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A B S T R A C T   

Risk assessment of the intra-city spatio-temporal spreading of COVID-19 is important for providing location- 
based precise intervention measures, especially when the epidemic occurred in the densely populated and 
high mobile public places. The individual-based simulation has been proven to be an effective method for the risk 
assessment. However, the acquisition of individual-level mobility data is limited. This study used publicly 
available datasets to approximate dynamic intra-city travel flows by a spatio-temporal gravity model. On this 
basis, an individual-based epidemic model integrating agent-based model with the susceptible-exposed- 
infectious-removed (SEIR) model was proposed and the intra-city spatio-temporal spreading process of 
COVID-19 in eleven public places in Guangzhou China were explored. The results indicated that the accuracy of 
dynamic intra-city travel flows estimated by available big data and gravity model is acceptable. The spatio- 
temporal simulation method well presented the process of COVID-19 epidemic. Four kinds of spatial-temporal 
transmission patterns were identified and the pattern was highly dependent on the urban spatial structure and 
location. It indicated that location-based precise intervention measures should be implemented according to 
different regions. The approach of this research can be used by policy-makers to make rapid and accurate risk 
assessments and to implement intervention measures ahead of epidemic outbreaks.   

1. Introduction 

The spread of COVID-19 poses unprecedented challenges for gov-
ernments throughout the world (Anderson et al., 2020). Strict 
non-pharmaceutical interventions have been adopted in many countries 
(e.g. China) to control the COVID-19 pandemic (Tian et al., 2020). China 
is gradually relaxing lock-down and social distancing measures when 
restarting economic and public activities. However, the prevention of 
COVID-19 in cities is still under large pressure and facing the disease 
resurgences before achieving herd immunity. This is because sporadic 
cases are continuously occurring, particularly in megacities with 
high-density populations. For example, a local outbreak occurred in 
Nanjing on 20 July 2021 had spread to more than twenty cities in the 
whole wave. It is urgent to implement location-based precise interven-
tion measures to prevent resurgences of COVID-19 in cities, especially in 

the densely populated and high mobile public places. The measures 
emphasize the categorization and prioritization strategy according to 
the infection risk of different locations. 

Citizens’ daily activities and their interaction are one of reasons of 
the rapid spread of COVID-19 in cities. Residences, workplaces and 
public places are three important anchors of daily activities (Chai, 2013; 
Shen et al., 2015; Liu & Chai, 2015), which are also important nodes of 
disease transmission. Individuals at different places have different 
mixing patterns and contact intensity, causing different transmission 
risks. Previous researches have suggested that more than 80% of the 
contact occurred at home, workplaces, school, and public places (Mos-
song et al., 2008). Therefore, physical distancing interventions, such as 
stay-at-home, closure of school and workplaces, limiting the maximum 
number of people gathering, were conducted during the outbreaks of 
COVID-19 epidemic, as well as contact tracing on these daily activities 
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points. Individuals’ daily contact includes close contact (regular en-
counters in household, and workplaces) and casual contact (random 
encounters at public places) (Kretzschmar et al., 2020; Yin et al., 2021). 
Close contacts have greater risk of transmission for person-to-person 
contact-transmissible infectious diseases such as COVID-19. It was re-
ported that intra-family transmission made up 23% among local trans-
mission (Chen et al., 2020). Besides, some infection cases happened at 
public places when people took entertainment activities such as dinner, 
playing cards and shopping (Chen et al., 2020; Wang et al., 2020). These 
public places, with dense population flow and confined spaces, would 
significantly contribute to the spread of the virus (Mossong et al., 2008). 
The outbreak of the epidemic at the early stage in China mainly 
happened at retail and recreation centers, such as Baodi Mall in Tianjin, 
Tuolong Mall in Harbin, and Yin-taishimao Mall in Wenzhou (Zhou 
et al., 2020a, 2020b). Since, the contacts (random encounters) in these 
places were difficult to track. It is more challenging to control the 
epidemic transmission occurring in public places than residences and 
workplaces. However, few studies assessed the disease transmission risk 
in public places, which is pivotal for reopening economic and public 
activities. Therefore, it is of great significance to discuss the 
location-based precise intervention measures of COVID-19 epidemic in 
public places. 

Geographical big data, such as mobile phone data, social media data, 
GPS tracking data and other spatio-temporal big data, showed huge 
power in fighting against COVID-19 epidemic throughout the epidemi-
ological cycle (Buckee et al., 2020; Budd et al., 2020; Zhou et al., 2020a, 
2020b). Particularly, location-based mobile data made great contribu-
tion to public-health response to the global pandemic (Oliver et al., 
2020). At the early-stage of the pandemic, location-based mobile data 
provided population and mobility information to help to understand 
COVID-19 transmission trends, identify potential transmission hotpots 
and trace contacts rapidly (Jia et al., 2020). During the middle-stage, 
location-based mobile data were used to build epidemiological model 
to predict the spread trend and estimate further infection risk (Lai et al., 
2020; Wu et al., 2020). The dataset also helped to implement social 
distance measures, evaluate the effectiveness of different interventions 
on the progression of COVID-19 (Aleta et al., 2020; McKenzie & Adams, 
2020; Wei et al., 2021; Yechezkel et al., 2020) and find the optimal 
measures of reopening economic and public activities at the late-stage 
(Yin et al., 2021; Huang et al., 2021). Location-based mobile data rep-
resented a critical tool for supporting public health decisions and actions 
of the government throughout the pandemic. 

