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Summary

Diet modulates the gut microbiome, which, in turn, can impact the immune system. Here, we 

determined how two microbiota-targeted dietary interventions, plant-based fiber or fermented 

foods, influence the human microbiome and immune system in healthy adults. Using a 17-week 

randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome 
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and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet 

increased microbiome-encoded glycan-degrading CAZymes despite stable microbial community 

diversity. While Cytokine Response Score (primary outcome) was unchanged, three distinct 

immunological trajectories in high fiber-consumers corresponded to baseline microbiota diversity. 

Alternatively, the high-fermented food diet steadily increased microbiota diversity and decreased 

inflammatory markers. The data highlight how coupling dietary interventions to deep and 

longitudinal immune and microbiome profiling can provide individualized and population-wide 

insight. Fermented foods may be valuable in countering the decreased microbiome diversity and 

increased inflammation pervasive in industrialized society.

Graphical Abstract

Introduction

The importance of the gut microbiota, or microbiome, in human health (Lynch and 

Pedersen, 2016) necessitates enhanced understanding of the factors that influence the 

composition and function of this microbial community. Diet has emerged as a driving 

factor in microbiota composition and function (Flint et al., 2017; Muegge et al., 2011; 

Rothschild et al., 2018; Zhernakova et al., 2016). The profound link between diet and 

the microbiota in humans has been demonstrated in numerous ways, for example, by 

coupling long-term dietary patterns and microbiota diversity, taxonomic composition, and 

microbiome gene content measurements (Smits et al., 2017; Jha et al., 2018; Yatsunenko 

et al., 2012; Arumugam et al., 2011). Short-term changes in diet during prospective dietary 

intervention studies have also been shown to rapidly change the human gut microbiota 

(David et al., 2014). Although, we and others have reported a general resilience of the 

Wastyk et al. Page 2

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human microbiota over short time periods (days to months) coupled with retention of highly 

individualized microbiome identities (Wu et al., 2011; Fragiadakis et al., 2020).

The integration of the gut microbiota into human biology suggests that manipulation of 

gut microbes may be a powerful means to alter diverse aspects of human health. Diets 

targeting the gut microbiome to enhance, introduce, or eliminate specific functionalities or 

taxa, could prove a powerful avenue for realizing the promises of precision medicine. Even 

in the absence of manipulation, the gut microbiome contains features that are informative 

when predicting individual-specific postprandial responses to specific foods (Zeevi et al., 

2015; Brand-Miller and Buyken, 2020). One key question is whether there are broad, non-

personalized dietary recommendations that can leverage extant microbiota-host interactions 

for improved health across populations.

Non-communicable chronic diseases (NCCDs) are largely driven by chronic inflammation 

and rates are increasing rapidly with industrialization. Coincidentally, gut microbiota 

changes with industrialization are also well-documented. Rapid “westernization” of the 

microbiota has been observed in U.S. immigrants, with loss of microbial functions and 

taxa accompanied by deteriorating markers of host health, increased BMI, and rising 

inflammatory markers typical in industrialized populations (Vangay et al., 2018; Sonnenburg 

and Sonnenburg, 2019). A 2-week food exchange study in which African Americans 

consumed a rural African diet and rural Africans ate a typical African American diet 

revealed measurable changes to the microbiota and markers of cancer risk despite the brevity 

of the dietary intervention (O’Keefe et al., 2015). Given that the human microbiome is 

known to influence inflammatory status, a key question is whether diets that target the gut 

microbiome can attenuate systemic inflammation in healthy individuals.

A diverse body of literature supports the role of fiber in health including a dose-response 

relationship of higher fiber consumption and lower rates of mortality (Liu et al., 2015). 

Mechanistic studies in animal models reveal the role of microbiota accessible carbohydrates 

(MACs) present in dietary fiber in supporting gut microbiota diversity and metabolism, 

and the positive role of short-chain fatty acids, a product of fiber fermentation by the 

gut microbiota, in maintaining gut barrier health and attenuating inflammation (reviewed 

in Makki et al., 2018; Sonnenburg and Sonnenburg, 2014). Dietary interventions that 

specifically alter dietary fiber, such as increases in total carbohydrates, whole grains, and 

resistant starch versus wheat bran consumption, have shown impacts on the microbiota 

along with improvements in health markers of the study participants (Duncan et al., 2007; 

Martínez et al., 2013; Walker et al., 2011). These findings and the shortfall between fiber 

consumption in the average American diet versus recommended levels suggest that boosting 

fiber intake could be a powerful way to modulate the human immune system via the 

microbiota (Deehan and Walter, 2016).

Fermented foods, such as kombucha, yogurt, and kimchi, have gained popularity as reports 

of potential health benefits in animal models and humans have emerged (Dimidi et al., 2019; 

Villarreal-Soto et al., 2020). Large cohort studies as well as limited interventional studies 

have linked the consumption of fermented foods with weight maintenance and decreased 

diabetes, cancer, and cardiovascular disease risks (Mozaffarian et al., 2011; Díaz-López et 

Wastyk et al. Page 3

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2016; Gille et al., 2018). A recent longitudinal study of a subset of American Gut Project 

participants found differences in microbiota composition and fecal metabolome among 

fermented food consumers vs. non-consumers (Taylor et al., 2020). Given that fermented 

foods have historically been part of many diets around the world, consuming fermented 

foods may offer an effective way to reintroduce evolutionarily important interactions. They 

may also provide compensatory exposure to safe environmental and foodborne microbes that 

have been lost over the course of sanitizing the industrialized environment.

To address whether microbiota-targeted diets can positively impact human biology, we 

have performed a dietary intervention while longitudinally monitoring the microbiome and 

immune status in healthy adults. Here we study the effect of two diets, high fermented 

or high fiber food (Fermented and Fiber-rich Food (FeFiFo) Study; ClinicalTrials.gov 

Identifier: NCT03275662), on the human immune system using -omics profiling including 

state-of-the-art immune profiling, in a randomized, prospective study design. We observed 

that each intervention produced a distinct response and that some responses were general, 

i.e., cohort-wide, while others were individualized. Remarkably, over the course of the 

10-week intervention, we observed a cohort-wide decrease in many inflammatory markers in 

individuals consuming fermented foods, coincident with an increase in microbiota diversity. 

These results suggest that fermented foods may be powerful modulators of the human 

microbiome-immune system axis and may provide an avenue to combat NCCDs.

Results

Participants successfully increased their assigned dietary fiber or fermented food 
consumption over the course of the study.

In order to examine the effect of diet on the microbiome and the immune system, generally 

healthy adults were recruited to participate in a 10-week dietary intervention (17-week 

protocol including pre- and post-intervention) in which participants were randomized to 

one of two diet arms: a high-fiber diet or a high-fermented foods diet (Figure 1A, 

Table S1). Of 381 individuals assessed for eligibility, 39 participants were assigned (37 

randomized (R), 2 non-randomized (NR)) to one of the two interventions: a high-fiber diet 

(n=21, 19 randomized (R), 2 non-randomized (NR)) or a high-fermented foods diet (n=18) 

(recruitment period: August 2016 – January 2017). One participant dropped out of the study 

due to personal reasons and two participants were prescribed antibiotics during the course 

of the study and were excluded from analysis. The final count for participants was identical 

in each arm, n=18. Participants were adults (age 51 ± 12 y [mean ± SD]), with a mean 

BMI of 25 ± 4 kg/m2, predominantly women (73%) and Caucasian (81%), and with a high 

education level (89% with a college degree or higher) (Table S1). The study was approved 

annually by the Stanford University Human Subjects Committee. Blood and stool samples 

were collected longitudinally along a 3-week pre-intervention time period (“baseline”), 

followed by a 4-week ramp phase where participants gradually increased intake of their 

respective diets (“ramp”), then a 6-week maintenance phase where participants maintained 

a high-level of consumption either fiber or fermented foods (“maintenance”), and finally a 

4-week choice period where participants could maintain their diet to their desired extent 

(“choice”, Figure 1B). Stool samples were assessed for microbiota composition, function, 
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and metabolic output. Blood samples were used to generate a systems-level view of the 

immune system including measurements of circulating cytokine levels, cell-specific cytokine 

response signaling, and cell frequency and immune cell signaling at steady-state (Figure 

1B, STAR methods). The number of participant samples analyzed for each experimental 

platform and time point varied slightly depending on sample availability (Table S2). 

