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A B S T R A C T   

Understanding the origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a highly 
debatable and unresolved issue for scientific communities all over the world. Understanding the mechanism of 
virus entry to the host cells is crucial to deciphering the susceptibility profiles of animal species to SARS-CoV-2. 
The interaction of SARS-CoV-2 ligands (receptor-binding domain on spike protein) with its host cell receptor, 
angiotensin-converting enzyme 2 (ACE2), is a critical determinant of host range and cross-species transmission. 
In this study, we developed and implemented a rigorous computational approach for predicting binding affinity 
between 299 ACE2 orthologs from diverse vertebrate species and the SARS-CoV-2 spike protein. The findings 
show that the SARS-CoV-2 spike protein can bind to a wide range of vertebrate species carrying evolutionary 
divergent ACE2, implying a broad host range at the virus entry level, which may contribute to cross-species 
transmission and further viral evolution. Furthermore, the current study facilitated the identification of ge-
netic determinants that may differentiate susceptible from resistant host species based on the conservation of 
ACE2-spike protein interacting residues in vertebrate host species known to facilitate SARS-CoV-2 infection; 
however, these genetic determinants warrant in vivo experimental confirmation. The molecular interactions 
associated with varied binding affinity of distinct ACE2 isoforms in a specific bat species were identified using 
protein structure analysis, implying the existence of diversified bat species’ susceptibility to SARS-CoV-2. The 
current study’s findings highlight the importance of intensive surveillance programmes aimed at identifying 
susceptible hosts, especially those with the potential to transmit zoonotic pathogens, in order to prevent future 
outbreaks.   

1. Introduction 

The most conclusive approach for identifying the zoonotic origins of 
Severe Acute Respiratory Syndrome- Coronavirus- 2 (SARS-CoV-2) is to 
detect closely related viruses from animal sources. Multiple evidences 
have emerged supporting a bat species as the immediate ancestor of 
SARS-CoV-2 (Kumar et al., 2021a; Lytras et al., 2021; Malik et al., 2020; 
Zhou et al., 2020, 2021), including the role of the intermediate host in 
transmission of SARS-CoV-2 to humans (Zhang et al., 2020). Although 
RaTG13, sampled from a Rhinolophus affinis bat in Yunnan, China (Zhou 

et al., 2021), has the highest nucleotide similarity to SARS-CoV-2, but it 
cannot be the recent progenitor of SARS-CoV-2 because it lacks evolu-
tionary signatures possessed by SARS-CoV-2 (Kumar et al., 2021a). 
Following the emergence of SARS-CoV-2, three other bat viruses - 
RpYN06, RmYN02, and PrC31 – were discovered to exhibit a high 
nucleotide similarity to that of SARS-CoV-2, throughout much of the 
virus genome, notably ORF1b, implying that these viruses share a more 
recent common ancestor with SARS-CoV-2 (Li et al., 2021; Lytras et al., 
2021; Zhou et al., 2021). Collectively, these studies demonstrate the 
zoonotic origin of SARS-CoV-2. However, no bat reservoirs or 
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intermediate animal hosts for SARS-CoV-2 have been identified to date. 
Therefore, the spillover events leading to SARS-CoV-2 transmission 
directly from bats to humans or via an intermediate host are yet 
unknown. 

The limited information on potential reservoir hosts, as well as the 
risk to wildlife and livestock, necessitates an immediate need of thor-
ough investigation. Multiple SARS-CoV-2 experimental investigations 
and natural infection observations have demonstrated the variable 
susceptibility of vertebrate host species (such as mink, tigers, cats, go-
rillas, dogs, raccoon dogs, white tailed deer, rabbits, and ferrets) to 
SARS-CoV-2 infection (WHO, 2021; Cool et al., 2021; Malik et al., 2021; 
2021b; Mishra et al., 2021; Hossain et al., 2021). Recent outbreaks in 
minks have linked SARS-CoV-2 transmission back to humans (reverse 
zoonosis) and to other animals (van Aart et al., 2021). Except for minks, 
there is no concrete evidence that other vertebrate host species are 
either spreaders of SARS-CoV-2 to humans (reverse zoonosis) or reser-
voir hosts. In addition, susceptibility of the majority of animal species 
that come into close contact with humans is unknown. 

A key to dissect the susceptibility profiles of animal species to SARS- 
CoV-2 is to understand how the virus enters into the host cells. The 
receptor-binding domain (RBD) of the SARS-CoV-2 spike protein 
initially binds to its receptor, angiotensin-converting enzyme 2 (ACE2), 
before being proteolytically activated by proteases and performing its 
activity (Shang et al., 2020). Theoretically, the presence of ACE2 re-
ceptor in any host species makes them susceptible to SARS-CoV-2 
infection, but this is not the case, even in animals with significant 
ACE2 sequence similarity to human ACE2 (hACE2) (Li et al., 2021). 
Therefore, a comprehensive understanding of ACE2 diversity in verte-
brates, combined with protein-protein interactions at the ACE2-RBD 
interface, could lead to some novel insights into SARS-CoV-2 suscepti-
bility in various vertebrate species. 

