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Abstract
Study Objective: This study investigated race and sex differences in tacrolimus phar-
macokinetics and pharmacodynamics in stable kidney transplant recipients.
Design and Setting: A cross-sectional, open-label, single center, 12-h pharmacokinetic-
pharmacodynamic study was conducted. Tacrolimus pharmacokinetic parameters 
included area under the concentration-time curve (AUC0–12), AUC0–4, 12-h troughs 
(C12  h), maximum concentrations (Cmax), oral clearance (Cl), with dose-normalized 
AUC0–12, troughs, and Cmax with standardized adverse effect scores. Statistical mod-
els were used to analyze end points with individual covariate-adjustment including 
clinical factors, genotypic variants CYP3A5*3, CYP3A5*6, CYP3A5*7(CYP3A5*3*6*7) 
metabolic composite, and ATP binding cassette gene subfamily B member 1 (ABCB1) 
polymorphisms.
Patients: 65 stable, female and male, Black and White kidney transplant recipients re-
ceiving tacrolimus and mycophenolic acid ≥6 months post-transplant were evaluated.
Measurements and Main Results: Black recipients exhibited higher tacrolimus AUC0–12 
(Race: p = 0.005), lower AUC* (Race: p < 0.001; Race × Sex: p = 0.068), and higher 
Cl (Race: p < 0.001; Sex: p = 0.066). Greater cumulative (Sex: p < 0.001; Race × Sex: 
p  =  0.014), neurologic (Sex: p  =  0.021; Race  ×  Sex: p  =  0.005), and aesthetic (Sex: 
p = 0.002) adverse effects were found in females, with highest scores in Black women. 
In 84.8% of Black and 68.8% of White patients, the target AUC0–12 was achieved 
(p = 0.027). In 31.3% of White and 9.1% of Black recipients, AUC0–12 was <100 ng‧h/ml 
despite tacrolimus troughs in the target range (p = 0.027). The novel CYP3A5*3*6*7 met-
abolic composite was the significant covariate accounting for 15%–19% of tacrolimus 
variability in dose (p = 0.002); AUC0–12 h* (p < 0.001), and Cl (p < 0.001).
Conclusions: Tacrolimus pharmacokinetics and adverse effects were different among 
stable kidney transplant recipient groups based upon race and sex with interpatient 
variability associated with the CYP3A5*3*6*7 metabolic composite. More cumulative, 
neurologic, and aesthetic adverse effects were noted among females. Tacrolimus 
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1  |  INTRODUC TION

Tacrolimus and mycophenolic acid (MPA) provide an efficacious 
immunosuppressive regimen to prevent kidney allograft rejec-
tion.1 Tacrolimus exhibits inter- and intrapatient pharmacokinetic 
variability reflecting variation in cytochrome P-450 3A5 (CYP3A5) 
isoenzymes and P-glycoprotein (P-gp).2–5 Trough concentration 
monitoring is used to guide dosing of tacrolimus.5–9 The trough tac-
rolimus concentration and effect relationships for pharmacothera-
peutic responses and adverse effects have not been clearly defined 
in sex or racial sub-populations.5,10,11

Past calcineurin inhibitor protocols recommend lower target tac-
rolimus troughs to reduce adverse effects and maintain long-term 
renal allograft function.9–11 Limited pharmacokinetic data exist to 
confirm drug exposure over a dosing interval to achieve the target of 
100–190 ng∙h/ml in sub-populations ≥1-year post-transplant.7–9,12–14 
Recent studies indicate increased donor-specific antibodies with 
allograft failure when tacrolimus troughs are below the target.13,14

Chronic renal allograft survival in Black recipients is shorter 
compared with other races treated with comparable immunosup-
pression.1,15–21 Factors contributing to this disparity include medi-
cation adherence, genomics, socioeconomics, pharmacokinetic and 
pharmacodynamic variability, donor-recipient mismatches, and ra-
cial variation in immunodynamic responses.15–21 To achieve similar 
allograft outcomes, Black patients require higher tacrolimus doses 
compared with Whites.15–22 Tacrolimus bioavailability is reduced 
in healthy Blacks compared with other races.22,23 Limited data are 
available comparing tacrolimus pharmacokinetics and adverse ef-
fects between stable White and Black kidney transplant recipients 
receiving lower maintenance dosing.23–25