Importantly, participants’ gut microbiota at baseline did not differ between the two arms, 

as determined by alpha and beta diversity measurements (Figure S1A, S1B).

Participants successfully increased their consumption of fiber or fermented foods as 

determined by macronutrient and micronutrient data extracted from food logs generated 

by participants every two weeks (Figure S2). Those in the high-fiber diet arm increased their 

fiber consumption from an average of 21.5±8.0 g per day at baseline to 45.1±10.7 g per day 

at the end of the maintenance phase (Figure 1C). Participants in the high-fermented food 

diet arm consumed an average of 0.4±0.6 servings per day of fermented food at baseline, 

which increased to an average of 6.3±2.9 servings per day at the end of the maintenance 

phase (Figure 1D). Importantly, participants in the high-fiber diet arm did not increase their 

consumption of fermented foods (Figure 1C, dashed line), nor did participants consuming 

the high-fermented food diet increase their fiber intake (Figure 1D, dashed line) during the 

course of the study.

An analysis of selected macro- and micronutrients revealed differences from baseline 

to the end of the maintenance phase in the consumption of several nutrients in the 

high-fiber arm. High-fiber diet participants increased their intake of soluble and insoluble 

fiber, carbohydrates, vegetable protein, and had a modest increase in calories, along with 

increases in iron, magnesium, potassium, vitamin C, and calcium. These participants also 

decreased their consumption of animal protein and sodium (Table S3). In addition, the 

ratio between insoluble:soluble fiber was significantly increased from baseline to study 

end (ratio = 2.6+0.6 at baseline, 3.5+1.1 at week 10; p=0.002). Conversely, the high-

fermented food diet participants increased their intake in animal protein due to the increased 

consumption of fermented dairy products. Notably, despite higher consumption of fermented 

vegetables and vegetable brine drinks, total sodium intake did not change in the fermented 

food arm compared to their baseline diet (Table S3). In order to gain a more detailed 

understanding of how participants increased their fiber or fermented foods intake, fiber-rich 

and fermented foods were grouped into subcategories (see STAR methods). Fiber-rich 

foods were categorized into fruits, vegetables, legumes, grains, nuts and seeds, and other. 

Fermented foods were grouped into yogurt, kefir, fermented cottage cheese, fermented 

vegetables, vegetable brine drinks, kombucha, other fermented non-alcoholic drinks, and 

other foods. While all participants followed the requirements for the dietary intervention, 

each implemented the intervention differently in terms of specific subcategories of fiber-rich 

or fermented foods they consumed (Figure S2A, S2B).

The primary outcome of cytokine response score (Shen-Orr et al., 2016) difference from 

baseline to end of intervention was not significant for either arm of the study (Table S4), 

nor were race or gender significant covariates. However, several changes in secondary and 

exploratory outcomes were observed. Decreases in inflammatory markers and increases in 

microbiota diversity from baseline to end of intervention were significant in the fermented 
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food arm, a specific subset of short chain fatty acids (SCFAs) was significantly decreased 

in the high-fiber arm from baseline to end of intervention. These results are discussed 

in greater detail later in the manuscript. For a full report of primary and secondary 

outcome results please see Table S4. To assess participants overall health throughout the 

study, blood glucose, insulin, triglycerides, LDL-C, HDL-C, blood pressure, and waist 

circumference were measured; however, no differences were observed in this generally 

healthy cohort either between the two arms or longitudinally (within) (data not shown). 

Based on assessment from the Gastrointestinal Symptoms Rating Scale (Svedlund et al., 

1988) participants on the high-fiber diet reported an increase in stool softness from baseline 

(average Bristol stool type = 3.3 +/− 0.3) to end of ramp phase (stool type=4.1 +/− 0.3; 

p=0.04; paired t-test) and the end of maintenance phase (stool type=4.1 +/− 0.3, p=0.004; 

paired t-test). Whereas, the fermented food diet arm reported an increase in bloating 

from baseline (abdominal distention score=0.06 +/− 0.06) to the end of the ramp phase 

(score=0.4 +/− 0.1; p=0.03; paired t-test), which was no longer significant by the end of 

the maintenance phase. Additional validated surveys were given to participants to assess 

perceived stress, well-being, fatigue, physical activity, and cognition; however, no significant 

changes were observed between the two groups or longitudinally within the groups (data not 

shown).

A high-fiber diet and a high fermented foods diet result in distinct effects on the gut 
microbiota and host immune system

Given the success that participants achieved in adhering to their assigned dietary 

intervention, we wondered whether each diet intervention produced a characteristic change 

in participants’ microbiota or aspects if their biology. We generated random forest models 

in which a separate model was made for each assay (listed in Figure 1B), using features 

quantified as the difference between baseline (Week −2 for stool samples, Week −3 for 

blood samples) and the end of the maintenance phase (Week 10) (Figure 2A). Each model 

used recursive feature elimination to select models with the least number of features while 

maintaining the highest accuracy. (Features identified for each model are listed in Table 

S5.) As a positive control, nutritional intake was used in its own model, which classified 

participants by diet arm with 91% accuracy (leave one out cross-validation, LOOCV). This 

model relied upon intake of animal protein, total dietary fiber, and insoluble dietary fiber for 

classification. As a negative control, the two baseline time points were used as parameters 

for the model and had a prediction accuracy equivalent to chance (48%).

Aside from nutrition intake, the highest accuracy in predicting diet was achieved with 

the model that used human stool proteomic changes (89% accuracy). This model selected 

a single parameter from the 230 input host proteins, myosin-1, which increased in the 

high-fermented food diet arm (Figure 2B). Myosin-1 is highly expressed in microvilli within 

the brush border of the small intestine. Its increase could indicate increased epithelial cell 

turnover within the small intestine in the high-fermented food diet cohort (Benesh et al., 

2010). A more detailed analysis on the proteomic differences between the high-fiber and 

high-fermented food diet arms has been reported previously (Gonzalez et al., 2020).
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The four next highest-performing models were all generated using measurements of the 

microbiota including overall 16S rRNA-based composition (80% accuracy), stool microbe 

proteomics (74%), stool short-chained fatty acids (67%), and metagenomic measurement of 

carbohydrate active enzymes (67%). Microbiota diversity was a less effective model (60%) 

in discerning which diet a participant followed. The overall microbiota composition model 

was characterized by an increase in the genus Lachnospira in the high-fiber diet arm and a 

decrease in the high-fermented food arm relative to baseline (Figure 2C). Lachnospira has 

been positively associated with high dietary fiber consumption in a human prospective study 

(Lin et al., 2018). We found that in both diet arms participants’ gut microbiota composition 

stayed highly individualized during the intervention rather than clustering by diet at the end 

of the intervention, findings similar to those reported in previous human microbiota studies 

(Johnson et al., 2019; Wu et al., 2011). However, using Bray-Curtis beta diversity, the linear 

regression of the distance from centroid versus time using a linear mixed effects model 

had a negative coefficient for the both the high-fiber and high-fermented food diet arms 

(slope = −4.2e-3, p-value = 1.6e-3; and slope = −5.3e-3, p-value = 1.4e-4, respectively). In 

other words, an individual’s microbiota composition became more similar to that of other 

participants within the same arm over the intervention, despite retaining the strong signal of 

individuality.

Models generated using measurements of host immune parameters including endogenous 

immune cell signaling (61%), inflammatory cytokines (61%), and immune cell frequency 

(58%) were predictive of diet arm, but less so than many of the observed changes to the 

microbiota listed above. Models generated using immune cell signaling capacity (49%) were 

no better than chance at predicting diet group. These models demonstrate that the two 

dietary interventions produced characteristic responses in participants’ human and microbial 

biology. Diet-induced changes to the microbiota may be more consistent across individuals 

than immune system responses, in accordance with the interventions targeting the gut 

microbiota.

