(0, 1) + λ μ(v) − μ 2
(1)

here the first term is the reconstruction loss, the second is the Kullback-Leibler divergence, 

and the last is the multi-view consistency.

As aforementioned, the representations shall also be fair to different views. In the above 

auto-encoder framework, the decoder is used for evaluating the vividness of the learned 

representations. However, for multi-view data, the reconstruction for different views 

is not necessarily equally accurate. When the imbalance occurs, some views are less 

included in the learned representations. To address this problem, we consider to learn fair 

representations regarding different views, which indicates the view-wise loss in (1) is close 
to each other. Such fairness, referred to as proportionality, can be achieved via an alternative 

training routine of the above model. We will formulate an analog between flow network 

problem and the training of multi-view model in the following. Based on the formulation, 

we design a scheduling algorithm to satisfy the proportionality requirement.

Training Multi-view Network: a Flow Network Perspective

Directed Acyclic Graph (DAG) is an important tool in graphical models [9]. It is also 

exploited to express network structures by many popular deep learning frameworks [19,1]. 

Inspired by this idea, we make an analogy between training the deep network and the flow 

network problems.

In Fig. 2, we illustrate an example for multi-view learning. To simplify the elaboration, we 

consider a structure taking two views s1 and s2, as inputs. The network consists of four sub-

networks, each corresponding to one edge in the DAG. v0 is a fused hidden representation, 

and t1 is the prediction. For multiple inputs, ⊕ denotes the fusion operation for the 

outputs of multiple sub-networks, and it can either a weighted summation or concatenation. 

Consider a network trained after t steps using gradient based method. In the t + 1 step, we 

can define the flow di,j from predecessor i to successor di, j = Δℒ fj
(t + 1) ℎi

(t + 1), ℋj\i
(t) , here 

ℒ is an objective defined on the targets, and Δℒ denotes the loss difference between step t + 

1 and t. Let Pij represent the set of all paths from sources to targets containing ei, j ⋅ fj
(t + 1)

refers to the network to compute the final outputs with all paths in Pij updated. Pij can be 

defined on the node i and a set ℋj\i. Here ℋj\i denotes any cut set containing node j that 

separate sources and targets, and ℋj\i does not include any node in Pij except j.

Our definition satisfies the flow conservation, which states that if a node is neither a source 

or a target, its net flow shall be 0. For a node j with multiple incoming flow, the fusion 

operation is defined as ℎj = ∑i ∈ PjPijW ijfij ℎi , here Pij is the predecessor set of node j, 
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fij is the sub-network between node i and j. For different fusion oeprations, Pi and Wi take 

different forms. For example, when both Pi and Wi are the identity matrices, the fusion is 

by summation; if Wi is the augmented matrix (Ii|0), fusion by concatenation is feasible by 

setting Pi as the corresponding permutation matrix. For a node with multiple outgoing flow, 

the output is equally distributed. We abuse the notation ℋj ≡ ℋj\i ∪ i . Consider a fixed 

given cut ℋj for node j, we can induce two additional cuts: ℋPj, which excludes j and 

include all its predecessors; and ℋSj, which excludes j and include all its successors. Under 

the updating rule of backward propagation, the incoming flow with respect to node j is,

∑
i ∈ Pj

di, j ≈ ∂ℒ
∂fj

∑
i ∈ Pj

PijW ij
∂fj
∂ℎi

dℎi = ∂ℒ
∂fj

∂fj
∂ℎj

dℎj, (2)

the above equation follows because the partial differential is 0 except dhi and dhj term. 

Similarly, the outgoing flow is,

∑
k ∈ Sj

dj, k ≈ ∑
k ∈ Sj

∂ℒ
∂fk

PjkW jk
∂fk
∂ℎj

dℎj = ∂ℒ
∂fj

∂fj
∂ℎj

dℎj, (3)

(2) and (3) are bridged by the change in hj, which ensures the net flow to be 0.

If we extend the above analogy to the accumulative case, the flow is defined to be the loss 

decrease with respect to the particular structure represented by i → j. Noteworthy, it is 

not the pure contribution of i → j. Rather, it is more of the quantification of the total loss 

decrease of the particular structure, as

Round-Robin Proportionality

 Input: v views, max epoch e  Input: v views, max epoch e

 Output: model f  Output: model f

 1 Initialize f.  1 Initialize f.

 2 repeat  2 repeat

 3  for i → 1 to v do  3  Compute priority w.r.t. (6)

 4  Optimize (1) w.r.t. view
j.

 4  Optimize (1) w.r.t. view j
with the highest priority.

 5 until max epoch;  5 until max epoch;

the definition considers both the upstream and downstream computation of the entire 

network. The empirical loss is related to the generalization bound of the learned 

representations concerning downstream tasks. As such, the accumulated flow can be 

interpreted as the amount of information learned from each view informally. Based on 

this analogy, we define that the proportionality is achieved if the view-wise flow, i.e. the 

accumulated ∑k ∈ Sjdj, k for some view j, is balanced.
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Alternative Training Routine with Proportionality Awareness

Conventionally, the proportionality concerning different views can be written as a 

constrained optimization problem, and a standard training routine is based on SGD. 