However, access to location-based mobile data is a challenge. Most 
mobile network operators, tended to be very reluctant to publish data to 
public and researchers (Oliver et al., 2020). Fine-scale or personal data 
(such as individual-level mobility data) were often inaccessible, due to 
legal and ethical considerations, as well as privacy and security concerns 
(Parker et al., 2020; Ienca & Vayena, 2020). Due to privacy consider-
ation, people concerned that temporary emergency measures which 
monitor their movements may become pervasive and permanent (Budd 
et al., 2020; Calvo et al., 2020). Fortunately, some companies are 
gradually publishing subsets of aggregated data for research purposes 
during COVID-19 pandemic (China Data Lab, 2020; Hu et al., 2020). For 
example, daily aggregated origin-destination (OD) data from Baidu were 
used to evaluate the effect of travel restrictions and quarantine measures 
on COVID-19 transmission in China (Chinazzi et al., 2020; Kraemer 
et al., 2020). Google released weekly mobility reports in a sub-national 
scale (https://www.google.com/covid19/mobility/). Apple Inc. 
released a similar dataset of daily mobility (https://covid19.apple.com 
/mobility). However, these datasets cannot reflect intra-city mobility 
since they only represent travel flow between cities or provinces. 
Fortunately, public datasets, such as Tencent location request data 
(https://heat.qq.com) and Baidu Heat data (https://map.baidu.com/), 
are available with high spatial-temporal resolution (25 m*25 m) in the 
intra-city level. These datasets can be converted by mathematical 
methods to approximate the intra-city travel flows. The estimate of 

intra-city travel flows is incredibly valuable and essential for evaluating 
the disease transmission risk and develop precise intervention strategies 
of COVID-19 epidemic. 

In summary, most of the previous research was limited in spatio- 
temporal transmission risk assessment at the micro scale (most of 
them at national, provincial, and regional level etc.), and the research 
results could not be directly adopted by the local government to 
implement precise intra-city intervention measures of COVID-19 
epidemic. The micro level research plays an important role in 
providing the categorization and prioritization of intervention mea-
sures. Individual-based simulation has been proven to be an effective 
method for the risk assessment, but the acquisition of individual-level 
mobility data was limited. Moreover, the existing studies had little 
concern about the intra-city intervention measures, especially for the 
epidemic occurring in public places. Therefore, how to simulate the 
intra-city spatio-temporal spreading process with publicly available 
aggregated data under public health emergency events is an urgent task 
to be discussed. 

In order to fill these gaps, this study used publicly available dataset to 
approximate dynamic intra-city travel flows by a spatio-temporal 
gravity model. It proposed an individual-based epidemic model and 
explored the intra-city spatio-temporal spreading process of COVID-19. 
After being calibrated and validated by the actual travel flows, the 
model simulated the spatio-temporal spreading process in different 
public places for developing location-based precise intervention mea-
sures. This study took the Guangzhou city (one of four megacities in 
China, with an area of about 7434 km2 and nearly 20 million popula-
tion) as a case, aiming to provide some universal insights for other 
megacities. The findings from this study would provide evidence-based 
guidelines for megacities. This study also provided a reliable method for 
other cities to respond to the public health emergency events based on 
their own situations. 

2. Data and methods 

This study used dynamic population distribution datasets to 
approximate intra-city travel flows through a spatio-temporal gravity 
model. It proposed an individual-based epidemic transmission model, 
which integrated the agent-based model and the susceptible-exposed- 
infectious-removed (SEIR) model, to simulate COVID-19 transmission 
dynamics and explore the spatio-temporal spreading pattern in different 
public places in Guangzhou. 

2.1. Data sources 

The dynamic population distribution dataset and the origin- 
destination (OD) flow dataset were used in this study. The dynamic 
population distribution dataset was used to quantify spatial interaction 
between grids as a proxy of mobility through gravity model. The second 
dataset was used as the validation of the first dataset. 