In this study, we not only developed and implemented a rigorous 
computational pipeline for predicting 299 vertebrate ACE2 binding af-
finities (via dissociation constant) with the spike protein of SARS-CoV-2, 
but we also demonstrated that dissociation constant is a better predictor 
of species susceptibility by benchmarking it against experimental data. 
By finding the best metric for assessing the ACE2-RBD interactions, the 
molecular interactions leading to a varied binding affinity of ACE2 
isoforms in a particular bat species to the spike protein of SARS-CoV-2 
are revealed. Furthermore, based on a comparison of key interacting 
ACE2 residues at the ACE2-RBD interface, the genetic determinants that 
could aid in differentiating the SARS-CoV-2 susceptible from the resis-
tant species are identified. Overall, the current study identifies a broad 
host range of vertebrate species susceptible to SARS-CoV-2 for addi-
tional experimental investigations, as well as proposing a novel 
approach for assessing animal species’ susceptibility profiles for viruses 
of interest. 

2. Methodology 

2.1. ACE2 protein sequences 

The protein sequences of ACE2 orthologs (n = 356) originating from 
vertebrates were downloaded from the National Center for Biotech-
nology Information (NCBI) protein database (5 September 2021) 
(O’Leary et al., 2016). Partial or identical protein sequences were 
removed; however, ACE2 isoforms from a particular species were 
included in the final dataset. As a result, the final dataset included 299 
unique ACE2 orthologs from 253 different species. The species-wise 
numbers of ACE2 orthologs retrieved from the NCBI protein database 
are provided in Supplementary Table S1. 

2.2. Evolutionary divergence of ACE2 orthologs across the vertebrates 

The full set of ACE2 protein sequences originating from vertebrates 
were aligned using MAFFT v.7.475 (Katoh et al., 2019) and the 

GTR-Gamma substitution model was selected as the best fit for the 
dataset using jModelTest 2 (Darriba et al., 2012). To explore the 
evolutionary relationship among the distinct vertebrate classes, a 
phylogenetic tree was constructed using the Maximum Likelihood sta-
tistical method with the GTR-Gamma model in RAxML v. 8.2.12 (Sta-
matakis, 2014). Furthermore, evolutionary diversity and divergence 
between and within the vertebrate classes were estimated using the 
Maximum Composite Likelihood model (Tamura et al., 2004). The 
number of base substitutions per site between sequences were used to 
calculate their evolutionary distance. Furthermore, the evolutionary 
divergence within and between the groups is represented by the number 
of base substitutions per site from averaging over all sequence pairs 
within each group and between the groups, respectively. The mean 
evolutionary diversity for the entire population (π̂T) was calculated 
using Eq. (1). 

π̂T =
q

q − 1
∑q

X
−

iX
−

j d̂ ij (1)  

where, ‘q’ denotes the total number of alleles examined, X
−

i and X
−

j are the 
estimates of average frequency of the ith and jth alleles, respectively in 
the entire population, and d̂ij is the frequency of nucleotide substitutions 
per site between the ith and jth alleles. While the mean evolutionary 
diversity within subpopulations (π̂S) was calculated as shown in Eq. (2). 

π̂S =
∑s

k=1
wk π̂k (2)  

where, ‘s’ represents the subpopulations, the relative size of the kth 
subpopulation is wk, and π̂k is the estimate of average nucleotide di-
versity in the kth subpopulation. The inter-populational evolutionary 
diversity (δ̂ST) was calculated as per Eq. (3) 

δ̂ST = π̂T − π̂S (3)  

2.3. Model structures for ACE2 proteins 

The recent accomplishments in bioinformatics and computational 
biology have paved the way for the development of some very reliable 
de-novo, knowledge-based, and hybrid methods for protein structure 
prediction that utilize the information inherent to the experimentally 
solved protein structures (Jumper et al., 2021; Yang et al., 2020; Yang 
et al., 2015; Bitencourt-Ferreira and de Azevedo, 2019; Kaushik and 
Jayaram, 2016, Kaushik et al., 2018). We devised and executed a 
rigorous computational approach to model the 3-D structures for all of 
the ACE2 orthologs. Fig. 1 depicts an overall workflow of the adopted 
computational pipeline in this study. Four state-of-the-art methods were 
used to predict model structures for each ACE2 protein: online version 
AlphaFold2 (available through Colab-Notebook) (Jumper et al., 2021), 
standalone versions of Rosetta (de novo modeling) (Yang et al., 2020), 
I-Tasser (version 5.1) (ab initio and homology-based hybrid methodol-
ogy) (Yang et al., 2015), and Modeller (version 10.1) (template-based 
modeling) (Bitencourt-Ferreira and de Azevedo, 2019), yielding twenty 
model structures (4 sets of 5 models from each method). The top scoring 
model structure was chosen from each set of model structures by using a 
consensus approach for protein structure quality assessment by imple-
menting ProTSAV (Singh et al., 2016), ProFitFun (Kaushik and Zhang, 
2020, Kaushik and Zhang, 2022), and ModFold8 (McGuffin et al., 2021). 
The top scored model structure for each ACE2 protein was refined 
through a comprehensive protein structure refinement approach 
implemented in GalaxyRefine (Heo et al., 2013). The refined model 
structures were re-evaluated using the aforementioned quality assess-
ment methods to identify the best scoring model structure for each ACE2 
protein. The comprehensive approaches for protein structure refinement 
and quality assessment confirmed their reliability and applicability for 
studying various protein-protein interactions of ACE2 from vertebrates 
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with the RBD of SARS-CoV-2 spike protein. 