Fiber intake shifts carbohydrate processing capacity and metabolic output of the 
microbiota

Since predictive models revealed diet-specific responses in participants, we investigated 

more thoroughly how each diet impacted the host microbiota. The high-fiber diet arm 

was assessed for changes in microbiota composition, diversity, function, and microbially-

derived products of fermentation. Based on interventional studies in mice and humans and 

long-term association studies between high-fiber diets and increased microbiota diversity, 

we hypothesized that increasing dietary fiber consumption would lead to an increase in 

microbiota diversity (Sonnenburg et al., 2016; De Filippo et al., 2010; Cotillard et al., 

2013; Le Chatelier et al., 2013). However, alpha diversity, as determined by the number of 

observed ASVs, Shannon diversity, or phylogenetic diversity, did not change cohort-wide 

over the course of the intervention (Figure 3A, Figure S1C, S1D). Nor were there changes 

in alpha diversity when correlated with the overall quantity of dietary fiber consumed per 

participant as determined using a linear mixed effects model varying fiber intake versus 

alpha diversity across study and correcting for participant (p > 0.05). However, we did 

observe an increase in the relative abundance of microbial proteins per gram stool of the 

Wastyk et al. Page 7

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high-fiber diet arm from baseline (Week −2 and Week 0) to the end of the maintenance 

phase (Week 10), suggesting that the density of microbes within the microbiota may have 

increased with higher fiber consumption (Figure 3B). No specific taxon (ASV) exhibited 

altered relative abundance over time across the entire high-fiber diet arm. While increased 

Lachnospira relative abundance was observed in the high-fiber diet arm when compared to 

the high-fermented food diet arm (Figure 2C), this genus was not significantly increased 

within the high-fiber diet arm from baseline to the end of the maintenance phase. This 

discrepancy could be due to the lower sample size when comparing within one diet arm 

alone or due to decreasing relative abundance of Lachnospira in the high-fermented food 

diet arm over the course of the intervention.

Despite the lack of generalized changes to microbiota diversity or composition in the 

high-fiber diet arm, the increased percentage of microbial proteins in the stool suggests that 

fiber may fuel the growth of bacteria adept at fiber-degradation. Metagenomic sequencing 

revealed an increase in the relative abundance of 11 different carbohydrate active enzymes 

(CAZymes); of 10 putative non-ambiguous substrate predictions, all were predicted to 

degrade plant cell wall carbohydrates (Figure 3C). There were no CAZymes that decreased 

in relative abundance, indicating that the high-fiber diet led to an overall increase in complex 

carbohydrate processing capacity cohort-wide and not just a reconfiguration of carbohydrate 

utilization functionality. Therefore, while fiber consumption appears to consistently increase 

CAZyme abundance, the taxonomic changes that result in these increases may differ across 

participants. The individualized taxonomic solutions to increasing CAZymes may reflect the 

individualized collection of microbes in each person’s gut but may also be a result of the 

different types of complex carbohydrates consumed by the participants who were eating 

non-identical high-fiber diets.

To assess the metabolic output of the microbiota in the high-fiber diet arm, levels of fecal 

short-chain fatty acids (SCFAs) were measured. We did not observe an increase in butyrate 

as has been previously reported in some studies of dietary fiber consumption (So et al., 

2018). However, significant heterogeneity exists in butyrate results between dietary fiber 

studies, possibly due to incomplete fermentation and/or colonic absorption by the host 

(So et al., 2018). We did observe a decrease in the branched-chain fatty acids (BCFAs) 

isobutyric and isovaleric acid, as well as valeric acid from baseline to the end of the 

maintenance phase (Figure 3D). Elevated isobutyric and isovaleric acid have been associated 

with hypercholesterolemia (Granado-Serrano et al., 2019) and elevated valeric acid in autism 

spectrum disorder (Liu et al., 2019). It is not clear whether these changes in BCFAs are 

a result of decreased production by the microbiota or decreased consumption of dairy and 

beef, which contain high levels of BCFAs (Ran-Ressler et al., 2014).

Despite observed changes in CAZyme profiles and SCFA levels, we were surprised that 

given the substantial increase in fiber consumption in this arm, there was not a larger 

microbiota response. We wondered whether the intervention was too brief for the microbiota 

to adequately adapt to the increase in fiber consumption. Specifically, we wondered 

whether increased consumption of fiber was overwhelming the fermentative capacity of the 

participants’ microbiota. Carbohydrates were extracted from stool samples, acid-hydrolyzed 

to release monosaccharides, and then measured using HPLC. A significant correlation 
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was observed between increased fiber consumption among participants and an increase 

in total stool carbohydrates (p-value=8e-4; LME correcting for participants across time, 

Figure 3E). These data suggest the carbohydrate degradation by participants’ microbiota 

was insufficient to process the increased fiber consumption, consistent with analyses of 

industrialized microbiome (Smits et al., 2017; Vangay et al., 2018). It is possible that a 

longer intervention would have allowed for adequate microbiota remodeling and recruitment 

from external sources. Alternatively, the deliberate introduction of fiber-consuming microbes 

may be required to increase the microbiota’s fermentative capacity.

High-dimensional immune system profiling reveals sub-types of host responses to fiber 
intake

Changes to the microbiota in the high-fiber diet arm led us to wonder whether participants’ 

immune system was coincidentally impacted. We tested whether participants’ immune 

status, as measured by assays selected to capture complementary aspects of immune cell 

signaling activity both intracellularly and through cytokine mediators, was altered (Figure 

4A). A multiplex proteomic platform assessed circulating cytokines and additional immune 

modulators in serum with a panel specific for inflammation (Olink technology, Table 

S6). Whole blood was subjected to single-cell mass cytometry (CyTOF, Table S6, Figure 

S3) with a 50-parameter panel of antibodies to delineate major immune cell types (cell 

frequencies) and activation of canonical immune cell signaling pathways (endogenous 

signaling, Table S6). Finally, immune signaling capacity was measured by stimulating 

peripheral blood ex vivo with lipopolysaccharide (LPS) or one of five cytokines involved 

in inflammatory signaling (IL-6, IL-2, IL-10, IFNa, IFNg); cell type-specific responses were 

measured in the JAK/STAT and MAP kinase pathways by flow cytometry (Table S6). From 

each of these assays, a set of immune features was derived as a descriptor of immune 

activity (see STAR Methods).

Comparison of immune features from baseline to the end of the maintenance phase 

in the high-fiber diet participants revealed three clusters of participants representing 

distinct immune response profiles (Figure 4B). These clusters were driven by observed 

changes in endogenous signaling, most notably decreasing signaling in two clusters 

(“low-inflammation i” and “low-inflammation ii”), as opposed to an increase in signaling 

in the “high-inflammation” cluster. Examining individual immune features within the 

“high-inflammation” cluster revealed increases in JAK/STAT and MAP kinase signaling 

in monocytes, B cells, and CD4 and CD8 T cells. Both “low-inflammation” clusters 

showed decreases in these markers (Figure 4C, S4). Taken together, these data suggest 

divergent immune system responses to the high-fiber intervention, with “high-inflammation” 

participants exhibiting broad increases in steady-state immune activation versus “low-

inflammation” participants exhibiting decreases in steady-state immune activation. Notably, 

no differences in total fiber intake were observed between inflammation clusters, nor were 

there significant differences in BMI (t-test, p-value > 0.05).

In order to determine whether these divergent immune system phenotypes were reflected in 

the participants’ microbiomes, we examined alpha diversity and microbiota composition 

in the context of the three inflammation clusters. Specifically, a comparison of the 
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observed ASVs at the baseline time points (Week −2 and Week 0) for each group 

revealed higher microbiota diversity in the “low-inflammation ii” group compared to the 

“high-inflammation” group (p-value=0.037, unpaired t-test) (Figure 4D). While there was 

not a significant difference in microbiota alpha diversity between the ‘high-inflammation” 

and “low-inflammation i” groups (p-value=0.096), there was a trend towards increasing 

microbiota diversity in the “low-inflammation group i” that followed the intermediate 

inflammatory response observed. These data are consistent with a previous study 

demonstrating that a dietary intervention, which included increasing soluble fiber, was less 

effective in improving inflammation markers in individuals with lower microbiome richness 

(Cotillard et al., 2013).