The aggregated dynamic population distribution dataset: The 
dynamic population distribution dataset was provided by China Unicom 
Company, which had a market share of about 30%. The raw dataset 
contained one-day geocoding locations of nearly 7.05 million users of 
Guangzhou on 10-June-2020, a regular working day. A user’s location 
was positioned by a signal tower when any communication behavior 
occurred such as calling, messaging, Internet search, or location up-
dates. Even without any of these actions, the tower would detect the 
user’s location by every 30–60 min. In the raw dataset, user’ trajectories 
were made up of a series of locations. A stay was defined by the telecom 
company when a user stopped at the same location more than 0.5 h. The 
company has the original raw data of individual trajectories in the 
database, but it did not provide the raw data to researchers due to the 
privacy policy. Rather, the company aggregated users’ locations to 500 
m*500 m spatial grids from the database. It counted the number of users 
in each grid per hour. Finally 24-h dynamic distribution datasets were 
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provided to us. In particular, the users who stayed at the same grid for 
more than 20 h in one day were removed from the dataset, because they 
did not move all day and contributed little to the spread of disease. 

The aggregated origin-destination flow dataset: The origin- 
destination flow (OD flow) dataset in the same day (10-June-2020) 
was also provided by the company. A move was defined by the spatial 
displacement of a user. Users moved from one stay to another stay. 
Movement between two stays was a trip. The start location of a trip 
defined an origin (O), and the end location of a trip defined a destination 
(D). Both O and D locations were geocoded by 500 m spatial grids. An 
OD flow was defined by the number of trips between the OD pair. Finally 
24-h origin-destination flows between 500 m*500 m grids were pro-
vided to us. 

Note that the population distribution dataset in each hour is not the 
instant population distribution at that moment, but the accumulated 
number of users within 1 h. Similarly, the OD flow in each hour is the 
accumulated number of OD trips within 1 h. The former dataset repre-
sents the number of people staying in each grid in each hour. It was used 
to estimate spatial interaction between grids as a proxy of mobility 
flows. The later dataset (actual OD flow) was used to validate the model. 
Specifically, we used a gravity model to estimate origin-destination 
mobility flow (estimated OD flow) based on dynamic population dis-
tribution datasets between two adjacent time periods (Section 2.2). The 
estimated OD flow was validated by actual OD flow data in section 3.1. 

This study estimated OD flows from the dynamic population distri-
bution data by a gravity model. We emphasized the use of estimated OD 
flows rather than actual OD flows. The reason was to make this study 
have wider applicability. Dynamic population distribution data with a 
high spatial-temporal resolution in the intra-city is publicly published 
and accessible, such as Tencent location-based big data and Baidu Heat 
data etc. In contrast, intra-city OD flow data is not easily accessible. In 
order to test the reliability of the model, this research used the dynamic 
population distribution data from mobile phone operator other than 
Tencent or Baidu, since the actual OD flow data for model validation 
were limited accessible from Tencent and Baidu. Our study aimed to use 
publicly available dynamic population data to simulate the spatio- 
temporal spreading process of COVID-19. It provided a novel 
approach to respond to the public health emergency events rapidly 
under limited access to individual-level or intra-city mobility data. 

2.2. The gravity model 

The gravity model is a useful spatial interaction modeling method, 
which has been widely applied in transportation and human geography 
research (Duffus et al., 1987). Many studies used it to measure 
commuting flow based on the spatial distribution of jobs-housing pop-
ulation (Zhang et al., 2017; Shi et al., 2020). However, the time 
dimension was rarely taken into consideration. This study adopted a 
production constrained gravity model to estimate the number of flows 
between origin-destination (OD) grids across different time periods. 

Gij(t→t+1) =Ai(t) * Oi(t) * Dj(t+1)*f
(
dij
)

(1)  

Ai(t) =
1
/∑

j
Dj(t+1)*f

(
dij
) (2)  

where Gij(t→t+1) is the travel flow between the origin grid i and desti-
nation grid j from time t to t+ 1, Oi(t) is the total number of people in the 
origin grid i at the time t, Dj(t+1) is the total number of people in the 
destination grid j at the time t+ 1. f(dij) is a distance decay function, 
which usually follows a power law or an exponential distribution. Ai(t) is 
a balancing factor which is constrained by destinations. The empirical 
evidence from Zheng et al. (2021) showed that f(dij) followed an 
exponential distribution in Guangzhou. The probability density function 
of an exponential distribution is given by: 

f
(
dij
)
= λe− λdij (3)  

λ= 1
/

E
(
dij
)

(4)  

where λ is the decay parameter, which equals to the reciprocal of the 
expectation value of the exponential distribution. E(dij) is the average 
travel distance between grids in this study. Previous studies showed that 
the average travel distance in Guangzhou was about 5 km (Lu et al., 
2019). Hence, λ was set as 0.2 here. We used the above formula to 
calculate the spatial interaction value between grids across different 
periods and normalized it to 0–1 as the moving probability between two 
grids. 

2.3. The epidemic model 

We implemented an agent-based model integrated with the 
susceptible-exposed-infectious-removed (SEIR) model to simulate the 
dynamic spreading process of COVID-19. Agent is an autonomous 
computer entity. It is capable of interacting with other agents and 
adapting its behavior to the changing environment. Each agent has its 
own behavior according to specific rules which are given by researchers. 
Agents can represent any entities, e.g., people, animals or institutions 
etc. 