2.4. Template based approach for building ACE2-RBD complex 

As the number of experimentally determined protein-protein com-
plexes has increased, the reliability of template-based protein-protein 
complex predicting algorithms has improved. The major challenge of 
modeling a protein-protein complex is finding an appropriate template 
that is well aligned with the target protein sequence. In general, the 
capacity to identify the interacting protein partners extracted by 
comparative modeling determines the efficacy of protein-protein 

docking in structural biology. Here, a template-based protein-protein 
docking was performed by implementing a standalone package of 
TACOS (Template-based Assembly of Complex Structures) (Szilagyi and 
Zhang, 2014), and the top ranked models of ACE2-RBD protein complex 
for each ACE2 protein were selected. In addition, using the ACE2-RBD 
complex of Rhinolophus macrotis (PDB ID: 7C8J), Homo sapiens (PDB 
ID: 6M0J), Canis lupus familaris (PDB ID: 7E3J), and Falis catus (PDB ID: 
7C8D) as reference structures, four more ACE2-RBD complexes for each 
ACE2 protein were predicted in the Modeller (version 10.1) (templa-
te-based modeling) (Bitencourt-Ferreira and de Azevedo, 2019). For 
each ACE2 protein, this resulted in 5 ACE2-RBD complexes. 

Fig. 1. An overview of the computational methodologies used for predicting binding affinities of 299 vertebrate ACE2 proteins with the RBD of the SARS-CoV-2 spike 
protein in order to investigate the virus’s host range. 
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2.5. Refinement and optimization of ACE2-RBD complexes 

The standalone version of GalaxyRefineComplex (Heo et al., 2016) 
was used to refine all of the ACE2-RBD docked complexes (n = 5 × 299). 
For each ACE2-RBD complex, five refined protein complexes were 
created, resulting in 25 ACE2-RBD complexes for each ACE2 protein. 
These protein complexes were ranked using VoroMQA’s protein-protein 
complex quality assessment (Olechnovič and Venclovas, 2019) in order 
to choose the best refined and optimized ACE2-RBD complex for each 
ACE2 protein (n = 299). The top-ranked ACE2-RBD protein complex for 
each ACE2 protein was utilized for carrying out further structural 
interaction analysis. 

2.6. Benchmarking of binding prediction metrics on dimeric complexes 

Different approaches for assessing protein-protein interactions in a 
protein complex yield different metrics for quantifying the strength of 
the interactions. Some of these metrics include predicted binding af-
finity, predicted dissociation constant (Kd), change in Gibbs free energy 
(ΔG), binding energy, number of interactions (hydrophobic-hydropho-
bic, polar-polar, and polar-hydrophobic), number of H-bonds, and 
number of di-sulfide bonds. Here, the PDBbind database was used to 
create a dataset of heterodimeric protein complexes (n = 400) in order 
to discover the best metric for assessing protein-protein interactions (Liu 
et al., 2015). 

There are 154 complexes in all in this heterodimeric protein com-
plexes dataset, each having at least one enzymatic protein (Supple-
mentary Table S2). The experimental values of dissociation constants for 
these complexes, adopted from the PDBbind Database (Liu et al., 2015), 
were used to compare the predicted protein-protein binding metrics. 
The standalone versions of PRODIGY (Xue et al., 2016) and PISA (Battle, 
2016) were used to calculate various types of contacts (intermolecular, 
charged-charged, charged-polar, polar-polar, apolar-polar, and 
apolar-apolar), predicted binding affinity (Kcal/mol), predicted disso-
ciation constant (Kd), interface area (Å), number of hydrogen bonds, salt 
bridges, disulfide bonds, and change in Gibbs free energy (ΔG). A cor-
relation analysis of these parameters with the experimental dissociation 
constant values was performed to identify the most accurately predicted 
metric. The result showed that the predicted dissociation constant had 
the best correlation with the experimental values. As a result, the pre-
dicted dissociation constant was chosen as the main metric for quanti-
fying the protein-protein interactions in the ACE2-RBD complexes. 