Sex is another factor that influences CYP3A4/5 isoenzyme and 
P-gp activity and may impact tacrolimus dosing.26–29 The importance 
of investigating female-focused diseases, biomarker responses, and 
pharmacologic knowledge gaps, including combined sex and racial 
differences, has been reported.30–32 Studies that combine race with 
sex influences on tacrolimus pharmacokinetics and adverse effects 
are lacking.24,25,30–33

Studies of calcineurin inhibitors have reported on CYP3A5 and 
P-gp pharmacogenomics.2–4,7,20,34–36 The CYP3A5*1 (wild-type) 
variant is more common in Blacks than the major variant CYP3A5*3 
(rs776746), which has been reported to result in loss of func-
tion.2,4,34 The CYP3A5*3 variant contributes to interpatient vari-
ability in tacrolimus pharmacokinetics reported as area under the 
concentration versus time curve (AUC), dose-normalized trough, and 
Cl.20,37–41 Other CYP3A5 variants in Black subjects include CYP3A5*6 

(rs10264272) and CYP3A5*7 (rs41303343), which are associated 
with loss of function and may contribute to pharmacokinetic dif-
ferences among races.39,42 Black kidney transplant recipients with 
CYP3A5*1 genotype need higher daily tacrolimus doses than White 
patients with the variant CYP3A5*3 or Blacks exhibiting variants 
CYP3A5*3, CYP3A5*6, and/or CYP3A5*7 in order to achieve similar 
concentrations.39,42 To address this racial disparity, we previously 
reported the novel CYP3A5*3*6*7 metabolic composite that incor-
porates these loss-of-function variants with a tacrolimus population 
pharmacokinetic model.43 Most pharmacokinetic-pharmacogenomic 
studies between races have been limited to tacrolimus trough 
monitoring rather than intensive pharmacokinetic studies.7,39,42 
Although tacrolimus troughs are important monitoring tools, these 
parameters do not consistently predict AUC0–12 and contribute to 
interpatient pharmacokinetic variability.5,6 The sex effect on tacro-
limus pharmacokinetics is not well-studied in spite of in vivo gender 
differences for CYP3A4/5 substrates and in vitro studies support-
ing greater expression in females.26,44,45 The impact of common 
ABCB1 single nucleotide polymorphisms (SNPs) that encode for 
P-glycoprotein: 1236C>T (rs1128503), 2677G>T/A (rs2032582), and 
3435C>T (rs1045642) are associated with tacrolimus pharmacoki-
netics or pharmacodynamics (eg, acute rejection and nephrotoxic-
ity).2,7,34,35 Initial associations between extrarenal adverse effects, 
sex, and ABCB1 haplotypes have been reported.46,47

We designed our study to address limitations and knowledge 
gaps by including an analysis of race and sex associations to inten-
sive tacrolimus pharmacokinetics. The primary objective was to de-
termine tacrolimus oral Cl among Black and White male and female 
kidney transplant recipients. Additional pharmacokinetic parameters 
included AUC 0–12 h (AUC0–12 h), AUC0–4 h, 12-h troughs (C12 h), max-
imum concentration (Cmax), and oral Cl, comparing stable Black and 
White kidney transplant recipients. Secondary objectives included 
(a) dose-normalized AUC0–12 h, C12 h, Cmax; (b) covariate analysis of 
common clinical factors and CYP3A5 and ABCB1 polymorphisms on 
tacrolimus pharmacokinetics; and (c) race and sex associations to ex-
trarenal immunosuppressive adverse effects.

2  |  METHODS

2.1  |  Study population

Sixty-five stable male and female Black and White kidney trans-
plant recipients receiving tacrolimus (Prograf®) [Astellas Pharma US] 
and mycophenolic acid as enteric-coated mycophenolate sodium 

regimens that consider race and sex may reduce adverse effects and enhance allo-
graft outcomes by facilitating more patients to achieve the targeted AUC0–12 h.