In this model, agents represented people in the real world. Peoples’ 
daily movements were assigned to the agents. The daily movements 
were determined by the spatio-temporal gravity model. Agent moved 
among grids in 24 h according to the result of the gravity model. 

Based on the framework of SEIR, each agent has one out of four 
states: susceptible (S), exposed (E, not yet infectious), infectious (I), and 
removed (R, isolated, recovered, or otherwise no longer infectious, etc). 
The transmission was triggered by contacts between agents when agents 
were moving or stopping. Agents appearing in the same grid at the same 
time were regarded as contact. Specifically, once a susceptible agent (S) 
had contact with an infectious agent (I), the susceptible agent would be 
infected with a certain probability θ (the contact infection rate). If the 
susceptible agent was infected indeed, the state of susceptible agent 
would be transformed to “exposed” (E). At this stage the exposed agent 
could not infect other agents yet. After experiencing a ‘latent period’, the 
exposed agent would become ‘infectious’ (I) which could infect other 
agents. After lasting for an ‘infectious period’, the infectious agent 
would be isolated, recovered, or otherwise no longer infectious, and the 
state of the agent would change into “removed (R)”. The removed agent 
was not infectious and could not be re-infected again. Related work of 
the model had previously been published (Zhou et al., 2021). Different 
from our previous model which needed individual-level mobility data, 
this model was improved to be applicable with aggregated data. 

2.4. The epidemic model’s parameterization and scenarios setting 

The epidemic model involved three parameters: latent period, in-
fectious period and the contact infection rate θ. According to our pre-
vious work (Zhou et al., 2021), each agent’s latent period and infectious 
period followed the normal distributions with a mean of 3 days and a 
standard deviation of 1 day (latent period), and a mean of 8 days and a 
standard deviation of 2 days (infectious period) respectively. The 
parameter θ was estimated according to the basic reproductive number 
R0. Studies from various sources have estimated different R0 value from 
2 to 7 (Li et al., 2020; Liu et al., 2020; Read et al., 2020; Sanche et al., 
2020; Shen et al., 2020; Tang et al., 2020; Wu et al., 2020). This study set 
the value of R0 as 4–5, a relatively medium value. The parameter θ was 
calibrated as 0.165. The calibration process was described in details in 
our previous work (Zhou et al., 2021). 

Controlling epidemic transmission occurring in public places is a 
challenge for policy makers. How to implement intervention measures 
at such places is one of most concerned issues. Therefore this study 
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focused on disease transmission process originating in public places. 
Referring to a work which identified typical public places, commercial 
centers in Guangzhou (Chen et al., 2016), we selected eleven public 
places (Fig. 1). They were located in eleven different administrative 
districts of Guangzhou, representing the city center, inner-suburbs, and 

outer-suburbs locations respectively. We set eleven scenarios and 
simulated the epidemic spread process in these eleven public places 
respectively. We assumed that the epidemic started with several infec-
tious agents and the rest agents were initially susceptible. Therefore, in 
each scenario, we randomly selected 10 agents located in the 

Fig. 1. Study area and the location of eleven public places. Guangzhou was selected as a case study and it was divided 1000 m*1000 m grids. 1559 grids were finally 
selected as the study area and the population of these grids accounted for 91% of the total population of Guangzhou. We assumed that the epidemic occurred in 
eleven public places and it corresponded to eleven simulation scenarios (scenario 1–11). 
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corresponding public place as infective seeds. In scenario 1, we selected 
10 agents located in the first public place as infective seeds. In scenario 
2, we selected 10 agents located in the second public place as infective 
seeds. And so on. The other parameters (latent/infectious period/ θ) in 
the eleven scenarios were the same. 

To improve the efficiency of the simulation, we only chose the 
population distribution data at four periods (6:00, 12:00, 18:00, and 
24:00) which represented the greatest differences of population distri-
bution in one day. These four periods’ data was a reflection of daily 
activity, such as early at home, workplaces at noon, shopping or leisure 
in public places, and back home at night. Although some people will 
leave workplaces at noon, a study from Guangzhou showed that 87.5% 
of people would have lunch or take a rest at or near their workplaces 
(Zhou & Deng, 2010). 18:00–19:00 was a small peak period for eating 
out and taking leisure activities (Song et al., 2017). Therefore, based on 
four periods’ population distribution data, we used the gravity model to 
estimate OD flows between 6:00 and 12:00 (estODflow_0612), between 
12:00 and 18:00 (estODflow_1218), and between 18:00 and 24:00 
(estODflow_1824). The estimated OD flows were then normalized to 0–1 
as the movement probability among grids at different time periods. 