2.7. Estimation of binding prediction metrics at the interface of ACE2- 
RBD complexes 

The interacting interfaces of RBD and ACE2 were extracted from the 
best ACE2-RBD protein complex for each ACE2 protein and analyzed to 
calculate the dissociation constant using the standalone version of 
PRODIGY (Xue et al., 2016), a state-of-the-art method for predicting the 
binding in protein-protein complexes. PRODIGY was also used to predict 
the binding affinity of various types of contacts (intermolecular, 
charged-charged, charged-polar, polar-polar, apolar-polar, and 
apolar-apolar). Furthermore, the interface area, number of hydrogen 
bonds, salt bridges, and disulfide bonds, and change in Gibbs free energy 
(ΔG) were also estimated using the standalone version of PISA (Battle, 
2016), implemented in CPP4 software suite (Supplementary Table S3). 
The predicted dissociation constants were utilized to quantify and build 
a better understanding of SARS-CoV-2 host preferences. 

2.8. Statistical analysis 

We used the GraphPad Prism 7.01 (GraphPad Software, San Diego, 
CA) for all the statistical analysis. The multiple t-tests with Holm-Sidak 
adjustments method was employed to assess the variations in evolu-
tionary distances across the vertebrate classes. A p-value of less than 

0.01 was considered statistically significant. GraphPad Prism 7.01 
software was used to create all of the graphs. 

3. Results 

3.1. ACE2 protein’s evolutionary diversity across a wide range of 
vertebrate species 

The protein sequences of 299 ACE2 orthologs downloaded from the 
NCBI protein database were analyzed and classified into six vertebrate 
taxonomic classes: 86 Actinopterygii (bony fishes), 6 Amphibia (am-
phibians), 43 Aves (birds), 2 Chondrichthyes (cartilaginous fishes), 143 
Mammalia (mammals), and 19 Reptilia (reptiles), and subsequently their 
evolutionary diversity and divergence were estimated (Fig. 2). All the 
ACE2 protein sequences have a mean evolutionary diversity (d±SE) of 
0.43 ± 0.02, indicating a huge diversity among these protein sequences. 
Furthermore, the mean evolutionary diversity of ACE2 protein se-
quences between and within classes was 0.20 ± 0.01, and 0.22 ± 0.01, 
respectively. In addition, the average evolutionary divergence (d±SE) of 
ACE2 protein sequences among the six vertebrate taxonomic classes 
ranged from 0.27 ± 0.01 to 0.13 ± 0.009, with Aves having the least 
average evolutionary divergence among all the vertebrate classes (P <
0.0001) (Fig. 3A). Furthermore, ACE2 protein sequences from Mam-
malia have a statistically higher mean evolutionary divergence than 
ACE2 from Aves (P < 0.0001), but a lower mean evolutionary divergence 
than ACE2 from Actinopterygii (P = 0.0006) (Fig. 3B). Nevertheless, the 
mean evolutionary divergence of ACE2 protein sequences from Mam-
malia is non-significantly related to Amphibia, Reptilia, and Chon-
drichthyes (P = 0.018–0.569). 

In addition, the ACE2 protein sequences of Homo sapiens showed the 
highest sequence identity of 99.38% with that of Hominidae family 
members (Gorilla gorilla gorilla, Pan paniscus, and Pan troglodytes) fol-
lowed by the Hylobatidae family members, with sequence identities of 
98.76% and 98.29% (Hylobates moloch, and Nomascus leucogenys, 
respectively), and Cercopithecidae family members (Chlorocebus sp., 
Macaca sp., Papio anubis, Piliocolobus tephrosceles, Rhinopithecus rox-
ellana, and Theropithecus gelada) with sequence identities of 
96.05–96.86% (Supplementary Table S4). The ACE2 protein sequences 
of Homo sapiens, on the other hand, showed the poor sequence identities 
with the distinct ACE2 isoforms of Rhinolophus sp. (77.0–78.14%) and 
also with different species of bats, such as Pteropus sp. (76.31–78.59%), 
Pipistrellus sp. (70.47–71.48%), Myotis sp. (77.46%), Desmodus rotundus 
(76.54%), and Eptesicus fuscus (77.92%). These findings show that the 
ACE2 protein sequences in Mammalia have a great deal of evolutionary 
diversity. 