K E Y W O R D S
immunosuppression, race, renal transplantation, sex, tacrolimus pharmacokinetics
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(ECMPS; (Myfortic®) [Novartis] for ≥6 months participated in a 12-h 
pharmacokinetics-pharmacodynamic study (Figure 1). Clinical stabil-
ity was determined by physical examination, comprehensive meta-
bolic panel, and complete blood count. Prior to study, tacrolimus 
troughs were adjusted using therapeutic drug monitoring target 
range: 4–10 ng/ml. ECMPS was dose adjusted based upon clinical 
response. Medication adherence and ethnicity for two previous gen-
erations were verified. Estimated glomerular filtration rate (eGFR) 
was calculated using the four-factor Modification of Diet in Renal 
Disease (MDRD) equation.48

Inclusion criteria were as follows: (1) ≥6  months post-kidney 
transplant; (2) age 25–70 years; (3) first or second deceased-donor 
or living allograft recipient; (4) receipt of the tacrolimus and MPA 
regimen for ≥3 months and on the same immunosuppressive doses 
for ≥7 days; (5) baseline eGFR >30 ml/min/1.73 m2 with no change 
greater than 20% from baseline eGFR during prior 2 clinic visits with 
confirmation by nephrologist for clinical stability; and (6) leukocyte 
count ≥3000/mm3 and hemoglobin ≥8.0 g/dl. Exclusion criteria were 
as follows: (1) infection or acute rejection within 2 weeks; (2) drugs 
interfering with tacrolimus or MPA absorption; (3) cytochrome P-
450 3A4/3A5 or P-gp inhibitors or inducers within 4  weeks; and 
(5) significant medical or psychiatric diseases that would limit 
participation.

2.2  |  Study procedure

This was a cross-sectional, single-center, open-label clinical phar-
macology study in stable male and female Black and White kidney 
transplant recipients conducted at the University at Buffalo (UB) 
Renal Research Center at the Erie County Medical Center (ECMC). 
UB Health Sciences Institutional Review Board approved the study 
(IRB# PHP0599703-4) which was conducted in accordance with 
the ethical standards for human subjects and the 1964 Helsinki 
Declaration. Upon enrollment, patients provided written consent.

Participants were at steady state for tacrolimus and ECMPS. 
Proton pump inhibiters, H2 antagonists, and antacids were discon-
tinued for the prior 36 h. Immunosuppressives were taken at 5:30–
6:30 PM prior to study, participants fasted and abstained from 
caffeine and alcohol for the prior 12 h. At 6:00 AM, patients were 
admitted, vital signs documented, and an intravenous angiocathe-
ter inserted. A 0-h sample (~15 ml) was collected prior to immuno-
suppressives for drug troughs and laboratory tests (ECMC Clinical 
Chemistry Laboratory). Oral study medications [(single lot of tacro-
limus (Prograf®) and ECMPS (Myfortic®)] were administered at 7:00 
AM. Patients remained upright throughout the study. Standardized 
low-fat meals were provided after 4 h. Antihypertensives were ad-
ministered after 1.5 h and non-immunosuppressives after 4 h. Blood 

F I G U R E  1  Study flow diagram for 
patient enrollment in cross-sectional, 
open-label single-center clinical 
pharmacology study

Pre-Screen: 340 renal transplant patients from UB-MD Transplant 
Database were pre-screened to identify patients receiving tacrolimus 

plus mycophenolic acid immunosuppression and classified as Black and 
White

147 kidney transplant recipients
were identified that fulfilled this pre-

screen process. These patients were 
screened according to specific
Inclusion and Exclusion criteria. 

(See Methods.)

69 patients completed the 
consent process.

-

193 patients were excluded from pre-
screen process for not using selected 
immunosuppressive drugs

88 kidney transplant recipients
fulfilled Inclusion and Exclusion 

Criteria and were invited to 
participate in study

- 16 patients 
declined to 
participate.

- 3 patients 
had change in 
medical status 

65 stable renal transplant 
patients were enrolled and 

completed the 12-hour 
clinical pharmacology study.

Screen Failures excluded due to 
Inclusion/Exclusion criteria: 59 
patients 

4 of 69 patients 
withdrew
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samples (12 ml) were collected at 0 h and 1, 1.5, 2, 3, 4, 6, 8, 10, and 
12 h after drug administration. Whole blood samples were aliquoted 
within 30 min and stored at −70°C.