A zero-inflated beta regression (ZIBR) model (Chen and Li, 2016) to identify differences 

in abundance or presence of taxa between clusters over time (Table S7) revealed greater 

prevalence of Coprococcus, Ruminococcus, Oscillospira, and Anaerostipes in the “low-

inflammation i” compared to the “high-inflammation” cluster during the high-fiber diet 

intervention (Figure 4E). Coprococcus has been associated with higher quality of life 

indicators and both Ruminococcus and Oscillospira have been associated with improved 

markers of health including leanness and improved lipid profile (Valles-Colomer et al., 

2019; Klimenko et al., 2018; Chen et al., 2020). Anaerostipes had a significant joint p-value 

in the ZIBR model (Table S7) and was previously described as a “hyper-butyrate producer” 

(2014). In contrast, Akkermansia was enriched in the “high-inflammation” relative to “low-

inflammation ii” cluster. Akkermansia has been positively associated with metabolic health 

(Derrien et al., 2017), but has also been associated with low-fiber diets and is rare in 

populations consuming traditional diets (Earle et al., 2015; Desai et al., 2016; Smits et 

al., 2017). There was a modest difference in a Lachnospiraceae taxon between the two low-

inflammation clusters. Determining whether a particular taxon is beneficial to human health 

is problematic given that effects are likely highly context specific and can be influenced by 

subspecies- (i.e., strain-) specific differences.

Fermented food intake increases microbiota diversity

In contrast to the high-fiber diet arm, the microbiota of participants consuming the high-

fermented foods diet exhibited an overall increase in alpha diversity over the course of 

the intervention, as determined by overall ASVs, PD whole tree, and Shannon diversity 

(Figure 5A, 5B, S2E). This diversity increase was sustained during the choice period, when 

fermented food intake was higher than baseline but lower than at the end of maintenance, 

suggesting that increased diversity likely involved gut ecosystem remodeling rather than an 

immediate reflection of consumed quantities. We additionally assessed gender, race, and 

BMI as covariates in the model of alpha diversity and time, but none were significantly 

associated (LME, p > 0.05). A recent study reported that alcohol consumption could be a 

confounder in gut microbiota studies (Vujkovic-Cvijin et al., 2020). There was no difference 

in alcohol consumption between arms at baseline, nor did alcohol consumption significantly 

change over the course of the study (LME, p > 0.05). Notably, while the number of servings 

of fermented food consumed was correlated to an increase in diversity, this relationship was 

not as strong as the relationship between diversity and time (Figure 5C). Participants in 

the high-fermented food diet arm consumed a variety of fermented foods including yogurt, 
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kefir, fermented cottage cheese, kombucha, vegetable brine drinks, and fermented vegetables 

such as kimchi. Interestingly, while the total number of fermented food servings consumed 

per day was positively correlated with alpha diversity, the number of servings of yogurt or 

vegetable brine drinks was most strongly correlated (Figure 5C). Yogurt and vegetable brine 

drinks were consumed at higher rates relative to the other types of fermented foods, which 

may contribute to the stronger correlation. Unlike participants consuming the high-fiber diet, 

no increase in relative abundance of microbial proteins per gram stool was observed in the 

high-fermented food arm, indicating that altered microbial density did not accompany the 

increase in diversity (data not shown).

To examine whether specific taxa changed over time cohort-wide, ASVs were rank-

normalized per sample and their relationship with time was modeled using a linear mixed-

effect model. Nine ASVs increased over time, all in the Firmicutes phylum, including 

four in the Lachnospiraceae family, two in the Ruminococcaceae family, and one in the 

Streptococcaceae family (Figure 5D). An important consideration was whether the new 

taxa detected were microbes directly sourced from the fermented foods. Taxa present 

in the commonly consumed fermented foods in the study were identified through 16S 

rRNA amplicon sequencing (Figure S5) and compared with those newly observed in 

the participants’ microbiota during the intervention. Only a small percentage of the new 

microbiota ASVs were common with those found in fermented foods. Peak overlap of 

new microbiota ASVs and fermented food ASVs occurred early in the intervention, when 

participants’ overall microbiota diversity was lower than at the end of maintenance phase 

(5.4%, Figure 5E). At later time points, overlapping new microbiota ASVs and fermented 

food ASVs in the fermented food arm was not different than that seen in the high-fiber 

diet arm (Figure 5E). These data suggest that the increase in microbiota diversity in the high-

fermented food diet arm was not primarily due to consumed microbes, but rather a result of 

shifts in or new acquisitions to the resident community. These data support that fermented 

food consumption has an indirect effect on microbiota diversity, rendering the microbiota 

receptive to the incorporation or increased representation of previously undetected strains 

within the gut.

The abundance of several CAZyme family members changed from baseline to the end 

of maintenance phase in the high-fermented food diet arm (Figure S6A). However, these 

changes did not mirror those observed in the high-fiber diet arm. Specifically, all 11 

CAZymes that differed in the high-fiber diet arm increased in abundance from baseline 

to the end of maintenance phase. However, in the fermented food diet arm, the relative 

abundance of only 8 CAZymes (3 of which were annotated as starch-degrading and 5 

annotated as plant-degrading) differed and all decreased in the maintenance phase relative to 

baseline.

Fermented food intake decreases markers of host inflammation

Elevated cytokine levels at steady state have been linked to chronic, low-grade 

inflammation. Using an inflammation panel to assess circulating cytokines in serum, we 

identified 19 of 93 cytokines, chemokines, and other inflammatory serum proteins that 

decreased over the fermented food intervention including IL-6, IL-10, and IL-12b and 
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other inflammatory factors (Figure 6A, SAM, FDR ≤ 0.05, q-value ≤ 0.1). IL-6 is a key 

mediator of chronic inflammation, is elevated in several chronic inflammatory conditions 

such as rheumatoid arthritis, type-2 diabetes, and chronic stress, and is a commonly used 

metric of inflammation (reviewed in Tanaka et al., 2014). Notably, none of the 19 cytokines 

that decreased in the high-fermented diet arm differed in the high-fiber diet arm. The 

magnitude of these changes were not significantly different between binned “high” and 

“low” fermented food consumers (t-test, adjusted p-value > 0.05, n = 19), nor did any 

change correlate with BMI. We also observed an overall decrease in endogenous signaling, 

as determined by measuring activation levels of fifteen proteins from four major cell types: 

CD4+ T cells, CD8+ T cells, B cells, and classical monocytes. Specifically, there were 

decreased levels of activation in 14 of the 60 different cell type-specific signaling responses, 

and only one signaling increase (Figure 6B). This decreased signaling was observed across 

all four cell types tested, consistent with a broad change in immune status in individuals 

consuming fermented foods. Analysis of CyTOF data to identify the frequency of a larger 

set of immune cell types revealed that effector memory CD4+ T cells increased, and 

non-classical monocytes decreased during the intervention (Figure 6C, S3). To evaluate 

response strength to an immune stimulus, which can be impaired in situations of immune 

cell exhaustion and aging, we measured the signaling capacity of CD4+ T cells, CD8+ T 

cells, and B cells in response to ex vivo stimulation, but did not find any signaling capacity 

changes in either diet arm. Together, these data are consistent with an overall cohort-wide 

decrease in inflammation in the fermented food diet arm.