3.2. Prediction of vertebrate ACE2 orthologs binding affinities to spike 
protein of SARS-CoV-2 

In order to discover the best metric for assessing ACE2-RBD in-
teractions, the predicted dissociation constant (Kd), and predicted 
change in Gibbs free energy (ΔG) were benchmarked against the 
experimental binding affinity values of dimeric protein complexes (n =
400) obtained from the PDBbind database (Liu et al., 2015). The 
benchmarking of these two matrices on predicted and experimentally 
values derived from 400 dimeric protein complexes revealed that the 
predicted dissociation constant is highly correlated with experimental 
values (r = 0.858, P < 0.0001), whereas the predicted change in Gibbs 
free energy (ΔG) is poorly correlated with the experimental values (r =
0.125, P < 0.012). Therefore, we first devised and conducted a rigorous 
computational approach to construct ACE2-RBD models for all 299 
unique ACE2 orthologs, and then predicted dissociation constant (Kd) 
for assessing their interactions. Intriguingly, based on the predicted 
dissociation constant, the present study found that the binding affinity of 
dACE2 with RBD is 4.15 times lower than that of hACE2, which is 
comparable (6.65 times lower) to an experimental study that calculated 
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the binding affinity of dACE2/hACE2 to RBD using surface plasmon 
resonance (Zhang et al., 2021). Subsequently, in order to assess the 
ACE2-RBD interactions based on the predicted dissociation constants, 
vertebrate species were categorized into four groups based on their 
propensity to bind to SARS-CoV-2: very high, high, medium, and low. 
The predicted dissociation constants values for all the vertebrate species 
are provided in Supplementary Table S5. The ACE2 proteins from three 
mammals (Southern elephant seal, Cat, and North American river otter), 
three reptiles (Chinese Alligator, Leatherback sea turtle, and Plateau 
fence lizard), and one bird species (White-ruffed manakin) were pre-
dicted to possess a very high propensity to bind to SARS-CoV-2. In 
addition, ACE2 proteins of 120 (16 bony fishes, 18 birds, 75 mammals, 

and 11 reptiles), 155 (61 bony fishes, 23 birds, 62 mammals, 5 reptiles, 3 
amphibians, and 1 cartilaginous fish), and 17 species (10 bony fishes, 3 
mammals, 3 amphibians, and 1 cartilaginous fish), respectively were 
classified as having a high, medium, and low propensity to bind to 
SARS-CoV-2 (Supplementary Table S5). 

Next, a comparison of the species’ predicted propensity (based on 
predicted Kd) to bind to SARS-CoV-2 with the experimentally proven 
susceptibility of infection (both natural and experimental infection) was 
performed in 46 species (high, medium, low, and extremely low), as 
depicted in Fig. 4. Intriguingly, all 46 species were distributed across the 
very high, high, and medium propensity categories predicted in our 
study. For example, it was found that 13 species designated as highly 

Fig. 2. Maximum-likelihood (ML) tree displaying the phylogenetic relationships of all 299 vertebrate ACE2 protein sequences. The ACE2 protein sequences are 
classified into six vertebrate taxonomic classes; Actinopterygii (bony fishes), Amphibia (amphibians), Aves (birds), Chondrichthyes (cartilaginous fishes), Mammalia 
(mammals), and Reptilia (reptiles), and are colored differently. 
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susceptible to SARS-CoV-2 infection based on experimental studies fall 
into very high (n = 1, cat), high (n = 7, White-tailed deer, Human, 
Western lowland gorilla, Ferret, Prairie deer mouse, Golden hamster, 
and Mountain lion), and medium (n = 5, Leopard, Rhesus macaque, 
Common marmoset, American mink, and Egyptian rousette) propensity 
categories of our study, while one species (Rabbit) designated as me-
dium susceptible to SARS-CoV-2 infection occupied the medium pro-
pensity category of our study. 

3.3. Comparison of predicted ACE2 binding affinity and their interacting 
residues among experimentally proven susceptible species 

We identified a total of 54 species, 46 of which were proven to 
support SARS-CoV-2 infection either naturally or experimentally, while 
the remaining 8 species predicted to be resistant to SARS-CoV-2 infec-
tion were used as controls in the current study. Following that, we 
combined and compared their predicted ACE2 binding affinity (Kd) with 

the fraction of interacting ACE2 residues similar to hACE2, in order to 
gain insight into their differential propensity to bind to SARS-CoV-2 
(Fig. 4). The predicted dissociation constant is negatively correlated 
with the fraction of interacting ACE2 residues similar to hACE2 (r =
− 0.5997, P < 0.0001), implying that binding affinity of ACE2 to the 
spike protein of SARS-CoV-2 is associated with the number of interacting 
ACE2 residues similar to hACE2. Subsequently, we identified 30 amino 
acid residues in ACE2 that interact with the spike protein’s RBD of SARS- 
CoV-2, and these residues were examined for their similarity to the 
residues in hACE2. The species susceptibility was classified into three 
categories (high, medium, and low) based on the number of residues 
identical to hACE2; at least 24 residues identical to hACE2 for high (at 
least 24/30), 15–23 residues for medium (15–23/30), and less than 14 
residues for low (less than 14/30) susceptibility category. Nine species 
(Cat, White-tailed deer, Human, Golden snub-nosed monkey, Olive ba-
boon, Western lowland gorilla, Chinese hamster, Gelada, and Sumatran 
orangutan) that were predicted to have a high propensity (based on the 
similarity of at least 24/30 residues with that of hACE2) also had a very 
high to high propensity based on the predicted dissociation constant. 
However, comparing ACE2 residues for their similarity to the residues in 
hACE2 alone does not truly reflect their propensity for SARS-CoV-2 
because experimentally proven highly susceptible species to SARS- 
CoV-2 do not necessarily possess a comparatively higher number of 
ACE2 interacting residues than hACE2, for example, Ferret (17/30), 
American mink (16/30), and Leopard (20/30). Of note, interpreting 
species susceptibility for SARS-CoV-2 should be done with caution; thus, 
combining predicted ACE2 binding affinity (Kd) with the fraction of 
interacting ACE2 residues similar to hACE2 could yield more confidence 
in predicting propensity of species susceptibility to SARS-CoV-2 infec-
tion. The species predicted to be resistant to SARS-CoV-2 infection 
carried ≤14/30 residues similar to that of hACE2, and also had high Kd 
values (low binding affinity). 