2.3  |  Adverse effect assessment

Patients were evaluated using a validated immunosuppressive ad-
verse effect (AE) rating system of 14 extrarenal AEs.47 Nephrologists 
used physical examination, review of systems, laboratory results, 
and medication adherence assessment and assigned a ranked score 
of 0 (no AE), +1, +2, and +3 (severe AE). See Table S1. A ratio of the 
sum of AE scores to the maximum possible score was determined 
(AE ratio).47 Individual AE was combined into four composite cat-
egories: gastrointestinal (GI) including vomiting, diarrhea, dyspepsia, 
and acid suppressive therapy; neurologic (headache, tremor, and in-
somnia); aesthetic (acne, skin changes, hirsutism, and gingival hyper-
plasia); and cumulative AE (sum of GI, neurologic, and aesthetic AEs).

2.4  |  Genetic analysis

Blood was collected pre-dose in Cell Preparation Tubes (CPT®-BD 
Vacationer) for separation of peripheral blood mononuclear cells 
(PBMCs) at 25ºC. The PBMCs were harvested and transferred to 
cryovial aliquots, immediately frozen in liquid nitrogen, and stored 
at −70ºC.

Samples were all viable and analyzed in a genomics laboratory 
(University of New England's Genomics Analytical Core). The geno-
types were determined using validated TaqMan allelic discrimination 
assays (Applied Biosystems) with a CFX96 Real-Time Polymerase 
Chain Reaction Detection System (Bio-Rad). Personnel were de-
identified to patient demographics and assayed in duplicate the 
ABCB1: 1236C>T (rs1128503), 2677G>T/A (rs2032582), 3435C>T 
(rs1045642) and CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272), and 
CYP3A5*7 (rs41303343). All protocols and sample handling were 
in accordance with published guidelines.49 Allele frequencies were 
confirmed in Hardy-Weinberg equilibrium (HWE) when adjusted for 
race. A metabolic composite CYP3A5*3*6*7 was generated based 
upon the combined allelic status for each SNP and classified as ex-
tensive, intermediate, and poor metabolizers (Figure 2).43

2.5  |  Assay methodology for tacrolimus

Tacrolimus concentrations were analyzed within 24  h using the 
ARCHITECT tacrolimus assay (Abbott), a chemiluminescent micro-
particle immunoassay. The lower limit of detection was 0.5 ng/ml, 
and intraday assay variability was <7%. The calibration curve ranged 
from 1 to 30  ng/ml and quality controls (QC) were 3.0, 12.0, and 
25  ng/ml (Bio-Rad). The interday coefficient of variation (CV) for 
each QC was <4%, and intraday CV was <5%. Random selected 
troughs and peaks (N = 40 samples) were analyzed using a validated 

liquid chromatography with tandem mass spectrometry (LCMSMS) 
assay that was conducted by a Clinical Laboratory Improvement 
Amendments (CLIA)-certified external analytical laboratory and 
compared with the ARCHITECT tacrolimus assay with excellent 
agreement (R2 = 0.98). For the LCMSMS assay, the interday and in-
traday CV were <5% at the low and high concentration QC.

2.6  |  Pharmacokinetic analysis

From intensive 12-h serial sampling, tacrolimus pharmacokinetic pa-
rameters included AUC0–12 ng∙h/ml, AUC0–4 h, 12-h trough (C12 h; ng/
ml), and peak concentration (Cmax; ng/ml). Oral clearance (Cl; L/h) 
was the ratio of dose to AUC0–12 h. AUC0–12 was determined by the 
linear trapezoidal rule using non-compartmental methods (Phoenix 
WINNONLIN Version 6.3.; Pharsight Corp). Dose normalization of 
the C12 h (ng/ml/mg), Cmax (ng/ml/mg), and AUC0–12 (AUC0–12; ng∙h/
ml/mg) to 1-mg dose equivalent was used to account for tacrolimus 
doses. The tacrolimus therapeutic exposure guide of 100–190 ng∙h/
ml was used for comparisons.7,8,12

2.7  |  Statistical analysis

Sample size was determined using a power of 80% to detect a differ-
ence of 30% in Cl for the main effect of race (ie, Black and White) or 
sex (ie, male vs female) with a coefficient of variation of 30% at the 
significance level of 0.05. This required at least 13 patients per race 
and sex group to address the primary objective.