Metabolites in the blood are tied to physiological processes of the host and are derived 

from diet, the gut microbiota, and host metabolic processes. We were curious whether 

changes in the serum metabolomic profile of individuals that consumed fermented foods 

reflected the overall decrease in inflammatory cytokines observed in the high-fermented 

food diet arm. Untargeted metabolomics on serum samples at baseline (week −2) and 

end of maintenance (week 10) was conducted using untargeted, high-throughput liquid 

chromatography-mass spectrometry (LC-MS). To investigate whether changes in serum 

metabolites were significantly associated with changes in inflammatory cytokines, we 

calculated the correlation between each metabolite-cytokine pair. Thirty eight correlations 

were statistically significant (Pearson, adjusted p-value ≤ 0.05, Benjamini-Hochberg 

correction), 18 of which were positive and 20 of which were negative (Figure S6B).

Systems-level microbiome and immune system longitudinal profiling as a method for 
revealing coordinated host-microbe relationships

Variation in food choices, the individualized nature of participants’ microbiota, and the 

extensive microbiota and immune system -omics data generated allowed for a unique 

opportunity to uncover novel human microbiome-immune relationships. To determine the 

relationship between the microbiota and immune system in a state of change, differences 

between the end of intervention (Week 10) and baseline (Week −3 for blood, Week −2 

for stool) were calculated for each parameter. These differences were used to determine 

Spearman correlations between each microbiome feature type (ASVs, alpha diversity, 

SCFAs, microbe proteomics, stool metabolomics, and CAZymes) and each host feature 

type (inflammatory cytokines, immune cell signaling, immune cell frequency, and host 
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proteomics). A number of significant correlations (corrected using Benjamini-Hochberg 

hypothesis correction) between microbiota and host feature type were identified with host 

stool proteins by microbiota CAZymes having a high fraction of significant correlations 

(Figure 7A). Host proteins were annotated and categorized by disease association or 

function as defined by the Ingenuity Pathway Analysis Core Analysis, Diseases and 

Functions Analysis (STAR methods, Table S8). The majority of correlations between 

CAZymes and disease-associated proteins were negative, with proteins assigned to 

inflammatory response having the highest count of significant correlations (Figure 7B). 

These associations suggest that CAZymes and host proteins may respond to dietary 

interventions in coordinated yet opposing directions (i.e., increased CAZyme abundance 

correlates with decreased levels of inflammation-associated proteins) and may serve as a 

direct link between diet, the microbiome and host physiology.

Our analysis also revealed a relatively high fraction of significant correlations between 

immune cell frequency and stool short chain fatty acids. Specifically, as fecal butyrate 

increased, B cell frequency decreased (Figure 7C). B cell depleting therapeutics can be 

effective treatments for immune-mediated diseases including multiple sclerosis, rheumatoid 

arthritis, and type 1 diabetes (Fillatreau, 2018). Interestingly, while fecal butyrate did not 

increase significantly cohort-wide during the high-fiber diet intervention, the majority of 

participants whose butyrate increased while B cell frequency decreased were in the high-

fiber diet arm. Consolidating data from both diet arms revealed this negative association 

between fecal butyrate and B cell frequency, indicating that a larger cohort may have led to a 

significant increase in butyrate in the high-fiber diet arm.

The correlations identified between immune cell signaling capacity and microbiome-

encoded CAZymes revealed that the abundance of certain CAZymes were largely negatively 

correlated with cell signaling capacity (Figure 7D). These data indicate that the apparent 

attenuation in inflammation indicated by decreased basal level phosphorylation may be 

further enhanced by CAZyme-linked decreases in cell responsiveness to inflammatory cues. 

In other words, as participants’ microbiome CAZymes increase in relative abundance they 

may exhibit a decrease in basal inflammatory status combined with being less responsive 

after cytokine stimulation.

Discussion

Extensive data across the field of gut microbiome science has established diet as a major 

driver of the species and functions that reside within an individual’s gut. Poor diet is 

a known contributor to non-communicable chronic diseases (NCCDs) that are rapidly 

spreading globally as more populations adopt Western-style diets (Lozano et al., 2012; 

GBD 2015 Mortality and Causes of Death Collaborators, 2016). Furthermore, many NCCDs 

are driven by chronic inflammation, an immunological state that is modulated by the gut 

microbiota. A logical next phase of gut microbiome science is establishing how diets that 

influence the gut microbiota modulate human immune status. In this study we used a 

randomized, prospective dietary intervention model to assess how two components of diet 

known to interact with the gut microbes, high-fiber and fermented foods, influence the 

human microbiome and immune system.
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Using multiple -omics measurements of the microbiome and host parameters, including 

state-of-the-art sequencing and immune profiling technologies, we found that high-fiber and 

high-fermented food consumption influence the microbiome and human biology in distinct 

ways. One stark difference between these two diets was their impact on gut microbiota 

diversity. Low microbiota diversity is associated with many NCCDs, such as obesity and 

diabetes (Turnbaugh et al., 2009; Le Chatelier et al., 2013), and with industrialized lifestyles 

known to predispose individuals to NCCDs (reviewed in Sonnenburg and Sonnenburg, 

2019). Fiber-rich foods contain an abundance of microbiota accessible carbohydrates 

(MACs), which provide a fermentable carbon source for the microbiota. Despite sustained 

high levels of diverse plant-derived dietary fiber in these participants over six weeks, we 

did not observe a cohort-wide microbiota diversity increase in the high-fiber diet arm. It is 

possible that the relatively short duration of the study was not sufficient to allow for the 

recruitment of new taxa to the microbiota, which could be an indication that exposure to new 

microbes was limited within the environment of participants. Environmentally-constrained 

diversity is consistent with (i) high levels of sanitation in industrialized populations leading 

to less sharing of microbes between individuals (Martínez et al., 2015), (ii) the necessity of 

dietary fiber plus administered microbes to restore diversity to the gut microbiota in a mouse 

model (Sonnenburg et al., 2016), and (iii) the loss of strains and their associated glycan 

degrading capacity observed in U.S. immigrants (Vangay et al., 2018). The detection of plant 

glycan-derived carbohydrates in the stool of the high-fiber diet participants is consistent with 

incomplete microbiota fermentation that might be expected in an industrialized microbiota.

The increased microbiota diversity observed in the fermented food diet arm was coincident 

with decreases in numerous markers of inflammation, measured with distinct technologies. 

These correlated changes are consistent with a broad range of studies demonstrating a link 

between declining microbiota diversity and increased NCCD prevalence (reviewed in Mosca 

et al., 2016). Notably, the new taxa contributing to the increased diversity were largely not 

from the fermented foods themselves, indicating an indirect effect of their consumption on 

remodeling the microbiota. It is unclear whether these “new” taxa were newly recruited to 

the microbiota from the environment or were already present but undetected and increased 

in relative abundance to detectable levels during the intervention. The slow trajectory of 

diversity increase resulted in the greatest microbiota diversity observed during the “choice” 

phase, where fermented food intake was higher than at baseline, but lower than during the 

maintenance period. The slow and steadily increasing diversity suggests a time element 

for remodeling of the microbiome composition through diet, consistent with the relative 

recalcitrance of the human microbiota to rapid diet-induced remodeling (Wu et al., 2011). 

Fiber-induced microbiota diversity increases may be a slower process requiring longer 

than the six weeks of sustained high consumption achieved in this study. Importantly, 

high-fiber consumption did appear to increase stool microbial protein density, carbohydrate-

degrading capacity, and altered SCFA production indicating that microbiome remodeling 

was occurring within the study time frame, just not through an increase in total species. 

Given the distinct responses of participants to these two diets, whether a diet composed of 

both high-fiber and fermented foods could synergize to influence the host microbiota and 

immune system is an exciting possibility that remains to be determined.
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The malleability of the human microbiome, its integration into the immune system, and 

its responsiveness to diet makes it a highly attractive target for therapeutic intervention. 