Previous studies have identified five critical ACE2 interacting resi-
dues based on their conservation in known susceptible species (31K/T, 
35E/K, 38D/E, 82T/M/N, and 353 K) (Shang et al., 2020; Wan et al., 
2020). We performed sequence alignment of ACE2 interacting residues 
from 54 different species, and revealed that 31K/T, 35E/K, 38D/E, and 
353 K residues, despite being highly conserved in high and medium 
susceptible species, are also found in some of the low susceptible or 
resistant species. In contrast, 82T/M/N residues are highly conserved 
and found only in high and medium susceptible species. Based on the 
sequence alignment of ACE2 interacting residues, our analysis proposes 
six unique residues that could help in differentiation of susceptible from 
the resistant species; Susceptible species (27T/I, 30D/E/Q, 82M/T/D/N, 
326G/E/R/T, and 352G+353 K + 354G), resistant species (N326 +
N330), and 352G+353 K + 354H/R/Q for reduced susceptibility to 
SARS-CoV-2 infection. 

Next, based on the predicted binding affinity (in terms of Kd), sim-
ilarity score (ACE2 interacting residues similar to that of hACE2), and six 
unique residues proposed in this study as determinants of SARS-CoV-2 
susceptibility, ten bat species (Rhinolophus sinicus, R. affinis, 
R. macrotis, R. pearsonii, R. ferrumequinum, Myotis lucifugus, Artibeus 
jamaicensis, Rousettus aegyptiacus, Pteropus vampyrus, and Myotis myotis) 
were predicted as medium susceptibility to SARS-CoV-2 infection, while 
the remaining 8 bat species were predicted to be resistant to SARS-CoV-2 
infection (Supplementary Table S6). Intriguingly, two of the ten ACE2 
isoforms identified in Rhinolophus sinicus and four ACE2 isoforms iden-
tified in Rhinolophus affinis were predicted to have a high binding af-
finity with the spike protein of SARS-CoV-2. 

3.4. Structural insights into differential ACE2 isoforms binding affinity 

The interaction interfaces of hACE2, dACE2, rsACE2 (two isoforms), 
and raACE2 with RBD were analyzed separately from the refined ACE2- 
RBD complexes using PRODIGY (Xue et al., 2016) and then compared 
with the hACE2-RBD interface to investigate the molecular basis of 

Fig. 3. (A) Depicts an evolutionary divergence matrix among the six vertebrate 
taxonomic classes. (B) Compares the mean evolutionary divergence of the six 
vertebrate taxonomic classes. A p-value less than 0.01 was considered statisti-
cally significant. 
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differential binding affinity of ACE2 across these species. The 
residues-wise atomic contacts of ACE2 with RBD for the selected 
vertebrate species are provided in Supplementary Table S7. We noted 
that 30 hACE2 residues made 79 atomic contacts with 25 RBD residues, 
with 13 H-bonds and two salt bridges forming between 10 ACE2 (GLN 
24, ASP 30, GLU 37, ASP 38, GLN 42, TYR 83, ASN 330, LYS 353, ASP 
355, and ARG 357) and 8 RBD residues (LYS 417, GLY 446, TYR 449, 
ASN 487, TYR 489, THR 500, TYR 505, and GLY 502). It is worth noting 
that the total number of atomic contacts at the hACE2-RBD interface, 
including H-bonds and salt bridges are greater than that at dACE2-RBD 
(78 atomic contacts, 12 H-bonds, and 2 salt bridges), rs1ACE2-RBD (74 
atomic contacts, 9 H-bonds, and 1 salt bridge), rs10ACE2-RBD (70 
atomic contacts, 8 H-bonds, and 1 salt bridge), and raACE2-RBD (71 
atomic contacts, 8 H-bonds, and 1 salt bridge), which is consistent with 
our finding that hACE2 has higher predicted binding affinity as 
compared to these vertebrate species (Fig. 5). Furthermore, one isoform 
of rsACE2 (74 atomic contacts between 31 ACE2 and 24 RBD residues) 

made more atomic contacts including H-bonds with RBD residues than 
another isoform of rsACE2 (70 atomic contacts between 26 ACE2 and 26 
RBD residues), supporting the hypothesis that different isoforms of 
ACE2 in a specific bat species can have differential binding affinity with 
RBD. Intriguingly, engaging a small number of RBD residues (n = 25) by 
the virus in forming atomic contacts with a large number of ACE2 res-
idues (n = 30) as noted at the hACE2-RBD interface was also observed 
for one of the isoforms of rsACE2 and raACE2, but not at the dACE2-RBD 
interface, possibly suggesting molecular interactions optimization at the 
ACE2-RBD interface, and thus, molecular signatures implying the bat 
origin of SARS-CoV-2 (Fig. 5). 