Descriptive statistics were computed for all categorical and nu-
meric variables and summarized using the mean and standard devi-
ation. Main effects of race, sex, and the interaction are assessed by 
f tests, while pairwise comparisons are made using Tukey adjusted 
tests about the appropriate contrasts of model estimates. All model 
assumptions are verified graphically and transformation (ie, Box-
Cox) applied as appropriate. Categorical measures were summa-
rized by race-sex groups using frequencies and relative frequencies. 
These measures were modeled as a function of race, sex, and their 
interaction using logistic regression models. Main effects of race, 
sex, and the interaction are assessed by Wald tests with pairwise 
comparisons using Tukey adjusted tests for the appropriate con-
trasts of model estimates.50,51

Multivariable linear regression models were considered for tac-
rolimus pharmacokinetics and adverse effects scores, and modeled 
as a function of race, sex, their interaction, and each demographic, 
clinical, or genotypic covariate in a one-at-a-time manner. The race 
and sex associations (adjusting for each covariate) were assessed as 
described above, and the partial R2 was reported for each covariate. 
A sub-analysis was completed using Wilcoxon rank sums or Fisher's 
exact tests to compare tacrolimus pharmacokinetics in recipients 
with tacrolimus AUC0–12 <100 ng‧h/ml compared to ≥100 ng‧h/ml.

The race and sex groups and distributions of CYP3A5*3*6*7 met-
abolic composites were examined using an extension of Fisher's 
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exact test.51 All tests were two-sided with nominal significance level 
of 0.05 (version 9.3; SAS Institute).

3  |  RESULTS

3.1  |  Patients

Sixty-five recipients (13 Black females, 16 White females, 20 Black 
males, and 16 White males) completed the study with no statistical 
differences in age or time post-transplant. Demographics and clin-
ical characteristics are summarized in Table 1. Albumin, liver func-
tion tests, and hematologic parameters were within normal range 
with no group differences. Hemoglobin was within the acceptable 
range for renal function with males exhibiting a higher range (Sex: 
p < 0.001). There were no differences for glucose, prednisone or 
statin use, total cholesterol, low-density lipoprotein, or triglycer-
ides. Females had a modest increase in high-density lipoproteins 
(Sex: p < 0.001). Black recipients demonstrated 60% higher serum 
creatinine which was adjusted using the eGFR. MPA doses were 

not different among groups. No data were missing for the primary 
end points.

The use of group comparisons was included to provide objec-
tive evaluations between sub-populations and identify covariates 
that may impact pharmacologic parameters and address study 
objectives.

3.2  |  Tacrolimus pharmacokinetics

Comparison of tacrolimus pharmacokinetic parameters between 
groups is summarized in Table  2 with concentration versus time 
curves presented in Figure S1. Figure 3 Panels A–D present the tar-
get pharmacokinetic parameters stratified by race and sex. Black 
recipients exhibited higher tacrolimus AUC0–12 (Race: p  =  0.005; 
Figure 3 Panel C) and AUC0–4 (Race: p = 0.007) with lower dose-
normalized AUC (Race: p < 0.001; Race × Sex: p = 0.068) (Figure 3 
Panel D). Faster tacrolimus Cl (Race: p  <  0.001; Sex: p  =  0.066; 
Race  ×  Sex: p  =  0.085) and Cl/total body weight [TBW] (Race: 
p  =  0.007; Sex: p  =  0.006) were found in Black patients, which 

F I G U R E  2  CYP3A5*3*6*7 metabolic composite scoring algorithm. Any of the three single nucleotide polymorphisms (SNPs), CYP3A5*3, 
CYP3A5*6, and CYP3A5*7 independently result in loss of protein gene expression from the carrying chromosome. Metabolic composite 
status for each patient based upon the combined allelic status from each chromosome is summarized in (A–D). (A) Depicts an extensive 
metabolizer with two completely functional genes. (C) Depicts one possible example of a poor metabolizer: individuals who carry a loss-
of-function allele on both chromosomes. Similarly, (B and D) represent examples of possible intermediate metabolizers: individuals who 
are heterozygous at one or more loci. Note that for the double heterozygote case (D), the genotyping assay used could not differentiate 
between cis- and trans-SNPs; therefore, the trans condition was conservatively assigned the intermediate metabolizer though such 
individuals would have no functional enzyme.43 (Permission to reproduce this figure was granted by Journal of Clinical Pharmacology)
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was ~twofold faster in Black females compared with White groups 
(Figure  3 Panel B). The CYP3A5*3*6*7 metabolic composite was 
the major significant covariate accounting for 15%–19% of tac-
rolimus variability in dose (p  =  0.002); dose-normalized AUC0–12 
(p < 0.001) and Cl (p < 0.001).