Knowledge of how specific dietary interventions impact the microbiota could be leveraged 

to develop effective diets that improve human health. Since components of diet, unlike 

typical pharmaceuticals, do not require regulatory approval for use in humans, they 

provide an avenue to abate microbiota deterioration and improve human health quickly 

to avert the coming global NCCD health crisis (GBD 2015 Mortality and Causes of Death 

Collaborators, 2016). We envision two primary outcomes from additional studies like the 

ones conducted here. First, precision insight into how one type of dietary intervention 

may differentially impact individuals, enabling diet to be leveraged in numerous, individual-

specific clinical contexts. Second, population-wide insight for diets that broadly improve 

health, which can serve to guide public health policy, dietary recommendations, and 

individual choice. For example, fermented food consumption resulted in a cohort-wide 

generalized dampening in inflammation markers over the course of the intervention. This 

result is especially striking given that participants in this arm changed little else in 

their diet and consumed a variety of fermented foods (i.e., some ate mostly fermented 

dairy products while others ate mostly fermented vegetable products). Additional rigorous 

studies investigating fermented foods and their impact on human health may lead to the 

incorporation of these foods as a key component of a healthy diet.

While human studies provide the advantage of illuminating microbiome-host relationships 

that are relevant to human biology, these come at the cost of mechanistic insight. We 

view this as a worthwhile trade-off given the ability to reverse translate findings into 

animal models for mechanistic inquiry based on human-relevant data (Spencer et al., 

2019). For example, the host protein and CAZyme relationships we identified here could 

inform mechanistic mouse studies aimed at understanding the causal relationship between 

diets that increase carbohydrate utilizing enzymes and decrease inflammatory proteins. In 

addition, as longitudinal, correlation data (e.g., between microbiome and immune system) 

for humans accumulates for dietary perturbations, these data can be mined to elucidate 

a map of interactions between the microbiome and human biology. Such a map will be 

useful, not only in correcting immune dysregulation that contributes to disease but can be 

applied in numerous contexts of health and disease to tune biology for optimized physical 

and mental performance, fighting cancer and numerous chronic diseases, or combatting 

infectious disease.

Limitations of the Study

This study was designed to explore effects of microbiota-targeted diets on both the 

microbiome and the immune system in humans using multi-omics. While this study 

provided significant insight into the effects of diets high in fiber and high in fermented 

foods on microbial composition and activity as well as immune status, there are several 

limitations that we hope can be addressed in future studies. The study included a modest 

number of participants (n = 18/arm) which limits statistical power and presents challenges 

with regard to generalizability of results. The study had no control arm, and instead relied 

upon comparisons between the two dietary arms, and within-participant comparisons over 

time. The dietary intervention phase was performed over a 4 week ramp period and a 6 week 
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maintenance period; we do not know the durability of many of the changes we observed or 

if further changes would arise during a longer intervention. The study was performed among 

healthy individuals; future work should examine the effects of these diets in the context of 

disease or inflammatory conditions, as well as the effect of possible synergy between diets 

rich in both fiber and fermented foods. Finally, while current data demonstrates a profound 

effect of these diets on both the microbiome and immune status, further work must examine 

causality of these interrelated aspects of human biology with an emphasis on the mechanistic 

underpinnings using additional experimental models.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—All information and requests for further resources should be directed to 

and will be fulfilled by the Lead Contact, Justin Sonnenburg, jsonnenburg@stanford.edu

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Datasets and code for analysis are available at https://

github.com/SonnenburgLab/fiber-fermented-study/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and selection of participants—Participants were recruited from the 

local community through online advertisement in different community groups as well as 

emails to past research participants that consented to being contacted for future studies. 

The current study assessed 381 participants for eligibility. They completed an online 

screening questionnaire and a clinic visit between July 2016 and January 2017. The primary 

inclusion criteria included age ≥ 18 y and general good health. Participants were excluded 

if they had a history of active uncontrolled inflammatory bowel disease (IBD) including 

ulcerative colitis, Crohn’s disease, or indeterminate colitis, irritable bowel syndrome (IBS) 

(moderate or severe), infectious gastroenteritis, colitis or gastritis, Clostridium difficile 
infection (recurrent) or Helicobacter pylori infection (untreated), malabsorption (such as 

celiac disease), major surgery of the GI tract, with the exception of cholecystectomy and 

appendectomy, in the past five years, or any major bowel resection at any time. Other 

exclusion criteria included a BMI ≥ 40, diabetes, renal disease, significant liver enzyme 

abnormality, pregnancy or lactation, smoking, a history of CVD, inflammatory disease, or 

malignant neoplasm. Participants with high levels of dietary fiber intake (above 20 g of fiber 

per day) or more than 2 servings per day of fermented foods were excluded. Consort flow 

diagram of participant recruitment shown in Figure 1A and demographics table shown in 

Table S1. 36 participants (25 female sex and gender identifying, 11 male sex and gender 

identifying) were used for full analysis with an average age of 52 +/− 11 years. All study 

participants provided written informed consent. The study was designed as an exploratory 

approach toward discover of changes in the microbiota and the immune system in response 

to dietary intervention. The study was approved annually by the Stanford University Human 

Subjects Committee. Trial was registered at ClinicalTrials.gov, identifier: NCT03275662.
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Specimen collection—Stool samples were collected every two weeks from week −2 

through the end of observation at week 14. All stool samples were kept in participants’ home 

freezers (−20°C) wrapped in ice packs, until they were transferred on ice to the research 

laboratory and stored at −80°C.

Blood samples were collected at 7 time points: −3 weeks, start of intervention, week 4 

(end of ramp-up), week 6, week 8, week 10 (3 time points during maximum intake), and 

week 14 (end of observation). Blood for PBMC and whole blood aliquots were collected 

into heparinized tubes. Whole blood aliquots were incubated with Proteomic Stabilization 

Buffer (Smart tube, Fisher Scientific) for 12 minutes at room temperature and stored at 

−80C. PBMCs were isolated using Ficoll-Paque PLUS (Sigma-Aldrich), washed with PBS, 

frozen at −80C for 24 hours then moved to LN2 for longer storage. Blood for serum was 

collected into an SST-tiger top tube, spun at 1,200xg for 10 minutes, aliquoted, and stored at 

−80C. Blood for plasma was collected into an EDTA tube, spun at 1,200xg for 10 minutes, 

aliquoted, and stored at −80C.

METHOD DETAILS

Intervention—Participants were randomized to follow a diet high in fiber or high in 

fermented foods. A simple randomization was done for the two groups using a random 

number generator (Excel), performed by a statistician not involved in the intervention or 

data collection. Two participants requested to be placed on the high-fiber diet and were non-

randomized. Participants and dieticians could not be blinded to randomization assignments 

in order to perform and counsel the dietary changes, nor was the study team blinded. They 

were instructed to ramp up the intake of foods high in fiber/fermented during the first 

4 weeks of the intervention with a goal of adding at least 20 grams of fiber per day to 

their baseline consumption in the fiber arm and 6 servings a day of fermented foods/day 

in the fermented food arm, and were encouraged to consume more if they could tolerate 

it. They were instructed to maintain the high level of consumption during the following 6 

weeks. Detailed instructions were provided to encourage participants to include a variety 

of fiber sources (legumes, seeds, whole grains, nuts, vegetables, and fruits) or fermented 

foods (fermented dairy products, fermented vegetables, fermented non-alcoholic drinks). 

Participants were followed for an additional 4 weeks after the end of the intervention 

period. All participants met with a dietitian at baseline, end of ramp up, and every 2 weeks 

during the high intake period. They were asked to keep detailed food logs 3 days per week 

(2 weekdays and 1 weekend) every other week through the duration of the study. Food 

logs were reviewed by the dietitian to assess compliance and provide recommendations to 

increase amounts or variety of fiber/fermented foods in the diet as tolerated. Participants 

filled out gastrointestinal symptoms surveys (GSRS) (Svedlund et al., 1988) and symptom 

changes (Winham and Hutchins, 2011) every 2 weeks, and these were discussed during the 

visits with the dietitian.

Dietary Data—Participants logged all their food and drink intake for 3 days (2 weekdays 

and 1 weekend) each week during the ramp phase and every other week for the rest of the 

study using the HealthWatch360 app. The dietitian reviewed the entries with participants to 

assess accuracy of entries and portions. An average of the 3 days was used for each time 
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point. Entries for time points: baseline, week 4, week 10, and week 14 were re-entered 

into the Nutrition Data System for Research (NDSR) 2019 database by a dietitian. NDSR 

appendix 10 was used to classify foods into food groups.