From the flow perspective, the proportional training can be interpreted as multiple views 

competing for the updating resources in the backward propagation, which is a network 

scheduling algorithm. More specifically, during the training, the accumulated flow is 

continuously updated, which reflexes the dynamic of loss decrease and the generalization 

ability. A proportional representation is then equivalent to a balanced flow avoiding the 

overload of some specific path.

In detail, we define the total flow as the loss decrease. When the learning rate is small 

enough, the summation of view-wise SGD update is equivalent to a round-robin update 

with respect to each view. Here, the objective associated with each view is optimized in a 

predefined turn. To avoid a specific view taking up too much updating resources, we can 

maximize the total flow of the network while allowing the minimal level of service for all 

views via introducing a competing mechanism for each view to occupy the update based 

on the estimated flow. We refer to this method as proportionality. The updating priority of 

each view is based on the current loss decrease and the historical cumulative loss decrease. 

Assume the loss decrease of view i at update t can be foreseen as ri,t. The throughput of view 

i is defined as historical cumulative loss decrease at step t:

θi, t = θi, 0 + ∑
l = 1

t ri, lIi, l
t = n − 1

n θi, t − 1 + 1
nri, t − 1Ii, t − 1, (4)

where Ii,l is an indicator. Ii,l = 1 if the lth update is conducted on view i, and 0 otherwise. 

Based on (4), the priority pi,t for view i can be defined, and the t + 1 update is then applied to 

the view with the highest priority:

argmax
i ∈ V

pi, t , pi, t = ri, t + 1
ϵ + θi, t

(5)

where ∊ is a small positive number for computational stability. Notably, the above 

algorithms is not immediately applicable to our formulation, as that ri,t is not pre-assigned 

as in standard proportionally fairness algorithms. Instead, the values are only known after 

the update is finished. Thus, we propose a compensation update method: at the beginning, 

we use one round robin update and compute initial ri,0. In the following steps we use 

proportionally fairness algorithm, but computing the priority using the loss decrease from 

the last applied update:

argmax
i ≤ v

ri, ti
di + θi, t

, ti = maxl, s.t. l ≤ t, Ii, l = 1, (6)

The proportionality and convergence of our scheduling algorithm are guaranteed under some 

weak conditions, and the analysis can be found in [13].
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3. Experimental Results

In this experiments we use three datasets, including the data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC), 

and the Parkinson Progression Marker Initiative (PPMI). The preprocessed ADNI brain 

networks [22] include 51 healthy controls (HC) (mean age=69.69 ± 10.27, 29 males), 112 

people with Mild Cognitive Impairment (MCI) (mean age=71.68 ± 9.89, 41 males) and 39 

individuals with AD (mean age=75.56±8.99, 14 males). The similarly preprocessed NACC 

brain networks [21] include 329 HCs (mean age=60.96 ± 8.96, 107 males), 57 with MCI 

(mean age=73.60 ± 7.93, 38 males), and 54 AD patients (mean age = 72.02 ± 10.41, 32 

males). The similarly preprocessed PPMI brain networks [27,28] includes 145 HC (mean 

age = 66.70 ± 10.95, 96 males) and 474 subjects with PD (mean age=67.33 ± 9.33, 318 

males). Nine different views are reconstructed using TFACT, T-RK2, T-TL, T-SL, O-FACT 

and O-RK2, Probt, Hough, and PICo (Please refer to [24] for more details on the brain 

network reconstruction). We use a modified network structure based on graph variational 

auto-encoder. The view-wise graph is the averaged brain connectome, and the node features 

are the corresponding row for each brain connectome. We set β = 4 recommended by β-VAE 

[8]. The performance is not sensitive to λ, and we set it to 0.001. In the encoder, we use 

three graph convolutional layers for μ and σ respectively. The first two layers are shared, 

both with 64 hidden units. The embedding length is 32. The encoder are limited in layers 

due to the potential over-smoothing for graph convolutional layers. Our model is trained 100 

epochs using ADAM with batch size 32 and learning rate 0.0001.