The target AUC0–12 sub-analysis compared combined race 
groups with tacrolimus AUC0–12 <100 ng∙h/ml and ≥100 ng∙h/ml and 
is summarized in Table S2. In 84.8% of Black and 68.8% of White 
recipients, therapeutic AUC0–12 of 100–190 ng‧h/ml was achieved; 
(p = 0.027; Figure 3 Panel C). In 31.3% of White and 9.1% of Black 
patients, AUC0–12 was <100  ng‧h/ml despite therapeutic troughs 
(p = 0.027).

3.3  |  Adverse effects

Table  3  summarizes the cumulative, neurologic, aesthetic, and GI 
adverse effect AE ratios. A sex (p < 0.001) and race-sex interaction 
(p = 0.014) was found with the cumulative AE ratio, with 1.5-fold 
higher scores in Black females compared with Black males. Figure 4 
represents cumulative AE ratios and tacrolimus AUC0–12 with 68% of 
females demonstrating an AE score >0.14.9 The neurologic AE ratio 
had a sex effect (p = 0.021) and a race-sex interaction (p = 0.005), 
with the highest score found in Black females. A sex effect was found 
with a twofold higher aesthetic AE ratio (p = 0.002) in White females 
followed by Black females when compared to males. Interactions be-
tween race and sex for the cumulative AE ratio (p = 0.014) and neu-
rologic AE ratio (p = 0.005) were found.

3.4  |  CYP3A5*3*6*7 and ABCB1 genotypes—
associations to tacrolimus pharmacokinetics

The distribution of CYP3A5*3*6*7 genotypes (n = 65) is summarized 
in Table 4 and explained in Figure 2A–D. Significant differences be-
tween race-sex groups in allele frequencies were found (p < 0.001). 
Among White recipients expressing CYP3A5*3(rs776746), there 
were only three heterozygotes, and none were homozygous for the 
wild-type allele, CYP3A5*1. See Table S3 for a complete summary. 
Table S4 summarizes the ABCB1 genotype distribution for 1236C>T 
(rs1128503), 2677G>T/A (rs2032582), 3435C>T (rs1045642) stratified 
by race and sex. For two of the three alleles: ABCB1 2677 & 3435, 
there were significant differences in allele frequencies between race 
as determined by the Goodness-of-fit test (G test).

CYP3A5*3*6*7 metabolic composites were the only signifi-
cant covariate accounting for approximately 15%–of the tacroli-
mus pharmacokinetic variability after determination of race-sex 
associations.52 Significant covariate associations attributed to 
CYP3A5*3*6*7 metabolic composites were identified with tacro-
limus dose (p  =  0.007), dose/TBW (p  =  0.025), 12-h trough/dose 
(p < 0.001), AUC0–12/dose (p < 0.001), Cl (p = 0.002), and Cl/LBW 
(p = 0.003). No association of CYP3A5*3*6*7 metabolic composites 
with adverse effects was found.

No associations with individual ABCB1 genotypes were found 
with tacrolimus pharmacokinetic parameters and individual or com-
posite adverse effects.

4  |  DISCUSSION

This is the first intensive pharmacokinetic study design used to 
examine race and sex differences in tacrolimus clearance, pharma-
cokinetics parameters, and AEs during maintenance tacrolimus and 
mycophenolic acid immunosuppression in stable kidney transplant 
recipients.