Fiber intake was reported as average intake in grams per day for each week of the 

intervention. Categories of fiber sources were grouped into fruits, grains, legumes, nuts/

seeds, vegetables, meat, dairy, and other. Fermented intake was reported as the average 

number of servings per day for each week of the intervention. One serving of fermented 

foods were defined as the following: kombucha, yogurt, kefir, buttermilk, kvass = 6 oz, 

kimchi, sauerkraut, other fermented veggies = 1/4 cup, vegetable brine drink = 2 oz. 

To determine if fiber or fermented intake significantly changed during the course of the 

intervention, paired t-tests were performed from week −2 to all other time points. Broad 

categories of fermented foods were grouped into cottage cheese, kefir, kombucha, vegetable 

brine drinks, vegetables, yogurt, other foods, and other drinks.

The following validated health surveys were used by participants: PROMIS v1.1 global 

health, PROMIS v1.0 - fatigue, WHO well-being index, PROMIS applied cognition short 

form, Perceived Stress Scale (Cohen et al., 1983), and the International Physical Activity 

Questionnaire (Craig et al., 2003).

16S amplicon sequencing—DNA was extracted from stool and fermented foods using 

the MoBio PowerSoil kit according to the Earth Microbiome Project’s protocol (Gilbert et 

al., 2014) and amplified at the V4 region of the 16S ribosomal RNA (rRNA) subunit gene 

and 250 nucleotides (nt) Illumina sequencing reads were generated. There was an average 

of 20,119 reads per sample and samples with less than 1,000 reads were filtered out (7 

samples out of 338 removed). There was an average of 15,292 reads per sample recovered 

after filtering, denoising, and removing chimeras. Fermented foods of the same brands used 

commonly by participants were purchased and subjected to the 16S sequencing method. It is 

important to note that our findings for these foods may not directly reflect the composition 

of the exact foods (e.g., due to batch variation) eaten by the participants, who purchased 

their own fermented food.

16S rRNA gene amplicon sequencing data from both stool samples and fermented food 

samples were demultiplexed using the QIIME pipeline version 1.8 (Caporaso et al., 2010). 

Amplicon sequence variants (ASVs) were identified with a learned sequencing error 

correction model (DADA2 method) (Callahan et al., 2016), using the dada2 package in 

R. ASVs were assigned taxonomy using the GreenGenes database (version 13.8).

ɑ-diversity was quantified as the number of observed ASVs, Shannon diversity, or PD whole 

tree, in a rarefied sample using the phyloseq package in R (version 3.4.0). Data were rarefied 

to 3,649 reads per sample (lowest 10% of reads, 299 samples retained out of 331 total) also 

using the phyloseq package in R. Rarefied data were only used for ɑ-diversity measures.

β-diversity was calculated using the ordinate function in the phyloseq package in R 

(version 3.4.0) for weighted and unweighted Unifrac. To determine if the high-fiber and 

high-fermented food diet arms were significantly different at baseline, the samples were 
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filtered to week −2, β-diversity was calculated, and the analysis of variance using distance 

matrices was calculated with the adonis function (method = “euclidean”) in the vegan 

package in R (version 2.5.6).

Metagenomic sequencing—DNA extraction for shotgun metagenome sequencing was 

done using the MoBio PowerSoil kit as described in the 16S amplicon sequencing methods. 

For library preparation, the Nextera Flex kit was used with a minimum of 10ng of DNA 

as input and 6 or 8 PCR cycles depending on input concentration. A 12 base pair dual-

indexed barcode (CZ Biohub) was added to each sample and libraries were quantified using 

an Agilent Fragment Analyzer. They were further size-selected using AMPure XP beads 

(Beckman) targeted at a fragment length of 450bp (350bp size insert). DNA paired-end 

sequencing (2×146bp) was performed on a NovaSeq 6000 using S4 flow cells (CZ Biohub). 

The average target depth for each sample was 23.3 million paired-end reads.

Data quality analysis was performed by demultiplexing raw sequencing reads and 

concatenating data for samples that required multiple sequencing runs for target depth before 

further analysis. BBtools suite (https://sourceforge.net/projects/bbmap/)) was used to process 

raw reads and mapped against the human genome (hg19) after trimming, with masks over 

regions broadly conserved in eukaryotes (http://seqanswers.com/forums/showthread.php?

t=42552). Exact duplicate reads (subs=0) were marked using clumpify and adapters and 

low-quality bases were trimmed using bbduk (trimq=16, minlen=55). Finally, reads were 

processed for sufficient quality using FastQC (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/).

Carbohydrate active enzymes (CAZymes) were annotated using dbCAN (v2.0.11) (Huang 

et al., 2018; Yin et al., 2012) on genes called from FragGeneScan (Rho et al., 2010). From 

merged reads, unmerged reads with the requirement that the CAZymes were identified with 

both diamond (Buchfink et al., 2015) and hotpep (Busk et al., 2017). Final read counts were 

normalized by calculating the reads per million for each CAZyme subfamily in each of the 

samples (CAZyme count/sum all sample counts/1e6). CAZyme analysis was restricted to 

GHs and PLs. To determine the CAZyme subfamilies that significantly changed in relative 

abundance from baseline (week −2, or week 0 if missing) to end of maintenance phase 

(week 10 or week 8 if missing), a using the siggenes package in R (SAM two-class paired, 

FDR ≤ 0.05, q-val ≤ 0.1).

Stool proteomics—Methods for stool preparation, mass spectrometry protocol, and 

protein searches are described in Gonzalez et. al. Briefly, a measured quantity between 100–

200 mg of stool per sample was loaded into a 96-well plate and lysed with ceramic beads, 

centrifuged, supernatant proteins alkylated, washed, digested and eluted using an S-trap 

plate. Protein concentrations were normalized and longitudinal samples for each individual 

labeled with TMT-11 multiplexing kit. Peptide samples were injected onto reversed-phase 

chromatography using a Dionex Ultimate 3000 HPLC and run on a Thermo Fusion Lumos 

mass spectrometer that collected MS data in positive ion mode within a 400–1500 m/z 

range. The resulting mass spectra raw data files were searched using Proteome Discoverer 

2.2. using the built-in SEQUEST search algorithm with built-in TMT batch correction. 

Three FASTA protein sequence databases were employed: Uniprot Swiss-Prot Homo 
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sapiens (taxon ID 9606, FASTA file downloaded January 2017), the Human Microbiome 

Project (FASTA file downloaded from https://www.hmpdacc.org/hmp/HMRGD/ on January 

2017), and an in-house curated database containing common preparatory contaminants. 

Target-decoy searching at both the peptide and protein level were employed with a strict 

FDR cutoff of 0.01 using the Percolator algorithm built into Proteome Discoverer 2.2. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the data set identifier PXD021786.

Protein abundance was recorded from the average of two runs, log2(x+1) transformed, and 

normalized as a percentage of summed reporter intensity for all quantified proteins in a 

given sample (single protein intensity/total sample intensity). Proteins were denoted as either 

host or microbial derived based on high confidence matches to the Human Microbiome 

Project protein sequence database. Reported microbial proteins and protein abundances 

represent the summation of protein database entries with identical descriptions, decreasing 

microbial protein variables from 5,372 unique proteins to 4,315 unique descriptions. All 

host proteins had unique descriptions. As an unsupervised method to decrease the number 

of parameters for multiple hypothesis testing, the host proteins were filtered to include 

the top 75% (230 proteins) and microbe proteins were filtered to include the top 50% 

(2,157 proteins) proteins with the highest variance across participants (participant-specific 

difference from end of intervention to baseline). All proteomic analyses were completed 

using the described filtered data set.

Stool short-chain fatty acids—For sample preparation, a measured quantity of ~20 

mg stool per sample was loaded into 1.5 mL Eppendorf tubes and sent to Metabolon 

for absolute quantitation of short chain fatty acids. All samples were kept frozen and 

shipped on dry ice. Paired Welsh t-tests were used to determine if levels of short chain fatty 

acids significantly changed from baseline to end of intervention. For visualization purposes, 

outliers are not shown in plots. All points were used for statistical analysis.