The simulation process is as follows. First, we generated 100,000 
agents in proportion to the spatial distribution of the population at 6:00 
in the morning in Guangzhou. Second, we set each agent’s latent/in-
fectious period and the contact infect rate according to the above 
parameterization. And we randomly select 10 agents located in the 
corresponding public places in each scenario as infectious agents and the 
rest agents were initially susceptible. Third, the 100,000 agents started 
their daily movements among OD grids from 6:00 to 24:00 according to 
the normalized probability matrix which was previously estimated from 
the gravity model. The matrix showed the moving probability by which 
an agent travelled from one grid to another gird. For example, the agent 
at 6:00 would make decisions whether to move or not from 6:00 to 
12:00, according to normalized estODflow_0612. Then it would 
continue to move or not according to normalized estODflow_1218 until 
the end of the day (24:00). In the next day, the agent would continue the 
movement similarly. Fourth, after finishing each movement, the simu-
lation system would judge whether the agent would be infected or not, 
and whether its state would change or not. Once being infected, the state 
of the susceptible agent would become “exposed”. After experiencing a 
‘latent period’, the state would turn into “infectious”, and after an ‘in-
fectious period’, the state would become “removed”. Finally, the simu-
lation stopped when there was only susceptible and removed agents in 
the model. 

The model would output the attack rate (the proportion of agents 
who have been infected), durations (the lasting days), the number of 
new exposed agents per day (daily-newE), the number of new infected 
agents per day (daily-newI), the number of new removed agents per day 
(daily-newR), and the spatial distribution of susceptible/exposed/ 
infected/removed agents per day. For each scenario, we simulated 50 
times to balance the stochastic effect. 

Besides, as the urban built-up area only accounts for 17.5% of the 
total area of Guangzhou, we only selected the top 20% grids to represent 
the built-up area according to the population distribution. Further, in 
order to improve the simulation efficiency and evaluate the spatio- 
temporal transmission risk rapidly, we aggregated the 500 m*500 m 
spatial grids into 1000 m*1000 m grids. The distance between two 
parallel main roads in China is 700–1200 m. 1000 m-grid is a suitable 
and commonly used spatial scale (Chen et al., 2016). Finally, 1559 grids 
were selected as the study area (Fig. 1), and the population of these grids 
accounted for 91% of the total population of Guangzhou. 

3. Results 

The OD flow estimated by the gravity model (hereinafter estimated 
OD flow) was firstly validated by comparing with actual OD flow. Then 
the natural transmission process occurring in eleven public places were 

simulated respectively, based on the estimated OD flow. Finally, the 
evolutionary process of the epidemic was analyzed from the perspec-
tives of time and space. 

3.1. Validation of the gravity model 

To evaluate the accuracy of estimated OD flow, we validated it with 
actual OD flow by comparing the number of trips from a grid unit to 
other grids. As mentioned above, we estimated three groups of OD flows: 
6:00–12:00 (estODflow_0612), 12:00–18:00 (estODflow_1218), and 
18:00–24:00 (estODflow_1824). Meanwhile, we calculated the actual 
OD flows between 6:00 and 12:00 (actODflow_0612) from the aggre-
gated origin-destination flow dataset, which was the sum of actual OD 
flow at 6:00, 7:00, 8:00, 9:00, 10:00, 11:00 and 12:00. ActODflow_1218 
and actODflow1824 were similarly calculated. Estimated OD flows and 
actual OD flows were displayed in a 1559*1559 matrix. For each O grid, 
it has had a set of outgoing flows to other D grids. The set of estimated 
outgoing flows and the actual outgoing flows from the same O grid can 
be compared. Then each O grid had an R square value of estimated and 
actual outgoing flows. The spatial distribution of R square of each O grid 
was shown in Fig. 2. The mean value of R square value between 
estODflow_0612 and actODflow_0612 was 0.72. The average R square 
value at the other two time periods were 0.73 (Figs. 2b) and 0.74 
(Fig. 2c) respectively. They also showed similar spatial distributions. 
The result indicated that it was acceptable to use the dynamic popula-
tion data at different periods by the gravity model to estimate travel 
flows. 

3.2. Temporal process of the epidemic transmission 

Table 1 showed the simulated attack rate and durations in eleven 
scenarios, under natural transmission without any intervention. The 
final attack rate is the proportion of agents who have been infected at the 
end of an epidemic. The duration is the time length between the start 
and the end of an epidemic. For each scenario, we simulated 50 times to 
balance the stochastic effect. The results suggested that the attack rate 
increased with the distance from city center, except for two public places 
in the furthest outer-suburbs (scenario 10 and 11). 

The dynamic process of attack rate with time in each scenario was 
shown in Fig. 3, as well as daily-newE/daily-newI/daily-newR (the 
number of new exposed/infected/removed agents per day). The attack 
rate (Fig. 3a) increases rapidly, then reaches a peak and gradually flat-
tens, presenting an S-shape curve. While, the other three curves 
(Fig. 3b–d) show inverted U-shaped shapes, increasing firstly and 
decreasing afterward. Eleven scenarios could be classified into four 
levels based on the temporal changes. 