Evaluating the Proposed Method in Down-streaming Analysis:

We compare our approach with related baselines on several classification and regression 

tasks. The ablation study is also included.

Table 1 summarizes the classification results. For ADNI and NACC, we predict the HC and 

AD. For PPMI we predict HC and PD. For multi-view predictions, we include principal 

component analysis (PCA), multi-view nonnegative matrix factorization (MVNMF) [14], 

co-regularized spectral clustering (MVSC) [12] and Deep Metric Graph Convolutional 

Network (DMGCN) [11]. We use the aforementioned methods to learn the representations, 

and then exploit two off-the-shelves methods, sparse logistic regression, and random forest 

to make the final prediction. We report AUC on 5-fold cross-validation. To make the 

comparison self-contained, single view results are also included. For the ablation study, in 

propose-I neither disentanglement nor proportionality is considered, and in proposed-II the 

disentanglement is considered. The full approach is proposed∗. We omit more single-view 

ablation study in the experiments because our objective is designed for multi-view data. Of 

note, integrating multi-view data is also shown to be beneficial for brain network analysis 

[27]. From the results, we find that the prediction ability of different views with respect 

to different tasks are complicated, and heavily coupled with the algorithms. Multi-view 

methods, generally, can improve the prediction ability. However, the advantage of multi-

view data is intriguing and needs careful examination. The proposed method have good 

performances and are robust with respect to different tasks. And at last, the ablation study 
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demonstrates that the performance can be improved through considering disentanglement 

and proportionality.

Table 2 summarizes the regression results. We use the learned representation to predict 

several clinical scores, including the Tremor Dominant scores (TD), the University of 

Pennsylvania Smell Identification Test (UPSIT), and the Montreal Cognitive Assessment 

Test (MoCA). Mean squared error (MSE) is used as the metric evaluating the prediction. All 

scores are normalized to [0,1]. The results show that the prediction is more complicated with 

respect to the particular medical scores and views. Similarly, we can observe the advantage 

of utilizing multi-view data and the robust and superior prediction abilities of our approach.

Evaluating the Proportionality during Training:

In this section, we demonstrate the proposed method can achieve proportionality using the 

proposed training scheduling method. Figure 4 illustrates the training loss of the proposed 

deep network against epochs, and the shaded area represents the variance regarding different 

views. From the results, we can observe that the proposed method effectively reduces the 

variance during training, which indicates the learned representations proportionally represent 

different modalities of brain networks. The results also show the training routine aware of 

proportionality converges slightly slower than the standard training routine. However, with 

moderate epochs their performance difference is negligible.

Discussions:

There some works applying the fairness principle on brain analysis [16]. Our method is 

designed for representation learning for multi-view brain connectomes, particularly focusing 

on the disentangled and proportional property (which is related to algorithmic fairness) for 

the learned embeddings. Our experimental results demonstrate that the proposed method can 

be applied to various downstream works. As such, it is of potential to apply our method to 

broader applications, including generating a refined connectome matrix,

4 Conclusion

In this paper, we propose an unsupervised method to learn unified graph embeddings 

for multi-view brain networks. We design a multi-view graph variational auto-encoder to 

learn the representations with disentanglement and proportionality. The experimental results 

demonstrate that the learned representations can be effectively used by various downstream 

tasks.
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Fig.1: 
The structure of the proposed method. Each view uses an independent VGAE to learn a 

unified μ, while the σ is different.
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Fig.2: 
Left: a simple DNN. Right: the corresponding DAG. Each edge represents a network, and 

each node denote an intermediate representation.
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Fig.4: 
Left to right: ADNI, NACC, PPMI.
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Table 1:

The comparison on classification tasks.