4. Discussion 

SARS-CoV-2 interaction with its host cell receptor is a critical 
determinant of host species susceptibility, tissue tropism, and viral 
pathogenesis. The RBD of the SARS-CoV-2 spike protein recognizes the 

Fig. 4. Comparison of predicted ACE2 binding affinity and their interacting residues in experimentally proven susceptibility species. Species are sorted into very 
high, high, medium and low propensity using binding affinity scores. A comparison of ACE2 interacting residues at the ACE2-RBD interface with the fraction of 
interacting ACE2 residues similar to hACE2 is also shown. Experimentally proven high, medium, low, and extremely low susceptibility species to SARS-CoV-2 are 
colored as red, green, blue, and sky blue, respectively. ACE2 interacting residues similar to hACE2 are highlighted. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

R. Kaushik et al.                                                                                                                                                                                                                                



Environmental Research 212 (2022) 113303

8

ACE2 receptor on host cells, allowing the virus to enter the host cells 
(Shang et al., 2020a, 2020b). To explore the possible origin of 
SARS-CoV-2, species at risk, and species that could potentially serve as 
the intermediate hosts, we first presented a deeper understanding of 
ACE2 evolutionary diversity, followed by structural insights at the 
ACE2-RBD interface in a variety of vertebrate species. 

Computational tools are the method of choice for examining the 
protein-protein interactions in a protein complex, especially when 
studying a large dataset, because many protein structures have yet to be 
solved experimentally. To forecast different species susceptibility to 
SARS-CoV-2, previous studies relied on either the comparison of twenty- 
five amino acids corresponding to the known SARS-CoV-2 Spike protein 
receptor binding residues for their similarity to the residues in human 
ACE2 or the prediction of binding energies (Damas et al., 2020; Lan 
et al., 2020; Rodrigues et al., 2020; Liu et al., 2021b; Shang et al., 2020a, 
2020b; Sun et al., 2020). Indeed, different approaches may yield 

different metrics for assessing interaction strength, and the resulting 
mispredictions may affect the reliability of the ACE2 interactions with 
the spike protein of SARS-CoV-2. Therefore, to find the best metric for 
assessing ACE2-RBD interactions, we devised and implemented a 
rigorous computational approach to generate ACE2-RBD protein com-
plex models for 299 ACE2 orthologs, and then benchmarked the pre-
dicted dissociation constant (Kd), and change in Gibbs free energy (ΔG) 
against experimental binding affinity values of dimeric protein com-
plexes (n = 400) retrieved from the PDBbind database. The results 
revealed that predicted dissociation constants are highly correlated with 
experimental values (r = 0.858, P < 0.0001), and predicted binding 
affinity of dACE2/hACE2 to RBD is comparable to the experimental 
binding affinity (Zhang et al., 2021; Kumar et al., 2021a). Together, 
these findings support the robustness and reliability of the adopted 
approach used in this study. 

It is worth noting that the findings are based on predicted propensity 

Fig. 5. Structural insights into differential ACE2 binding affinities of selected vertebrate species to SARS-CoV-2 spike protein. The molecular interactions at the 
ACE2-RBD interface for (A) Homo sapience, (B) Canis lupus familaris, (C) Rhinolophus sinicus isoform 1 (GenBank accession no. 1883189465), (D) Rhinolophus sinicus 
isoform 10 (GenBank accession no. 1883189431), and (E) Rousettus aegyptiacus are shown. The red and blue dotted lines at the ACE2-RBD interface represent 
hydrogen bonds and salt bridges, respectively. The total number of interacting residues of ACE2 (blue) and RBD (red), including the total intermolecular contacts at 
ACE2-RBD interface are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(dissociation constants) to bind to SARS-CoV-2 for categorizing verte-
brate species into very high, high, medium, and low propensity groups. 
Intriguingly, the results demonstrated that predicted binding affinity of 
ACE2 with RBD of SARS-CoV-2 based on dissociation constants is a 
better descriptor of species susceptibility to SARS-CoV-2 because all 46 
vertebrate species known to support SARS-CoV-2 infection based on 
natural and experimental infections were correctly predicted in our 
study (WHO, 2021). In previous studies, new world monkey, such as 
marmosets, were predicted to be less susceptible or resistant to 
SARS-CoV-2 infection (Damas et al., 2020; Liu et al., 2021a; Shi et al., 
2020). In contrast, the current study defined marmosets as belonging to 
medium propensity category (10 times lower predicted binding affinity 
than that of hACE2). This finding is supported by a recent experimental 
study in which older marmosets developed mild infection after being 
exposure to SARS-CoV-2 (Singh et al., 2021). Furthermore, the high 
susceptibility of white-tailed deer predicted in our study is in line with 
recent studies demonstrating that white tailed deer are highly suscep-
tible to SARS-CoV-2 infection naturally (Cool et al., 2021; Kuchipudi, 
2022). Additionally, the current study found a medium propensity for 
cattle and pigs, which is consistent with a previous study that showed 
efficient entry of SARS-CoV-2 in A549 cells expressing cattle and pig 
ACE2 (Liu et al., 2021a). 