Scenario1-5 (public places in the city center) showed the highly 
similar time trend and could be classified as the first category. They were 
the earliest to spread among all the scenarios. The attack rate (Fig. 3a) 
increased explosively from the 10th day and became stable after the 
20th day. The daily-newE increased sharply from the 7th day, reached 
the peak on the 14th day and then began to decline, down to zero after 
the 22nd day (Fig. 3b). The daily-newI began to increase three day later 
than daily-newE, and took about one week to reach a turning point on 
the 18th day (Fig. 3c). Because, the infected cases would be removed 
through an ‘infectious period’, the daily-newR followed the same trend 
curve with “daily-newI” after a few days later. 

Scenario 10 and scenario 11 (public places in the rural outer suburbs) 
belonged to the same category. The attack rate of the two scenarios, less 
than 2%, was the lowest in the all scenarios. They were located farthest 
from the city center. The epidemic occurring in this places didn’t spread 
widely and the transmission stopped after local spread within a small 
area. 

Scenario 8 and scenario 9 (public places also located in the outer 
suburbs) could be classified into another category. The final attack rates 
of these two scenarios were the highest (82% and 80%) among all the 
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scenarios. Simultaneously, they had the slowest speed and the longest 
transmission duration. The attack rate increased explosively from the 
20th day, which was 10 days later than the first category (Scenario 1–5). 
The daily new infected cases reached the peak at the 25th day, with the 
same lag time of ten days compared with Category I. 

The remaining scenario 6 and scenario 7 could be summarized into 
the last category. The final attack rate of these two scenarios was more 
than 77.5%, fluctuating between Category I (scenario 1–5) and Category 
III (scenario 8–9). The peaks of the number of daily new E/I/R cases 
were 2–3 days later than Category I, but 6–8 days earlier than Category 
III. The two areas were close to the periphery of the city center, but 
located in the inner side of suburbs. 

The above results indicated that the transmission time varied across 
the location, and the closer the distance from the urban center was, the 
earlier the transmission started. This time trend is important because it 
demonstrated different time windows for the government to deal with 
the epidemic and let policy makers to know which areas need to be 
prioritized in the fight against COVID-19. 

3.3. Spatial process of the epidemic transmission 

The spatial spreading process of COVID-19 in scenario 1–11 was 
shown in Fig. 4. Similar with the classification of time trends, the spatial 
patterns demonstrated the same classification. Scenario 1–5 exhibited a 
hierarchical spatial pattern of “one core and three vertices”. Scenario 
6–7 presented a pattern of “one sword with two wings”. Scenario 8–9 
showed a “Northwest-Southeast” corridor distribution and a skew T- 
shaped distribution finally. While scenario 10–11 did not spread widely, 
but stopped after only local propagation in a small area nearby. 

The spatial spreading process of COVID-19 and its evolution char-
acteristics in scenario 1 were shown in Fig. 4a. The spatial evolution of 
scenario 2–5 showed a high degree of agreement with scenario 1 and 
were not shown due to space limitation. The spatial distribution of the 
attack rate every 20 percentage point’s increment were presented. The 
spatial transmission was characterized by the process from core cluster 
outbreak in the central five districts at the early stage to comprehensive 
dispersion occurrence at the late stage, from the central to the South, 
then to the East and finally to Northwest. The spatial distribution 
exhibited a hierarchical pattern of “one core and three vertices”. The one 
core was the central five districts: Yuexiu, Liwan, Tianhe, Haizhu and 
Baiyun districts. The three vertices were Panyu district, Huangpu- 
Luogang junction, and Huadu district respectively. The core five dis-
tricts were the earliest to spread the epidemic, as well as the most 
serious, and the three axes appeared gradually in sequence. 

Fig. 4b showed the spatial spreading process from scenario 6. When 
Covid-19 broke out in Shiqiao-Panyu Square, the epidemic first 
appeared sporadically in Panyu district, and spread to the central five 
districts simatenously; then gradually spread to Huangpu district in the 
eastern suburbs and further to the periphery (Huangpu-Zengcheng 
junctions); finally migrated to Huadu district in the outer suburbs. The 
spatial distribution presented a pattern of “one sword with two wings”. 
In other words, Panyu as well as central five districts was the body of the 
arrow, Huangpu-Luogang junction and Huadu were the two wings 
respectively. A very similar spatial pattern was seen in scenario 7 
(Fig. 4c), when sporadic cases occurred in the suburb of Huangpu dis-
trict. The vertical arrow turns into a horizontal arrow, with Huangpu 

Fig. 2. The spatial distribution of R square of each gird between estimated OD flow by gravity model and actual OD flow. The outgoing flows from a same O grid 
were compared at from 6:00 to 12:00(2a), from 12:00 to 18:00(2b), and from 18:00 to 24:00(2c). 