4.1  |  Tacrolimus clearance and AUC0–12

Our study design investigated tacrolimus pharmacokinetics in high-
risk Black recipients, points not addressed in the Elite-Symphony 
trial, that clinically compared low-dose tacrolimus to either cyclo-
sporine or sirolimus within the first year in primarily white patients, 
that remains an important clinical issue.10,11,15,18,19 Black patients, 
irrespective of sex, exhibited more rapid tacrolimus Cl with higher 
troughs and AUC0–12 that may reflect higher tacrolimus doses when 
compared to White recipients (Table 2). This Cl difference is consist-
ent with a previous study in healthy subjects.23 Factors contribut-
ing to elevated tacrolimus troughs and AUC in Black renal transplant 
recipients will require further investigation. A sex influence was de-
termined in Black females, who exhibited the most rapid tacrolimus 
Cl adjusted for weight and reduced dose-normalized AUC0–12. Sex 
differences have been suggested using a limited tacrolimus sampling 
approach after the first dose.33 The tacrolimus AUC0–12 in our study 
was below the suggested target of 100  ng‧h/ml for ≥1-year post-
transplant in 20% of recipients, irrespective of race or sex despite 
therapeutic troughs (Figure 3 Panels A and C).7 This finding is impor-
tant as sub-therapeutic exposure may contribute to development of 
donor-specific antibodies.12–14,53 Therefore, in-depth pharmacoki-
netic comparisons between sub-populations are needed to develop 
individualized tacrolimus regimens.7,8,24,25

4.2  |  Pharmacokinetics and pharmacodynamics

A sex effect was identified for females who had higher cumulative, 
neurologic, and aesthetic AE scores. The cumulative adverse ef-
fects score >0.14 was exhibited in 69% of females who were below 
the target tacrolimus AUC0–12 (Figure 4) for time post-transplant.7 
Associations between extrarenal adverse effects, sex, and ABCB1 
haplotypes have been reported,46 but no AE association to ABCB1 
genotypes was detected in this study. Several studies reported 
that tacrolimus-related adverse effects were more frequent or se-
vere at higher tacrolimus exposures.7,8,49 With reduced targeted 
trough ranges,10,11 the incidence of tacrolimus-mediated AE has 
improved.7,8,11 A tacrolimus pharmacokinetic-pharmacodynamic 
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population model that identified increased dose-normalized AUC* 
and maximum concentration with decreased Cl exhibited significant 
associations to greater GI and neurologic AEs with sex as a covari-
ate.52 Since these extrarenal AEs have been linked to poor medi-
cation adherence, standardized AE assessment can be useful as a 
longitudinal monitoring guide.

4.3  |  CYP3A5*3*6*7 metabolic composite

The Clinical Pharmacogenetics Implementation Consortium (CPIC) 
provides tacrolimus dosing recommendations with CYP3A5*3*6*7 
variants to account for pharmacokinetic variability.7,39,42 Recently, a 
pharmacokinetic model incorporating CYP3A5*3*6*7 metabolic com-
posite was reported to describe loss-of-function variants and tac-
rolimus disposition.43 Approximately 88% of Black recipients were 
extensive and intermediate metabolizers attributed to CYP3A5*1 
genotype (Table 4 and Figure 2). Higher daily doses were required to 
maintain comparable troughs due to rapid Cl.42 CYP3A5*3*6*7 meta-
bolic composite was the only significant covariate that accounted 

for 15%–19% of tacrolimus pharmacokinetic variability after ad-
justment for race-sex influence. Investigations of troughs as a sur-
rogate marker in Black recipients demonstrated associations with 
CYP3A5*1 alleles, with higher dose requirements needed to achieve 
therapeutic troughs comparable to CYP3A5*3*6*7.39 Earlier studies 
lacked sex-specific analysis or intensive pharmacokinetic sampling 
to verify tacrolimus AUC0–12. This parameter reflects drug exposure 
in high-risk Black recipients expressing CYP3A5*1 genotype. The 
utility of genotype-based dosing models to achieve target troughs 
has limitations and requires tacrolimus pharmacokinetic studies.39

This report of race and sex differences in tacrolimus pharmacoki-
netics (ie, weight-normalized Cl, dose-normalized AUC0–12 and C12 h) 
and adverse effects provides AUC0–12 ranges for dosing between 
Black and White recipients, and fills an important pharmacotherapeu-
tic knowledge gap. The comparison of sex with race incorporates well-
established differences in gender biology.33,54 The influence of sex is 
supported by in vivo gender differences for CYP3A4/5 substrates and 
in vitro reports of greater GI tract and liver expression in females.26,27,29 
The significant contribution of the covariate CYP3A5*3*6*7 metabolic 
composite on interpatient tacrolimus variability further supports these 