The previous studies that proposed five critical ACE2 interacting 
residues based on their conservation in known susceptible species (31K/ 
T, 35E/K, 38D/E, 82T/M/N, and 353 K) were inconsistent with the 
comparatively large and diverse ACE2 dataset presented in this study 
(Shang et al., 2020a, 2020b; Wan et al., 2020). Therefore, based on the 
sequence alignment of ACE2 interacting residues, we propose six unique 
residues that could help in differentiation of susceptible from resistant 
species; Susceptible species (27T/I, 30D/E/Q, 82M/T/D/N, 
326G/E/R/T, and 352G+353 K + 354G), resistant species (N326 +
N330), and 352G+353 K + 354H/R/Q for reduced susceptibility to 
SARS-CoV-2 infection. Furthermore, the current approach differs sub-
stantially from previous in silico approaches in several aspects: 1) a 
phylogenetic analysis of 299 ACE2 orthologs from vertebrate species 
was conducted to demonstrate the existence of considerably high 
evolutionary diversity across the six vertebrate classes; 2) the ACE2-RBD 
protein complex models for 299 ACE2 orthologs from vertebrate species 
were generated by implementing a robust computational modeling 
approach and then selecting the best model for downstream processing; 
3) the best metric (dissociation constant) was chosen for predicting the 
binding affinity of ACE2 with the spike protein of SARS-CoV-2 based on 
the benchmarking with the experimental data; 4) the different ACE2 
isoforms were analyzed in a specific bat species to reveal their varied 
binding affinity to the spike protein of SARS-CoV-2. As a result, we 
believe that using these approaches allowed us to generate a more 
realistic representation of species at risk, and species that may serve as 
intermediate hosts. Though the findings revealed that a variety of 
vertebrate species could be potential SARS-CoV-2 intermediate hosts, 
this does not mean that the true intermediate host is one of them. The list 
can be whittled down even more by taking in account the animals’ living 
conditions, particularly their proximity to human dwellings. 

Increasing evidence suggests that the binding affinity of ACE2 
orthologs from different bat species to the RBD of SARS-CoV-2 differed 
significantly, implying the existence of diversified bat species’ suscep-
tibility to SARS-CoV-2 (Boni et al., 2020; Latinne et al., 2020). The 
current study’s results are moderately consistent with previous in silico 
studies for the susceptibility prediction of bat species to SARS-CoV-2, 
because of implementation of different approaches for the prediction 
of binding affinity. For instance, unlike previous in silico studies, this 
study’s predictions of bat species susceptibility to SARS-CoV-2 are 
partially consistent with a recent functional experiment study that used 
293 T cells expressing bat ACE2 orthologues to assess bat species sus-
ceptibility using pseudo-typed virus entry assay (Yan et al., 2021). 
However, this functional experiment contradicts another functional 
study (Zhou et al., 2021), which demonstrated that HeLa cells 

expressing Rhinolophus siniscus ACE2 could serve as an entry receptor for 
SARS-CoV-2, whereas the first study did not. In comparison to hACE2, 
Rhinolophus siniscus, Rhinolophus affinis, and Rhinolophus macrotis have 
moderate binding affinity to the spike protein of SARS-CoV-2, according 
to the current study. These findings are in line with earlier functional 
experiments (Li et al., 2021; Liu et al., 2021b; Zhou et al., 2020). In 
summary, findings of the present study show a considerable consistency 
with the functional experiments than that of previous in silico ap-
proaches. Moreover, there were notable inconsistencies in RBD binding 
to ACE2 of R. siniscus in different studies (Liu et al., 2021a; Wu et al., 
2020; Yan et al., 2021; Zhou et al., 2020). These inconsistencies are 
possible due to the presence of at least ten ACE2 isoforms in R. siniscus, 
which have varying predicted binding affinity to the spike protein of 
SARS-CoV-2. These findings suggested that the ACE2 binding affinity 
varied due to different isoforms in a specific bat species, which could 
have direct implications in the spillover events based on the distribution 
of these isoforms in different tissues. It would be of interest to delineate 
the tissue-specific expression of these ACE2 isoforms in future studies. 

In conclusion, current findings support the bat origin of SARS-CoV-2 
and the involvement of intermediate hosts in virus transmission to 
humans based on the predicted binding affinity of 299 ACE2 orthologs 
from various vertebrate species to the spike protein of SARS-CoV-2. It 
also elucidates the broad host range of SARS-CoV-2 and possibility of 
frequent cross-species transmission events. Furthermore, SARS-CoV-2 
may be far more widespread than previously thought, highlighting the 
importance of intensive surveillance programmes aimed at identifying 
susceptible hosts, particularly those with the ability to cause zoonosis, in 
order to prevent future outbreaks. 
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