Table 1 
The final attack rate under eleven scenarios.  

Location of 
public places 

Scenarios Attack rate (%,Median 
[1st,3rd]) 

Durations (Days, 
Median[1st,3rd]) 

The City center Scenario1 77.31 [77.21,81.30] 118 [113,124] 
Scenario2 77.36 [77.19,81.08] 128 [116,143] 
Scenario3 77.37 [77.18,81.37] 113 [104,122] 
Scenario4 77.34 [77.21,81.34] 115 [113,126] 
Scenario5 77.32 [77.22,77.43] 119 [101,131] 

Inner suburbs Scenario6 77.57 [77.37,80.41] 130 [112,137] 
Scenario7 77.83 [77.78,78.05] 132 [115,138] 

Outer suburbs Scenario8 82.07 [82.01,82.09] 117 [112,125] 
Scenario9 80.20 [80.01,80.43] 140 [126,162] 
Scenario10 1.71 [1.70,1.71] 43 [42,49] 
Scenario11 1.46 [1.45,1.46] 38 [36,38]  
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and the central five districts as the body, and Panyu as the left shoulder, 
while Huadu as the right shoulder. 

When the epidemic occurred in the outer suburbs (scenario 8–9), it 
showed completely different spatial patterns (Fig. 4d–e). The epidemic 
first spread locally in nearby areas until the nearby areas was almost 
completely occupied. After that, the step of transmission gradually 
approached to the central area. Once the torch fire reached to the central 
area, it would be a large-scale outbreak in the urban five districts. 

Meanwhile, the confirmed cases showed a “Northwest-Southeast” 
corridor distribution. Then, the corridor changed its direction and 
extended eastward, from the inner suburbs (Huangpu district) to the 
outer suburbs (Zengcheng district). At last, the spatial distribution pre-
sented a skew T-shaped distribution. 

Finally, we found that the epidemic occurring in the rural outer 
suburbs (scenario 10–11) did not spread widely, but stopped after only 
local propagation in a small area nearby (Fig. 4f). Interestingly, we 

Fig. 3. The temporal process of output results in Scenario 1–11. Attack rate(3a, the proportion of agents who have been infected); The number of new exposed agents 
per day(3b); the number of new infected agents per day(3c); The number of new removed agents per day(3d). The horizontal axis represents from the 1st day to the 
60th day. 
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Fig. 4. The spatial spreading process under scenario 1–11. AR means attack rate (the proportion of agents experiencing infection).  
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noted that the epidemic occurring in these two areas seldom spread to 
other regions, nor did other regions to these two areas. 

4. Summary 

Integrating the time and space dimensions, the epidemic trans-
mission pattern in eleven public places could be summarized into four 
categories: scenario 1–5 (the city center), scenario 6–7 (inner suburbs), 
scenario 8–9 (outer suburbs), and scenario 10–11 (satellite towns). The 
differences of epidemic transmission pattern in different location were 
associated with the distance to the city center. 

5. Discussion 

This study used publicly available datasets to approximate dynamic 
intra-city travel flows by a spatio-temporal gravity model. It proposed an 
individual-based epidemic model and explored the intra-city spatio- 
temporal spreading process of COVID-19 in different public places. The 
analysis could support the location-based precise intervention measures 
for policymakers and provide guidance for public health emergency 
events in the future. 

By comparing the epidemic spread process in eleven public places, 
we identified four spatial-temporal patterns of COVID-19 transmission 
process in Guangzhou. We discovered that some areas had higher 
probability of being affected by COVID-19 than others. The transmission 
pattern was highly dependent on the urban spatial structure and loca-
tion. Hence, location-based precise intervention measures should be 
implemented according to various epidemic transmission modes in 
different regions. 

Our simulation results demonstrated that the transmission of the 
epidemic was the fastest and the epidemic peak happened the earliest 
when it occurred in the central area. The epidemic will spread over the 
core five districts in a short time, exerting great pressure on health-care 
system. Since the central area has the highest population density and the 
heaviest travel flows, the government should vigorously pursue strong 
physical distancing interventions on the central five districts to avoid the 
explosive growth of the epidemic, for example, stay-at-home, schools 
and workplaces closures, cancellation of public events, and movement 
restrictions (Dlamini et al., 2020; Huang et al., 2021). Meanwhile, 
intense screening and testing, and contact tracing efforts should also be 
reinforced in such areas (Yin et al., 2021). In addition, mask wearing and 
health elimination in public places, especially in the densely populated 
facilities (such as stations, supermarkets, restaurants, and shopping 
malls, etc.) should be highly promoted. Besides, our simulation results 
also suggested that the epidemic sourcing from urban center seldom 
reached the outer suburbs, especially satellite cities. Implementing 
strong physical distancing measures in these areas can be mismatched. 
The government could encourage residents of these areas to take pro-
tective measures and health monitoring, exercise moderately and 
improve their own immunity. 