F I G U R E  3  Panels A–D: Select tacrolimus pharmacokinetic parameters stratified by race-sex groups and target AUC0–12 [Open dot 
represents AUC0–12 ≥100 ng‧h/ml; closed dot represents AUC0–12 <100 ng‧h/ml]: Panel A represents 12-h concentration (Race: p = 0.021) 
achieved in each patient using the range of 4 (dotted line) to 12 ng/ml. Panel B depicts tacrolimus Cl for each group. Rapid Cl (Race: <0.001; 
Sex: p = 0.066; Race × Sex: p = 0.085) are noted in Black females and males compared to White recipients. Panel C depicts tacrolimus 
AUC0–12 relative to race and sex groups (Race: p = 0.005) using the tacrolimus therapeutic AUC0–12 guide of ≥100 ng‧h/ml, represented by 
the dotted line and less than or equal to 190 ng‧h/ml.7,8 There were 68.8% (22/32) of White and 84.5% (28/33) of Black patients within 
the target AUC0–12 guide of 100–190 ng‧h/ml for recipients >1-year post-transplant. Note that the tacrolimus AUC0–12 was <100 ng‧h/ml 
in 31.3% of Whites and 9.1% of Blacks. Panel D presents the distribution of dose-normalized AUC0–12 between race and sex groups (Race: 
<0.001; Sex: p = 0.084; Race × Sex: p = 0.068). See Results section and Table S2 for comparisons between tacrolimus AUC0–12 exposures 
< and ≥100 ng‧h/ml (p = 0.027). AUC0–12, area under the concentration time curve 0–12 h; BF, Black females; BM, Black males; C12 h, 12-h 
trough concentration; Cl, clearance; WF, White females; WM: White males
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in vivo and in vitro findings.26,27,29,44,45 Therefore, our study provides 
new data describing combined race and sex associations with tacroli-
mus pharmacokinetics.

Our study is novel in that the AUC0–12 was reported in high-risk 
Blacks compared with White male and female recipients. Intensive phar-
macokinetic sampling and a validated extrarenal adverse effect scoring 
evaluation (Table S1) combined with medication adherence assessment 
and tacrolimus assays from a CLIA-certified laboratory enhance the 
rigor and reproducibility of our study. Another novel component is the 
inclusion of CYP3A5*3*6*7 metabolic composite as a covariate, its use to 
categorize variable metabolism, and its contribution to tacrolimus phar-
macokinetic variability between race and sex groups. Incorporation of 
clinical covariate analysis further identifies patients at risk for adverse 
effects or interpatient pharmacokinetic variability. Our statistical model 
incorporated use of pairwise group comparisons between patient groups 
to substantiate pharmacokinetic differences and adverse effects that may 
improve our understanding of race and sex responses post-transplant.

In conclusion, this is the first report of the combined influence of 
race with sex contributing to tacrolimus pharmacokinetic variability 
in Black and White stable kidney transplant recipients. Despite ther-
apeutic tacrolimus troughs achieved in most recipients, 20% of pa-
tients had sub-therapeutic AUC0–12. Extrarenal adverse effects were 
more evident in women and most prominent in Black females. The 
CYP3A5*3*6*7 metabolic composite was the major significant covari-
ate contributing to additional interpatient pharmacokinetic variability 
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F I G U R E  4   Tacrolimus AUC0–12 and relationship to cumulative 
AE ratio. This graph depicts the target tacrolimus AUC0–12 guide 
ranging from ≥100 to ≤190 ng‧h/ml represented by dotted lines 
from consensus recommendations7,8 and the relationship to the 
cumulative adverse effect (AE) ratio for each patient stratified by 
race and sex. The ratio of 0.14 (blue arrow) was selected since it 
represents consistent and significant manifestation of cumulative 
adverse effects.46 Note that 69% of the White and Black female 
recipients exhibited a cumulative adverse effect ratio ≥0.14 with a 
mean (SD) of 0.222 (0.049) indicating more severe adverse effects 
for women who were within or below the therapeutic tacrolimus 
AUC0–12 h. In contrast, 39% of males had a cumulative adverse 
effect ratio of 0.167 (0.019) at the time of study. AE, adverse 
effects; AUC0–12, area under the concentration time curve 0–12 h; 
BF, Black females [blue closed circle]; BM, Black males [black open 
circle]; WF, White females [yellow diamond]; WM, White males 
[green square]
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between White and Black recipients. These findings may guide differ-
ential tacrolimus dosing using individualization approaches.
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