Sparse Logistic RegressionADNI NACC | PPMI

ADNI NACC PPMI

Single View

FSL 0.7786 ± 0.0976 0.7669 ± 0.0799 0.6597 ± 0.0584

PICo 0.7615 ± 0.1408 0.7119 ± 0.1103 0.6065 ± 0.0486

T-FACT 0.7451 ± 0.0379 0.6581 ± 0.0411 0.5850 ± 0.0433

O-FACT 0.7278 ± 0.1066 0.7094 ± 0.0866 0.5921 ± 0.0353

ODF-Rk2 0.7568 ± 0.0821 0.6890 ± 0.0366 0.5942 ± 0.0331

T-RK2 0.7276 ± 0.0797 0.7281 ± 0.0674 0.5921 ± 0.0353

T-SL 0.7402 ± 0.1371 0.6582 ± 0.0785 0.5884 ± 0.0389

T-TL 0.6875 ± 0.0682 0.7358 ± 0.0799 0.5851 ± 0.0423

Hough 0.7559 ± 0.0780 0.7271 ± 0.0549 0.5536 ± 0.0391

Multi View

all views 0.7966 ± 0.0904 0.7301 ± 0.1325 0.5716 ± 0.0378

MVNMF 0.8149 ± 0.0550 0.7685 ± 0.0958 0.6104 ± 0.0332

MVSC 0.8203 ± 0.0791 0.7595 ± 0.1013 0.6205 ± 0.0373

DMGCN 0.8058 ± 0.1006 0.7557 ± 0.0898 0.6141 ± 0.0707

Proposed-I 0.8074 ± 0.0493 0.7491 ± 0.0897 0.6122 ± 0.0442

Proposed-II 0.8185 ± 0.0770 0.7549 ± 0.0790 0.6240 ± 0.0234

proposed* 0.8278 ± 0.1537 0.8090 ± 0.1472 0.6250 ± 0.0472

Random Forest

ADNI NACC PPMI

Single View

FSL 0.8124 ± 0.0455 0.3737 ± 0.7065 0.5753 ± 0.0255

PICo 0.7838 ± 0.1067 0.1588 ± 0.9463 0.5475 ± 0.0244

T-FACT 0.8383 ± 0.0483 0.7029 ± 0.1184 0.5654 ± 0.0331

O-fact 0.7817 ± 0.1512 0.3789 ± 0.6903 0.5478 ± 0.0228

O-RK2 0.7617 ± 0.1087 0.7879 ± 0.1333 0.5566 ± 0.0382

T-RK2 0.7764 ± 0.1275 0.7029 ± 0.1333 0.5486 ± 0.0361

T-SL 0.8148 ± 0.0587 0.7235 ± 0.1163 0.5386 ± 0.0347

T-TL 0.7695 ± 0.0862 0.7009 ± 0.1164 0.5411 ± 0.0410

Hough 0.8368 ± 0.0671 0.7011 ± 0.1797 0.5276 ± 0.0344

Multi View

all views 0.8560 ± 0.0574 0.7615 ± 0.1053 0.5743 ± 0.0464

MVNMF 0.8826 ± 0.0830 0.8317 ± 0.1561 0.5659 ± 0.0528

MVSC 0.8827 ± 0.0457 0.7997 ± 0.1435 0.5753 ± 0.0348

DMGCN 0.8862 ± 0.0503 0.8307 ± 0.1493 0.5683 ± 0.0323

Proposed-I 0.8578 ± 0.0516 0.7919 ± 0.0725 0.5590 ± 0.0250

Proposed-II 0.8678 ± 0.0573 0.8327 ± 0.0988 0.5699 ± 0.0382

Proposed* 0.8946 ± 0.0510 0.8359 ± 0.1321 0.5814 ± 0.0274
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Table 2:

The comparison on regression tasks.

TD UPSIT MoCA

Single View

FSL 0.0749 ± 0.0167 0.0794 ± 0.0054 0.0381 ± 0.0033

PICo 0.0714 ± 0.0078 0.0983 ± 0.0101 0.0394 ± 0.0027

T-FACT 0.0404 ± 0.0037 0.0545 ± 0.0043 0.0210 ± 0.0021

O-FACT 0.0410 ± 0.0018 0.0508 ± 0.0066 0.0208 ± 0.0036

O-RK2 0.0428 ± 0.0079 0.0503 ± 0.0015 0.0208 ± 0.0027

T-RK2 0.0441 ± 0.0034 0.0500 ± 0.0051 0.0212 ± 0.0025

T-SL 0.0427 ± 0.0012 0.0512 ± 0.0058 0.0212 ± 0.0017

T-TL 0.0406 ± 0.0059 0.0517 ± 0.0019 0.0210 ± 0.0027

Hough 0.0434 ± 0.0036 0.0495 ± 0.0058 0.0225 ± 0.0044

Multi View

all views 0.0414 ± 0.0045 0.0524 ± 0.0034 0.0227 ± 0.0074

MVNMF 0.0378 ± 0.0122 0.0507 ± 0.0041 0.0207 ± 0.0030

MVSC 0.0355 ± 0.0047 0.0499 ± 0.0046 0.0199±0.0013

DMGCN 0.0365 ± 0.0071 0.0487 ± 0.0085 0.0202 ± 0.0015

Proposed-I 0.0358 ± 0.0024 0.0501 ± 0.0022 0.0209 ± 0.0019

Proposed-II 0.0361 ± 0.0035 0.0492 ± 0.0033 0.0200 ± 0.0022

Proposed* 0.0351±0.0059 0.0484±0.0044 0.0199±0.0022
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