The epidemic outbreak in inner suburbs with medium population 
density was approximately 2–3 days later than central areas. But, the 
epidemic would spread rapidly to the central five districts at the same 
time of transmission nearby. Since the main function of recreational 
business district is to offer recreation, entertainment and shopping for 
local residents and residents living in the peripheral areas, and the ac-
tivities of residents living nearby promoted the epidemic spread. 
Shiqiao-Panyu Square in Panyu (scenario 6) and Dashadi in Huangpu 
(scenario 7), as the sub-centers of Guangzhou, were initially built to 
evacuate the population in the central area, reduce the housing pressure 
in the center and provide suitable housing and employment for the 
rapidly growing urban population (Jiang et al., 2012). Many people 
living here commuted to central areas as well as working nearby, 
causing the suburbs and the five center districts being affected at the 
same time. Although the governments had 2-3 more days to deal with it, 
the urgency and severity of the epidemic is no better than the central 

areas. Therefore, close contacts tracing would be the most important 
control measure in these places. Moreover, in order to avoid a 
large-scale outbreak of the epidemic, social distancing measure of 
limiting contact and restricting traveling in and out of such places 
should be implemented as early as possible. Mask wearing and disin-
fection in populated areas would still be required to lower the infection 
rate. Extensive temperature check at public places to identify people 
with fever and limit their out-of-home activities would also be very 
important. 

The third spatial-temporal pattern occurred in outer suburbs and had 
the lowest transmission speed but the highest attack rate. With the 
increasing distance from the central area, the residents’ long-distance 
commuting demand gradually decreased (Zhou & &Yan, 2005). For a 
long time, the epidemic only spread in the community, which gave the 
government a big time-window to respond to the epidemic. Hence, 
controlling the spread of the epidemic sourcing from these areas as early 
as possible would be essential. The government should take a fast 
emergency response to ensure that there are no outflows from such 
areas. Prevention of community transmission is among the most urgent 
issues for these areas. Once the epidemic spreaded to urban area, it 
would evolve a city-wide emergency event which brings huge burden for 
the existing healthcare system and requires huge amounts of resources 
to prevent. Since the total number of infected people would be much 
larger than the total number infections caused by the epidemic occurring 
in the urban center or the inner suburbs. In other words, the epidemic 
sourcing from the outer suburbs would spread to not only the local 
community but also to the urban center, while the epidemic from the 
urban center was less likely to reach the outer suburbs. Therefore the 
government should spare no efforts to avoid onward transmission to 
urban areas. The epidemic control in Xiaoguozhuang Village, Shi-
jiazhuang City, Hebei Province, China was a very successful example 
based on this situation (Chinanews, 2021). 

Differently, satellite towns with low population density can control 
the transmission without implementing strong physical distancing 
measures. Zengcheng and Conghua, known as the back garden of 
Guangzhou, have become important satellite towns to receive the pop-
ulation spillover from the urban center. They provide comfortable living 
condition, sufficient local employment opportunities and sound infra-
structure to attract people to settle down. They are relatively isolated to 
the city and most residents have their daily activities within a local 
range. Hence, physical distancing measures can be implemented locally 
at the satellite city, and the other parts of the city conduct social and 
economic activities normally. 

Besides, we only selected four typical periods’ population distribu-
tion data among 24-h daily activities. The intent is to provide a method 
to make rapid spatio-temporal risk assessment respond to public health 
emergency under the limited computing ability. There is no doubt that 
the simulation with high temporal resolution will certainly have more 
accurate results. Of course, our model also supports high spatio- 
temporal resolution aggregated datasets. 

Several limitations should be mentioned. First, our aggregated data 
only include one weekday. Activities in the weekend also contribute to 
the epidemic, but we did not specify the transmission pattern in the 
model simulation. Second, individual socio-demographic attributes, 
such as age-specific susceptibility to COVID-19 infection were not 
included in our model. Third, we assumed that the removed person will 
be permanently immunized. However, there is a probability that infec-
ted people could be infected again. We do not consider this situation in 
our current work. We will develop a model which simulates the re- 
infectious characteristics of the COVID-19 in the future. 

6. Conclusions 

This study used publicly available datasets to predict intra-city 
epidemic transmission process in different public places. The results 
indicated that the accuracy of dynamic intra-city travel flows estimated 
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by available big data and gravity model is acceptable. The spatio- 
temporal simulation method well presented the process of COVID-19 
epidemic. It suggested that location-based intervention measures of 
COVID-19 epidemic should be implemented according to different 
epidemic transmission modes, which was crucial for other megacities 
around the world. The work also identified different time windows for 
the government to deal with the epidemic. This is important for gov-
ernment to know which areas need to be prioritized with preparedness 
and response measures in the city. The approach of this research can be 
adopted by policy-makers in other countries to make rapid and accurate 
risk assessments and to implement intervention measures ahead of 
ongoing outbreaks. 
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