Stool Carbohydrates—Methods for measurement of monosaccharides present in stool 

samples using GC-MS are described in (DeJongh et al., 1969). Briefly, stool samples were 

homogenized in 10% aqueous ethanol solution and dried using a vacuum concentrator. A 

known dry weight (between 0.5–0.8mg) of sample was transferred to a glass hydrolyzing 

tube before being suspended via sonication, heated, and lyophilized. Samples were then 

methanolyzed using 1M MeOH-HCl and re-N-acetylated using MeOH: Pyridine: Acetic 

anhydride (3:1:1 v/v). Finally, samples were converted to TMS-ehteress using Tri-Sil 

reagent (Thermo Scientific), dried via dry nitrogen flush, and extracted with hexane. TMS 

derivatives of the methyl glycosides were analyzed using GC-MS and profiling of the 

monosaccharides was completed using Resteck 5MS fused silica capillary column at an 

oven temperature gradient. 1uL of sample was injected onto the GC column using split-less 

mode. A standard mixture of different monosaccharides was also run to compare and 

quantify absolute value of monosaccharides present in samples. A linear mixed effects 

model was used to vary percentage of carbohydrates in stool with fiber intake.

CyTOF—Whole blood samples were thawed and red blood cells were lysed using Thaw 

Lyse buffer (Smart Tube, inc) for 10 minutes twice at room temperature, then washed 
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twice with cell staining media (CSM: PBS with 0.5% BSA and 0.02% Na azide). 1×106 

cells from each sample were barcoded as previously described (Behbehani et al., 2014). 

Briefly, cells were slightly permeabilized using PBS with 0.02% saponin, then stained 

with unique combinations of functionalized, stable palladium isotopes for 15 minutes at 

room temperature. Samples were washed with CSM and pooled into a single tube for 

staining. Cells were blocked with human TruStain FcX block (Biolegend) then stained 

with an extracellular antibody cocktail. Antibody cocktails were rehydrated with CSM after 

lyophilization into LyoSpheres (BioLyph) with excipient B144 as 4x cocktails as previously 

described (Fragiadakis et al., 2019). Antibody panels are listed in Table S6. Samples were 

then permeabilized using methanol for 10 minutes at 4°C and stained with an intracellular 

antibody cocktail. Cells were stained with an iridium intercalator overnight prior to CyTOF 

acquisition. Samples were washed twice with water, resuspended in normalization beads 

(Fluidigm), and filtered through a cell strainer. Samples were run on a Helios CyTOF.

Samples were normalized and debarcoded using the premessa package in R. Cell 

populations were gated using Cell Engine (immuneatlas.org, gating strategy, Figure S3). 

Cell frequencies were calculated as the fraction of CD45+ cells, with the exception of 

neutrophils, which were quantified as a percentage of singlet cells. Endogenous signaling 

was taken as the median level of the transformed level of a signaling protein in a specific 

cell population (transformation = arcsinh(value/5)). Samples were excluded if the number 

of singlets was less than 10,000 cells. If data were available for both baseline samples, the 

first baseline was used; otherwise the second baseline was used. For heatmaps, missing data 

were imputed using the average value of a feature across all participants. For significance 

analysis, participants with missing data were excluded. For significance analysis of signaling 

proteins, features were restricted to those in four major cell types (CD4+ T cells, CD8+ T 

cells, B cells, classical monocytes) and analysis was performed using the siggenes package 

in R (SAM two-class paired, FDR ≤ 0.05, q-value ≤ 0.1). Significance of cell frequencies 

was assessed using a Wilcoxon paired test.

Serum cytokines—Cytokine data were generated from serum samples submitted to Olink 

Proteomics for analysis using their provided inflammation panel assay of 92 analytes (Olink 

INFLAMMATION,Table S6). Out of 92 proteins, 67 were detected in >75% of samples 

and used in analysis. Data are presented as normalized protein expression values (NPX, 

Olink Proteomics arbitrary unit on log2 scale). Significance was assessed using the siggenes 

package in R (SAM two-class paired, FDR ≤ 0.05, q-value ≤ 0.1).

Flow cytometry—This assay was performed by the Human Immune Monitoring Center at 

Stanford University. PBMC were thawed in warm media, washed twice and resuspended at 

0.5×106 viable cells/mL. 200 uL of cells were plated per well in 96-well deep-well plates. 

After resting for 1 hour at 37°C, cells were stimulated by adding 50 ul of cytokine (IFNa, 

IFNg, IL-6, IL-10, or IL-2) or LPS and incubated at 37°C for 15 minutes. The PBMCs 

were then fixed with paraformaldehyde, permeabilized with methanol, and kept at −80°C 

overnight. Each well was bar-coded using a combination of Pacific Orange and Alexa-750 

dyes (Invitrogen, Carlsbad, CA) and pooled in tubes. The cells were washed with FACS 

buffer (PBS supplemented with 2% FBS and 0.1% sodium azide), and stained with the 
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following antibodies (all from BD Biosciences, San Jose, CA): CD3 Pacific Blue, CD4 

PerCP-Cy5.5, CD20 PerCp-Cy5.5, CD33 PE-Cy7, CD45RA Qdot 605; cytokine samples 

were additionally stained with pSTAT-1 FITC, pSTAT-3 APC, pSTAT-5 PE, whereas the LPS 

sample was stained with pERK APC , pP38 FITC, and pPLCg2 PE (Table S6). The samples 

were then washed and resuspended in FACS buffer. 100,000 cells per stimulation condition 

were collected using DIVA 6.0 software on an LSRII flow cytometer (BD Biosciences). 

Gating was performed using FlowJo v9.3 by gating on live cells based on forward versus 

side scatter profiles, then on singlets using forward scatter area versus height, followed by 

cell subset-specific gating.

Signaling markers were quantified as the 90th percentile value. To quantify signaling 

capacity, we calculated fold change in phospho-proteins between cytokine stimulated and 

unstimulated. For analysis we restricted our feature set to features with an average fold 

change greater than two. Significance was assessed using the siggenes package in R (SAM 

two-class paired, FDR ≤ 0.05, q-value ≤ 0.1).

Untargeted serum metabolomics—Metabolites from high-fermented food participant 

serum samples were extracted in LC-MS grade methanol (4:1 v/v). Protein precipitation in 

serum samples was conducted by incubating the samples for 5 minutes at room temperature 

and centrifugation at 5,000xg for 10 minutes. Sample supernatants were then transferred, 

evaporated, and reconstituted in an internal standard mix (50% Methanol). Metabolite 

samples were analyzed on a LC-MS qTOF instrument using reverse phase C18 positive, 

C18 negative, and HILIC positive methods as described (Wikoff et al., 2009). Compound 

annotation was carried out using the MSDIAL software (Tsugawa et al., 2015) and an 

authentic standard reference library. To quantify metabolite levels, area under the curve 

for each annotated metabolite was normalized using the sum of internal standards in each 

sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Location of Statistical Details in the Text—Results of each experiment can be found 

in the results and figure legends. Significant values of statistical tests are also indicated by an 

asterisk in the figures. Number of participants in each data type are found in Supplementary 

Table 1.

Statistical Analysis of Primary Outcome—The primary outcome as listed on 

ClinicalTrials.gov was the change in Cytokine Response Score within each arm from 

baseline (week −2) to end of maintenance phase (week 10). CRS was calculated using 

the method described in (Shen-Orr et al., 2016). Significant changes were evaluated using a 

paired t-test (Table S4). Only participants that were randomized were included in calculation 

of primary outcome (two participants in the high-fiber diet excluded). A Statistical Analysis 

Plan was not pre-published, however multiple hypothesis testing correction was applied as 

described throughout.

Centering and Scaling Data—In analyses comparing different data types to each other, 

parameters were centered and scaled (across columns) to eliminate experimental bias. All 
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methods describing data as centered and scaled were done using the scale function in base R 

(scale function, center=TRUE, scale=TRUE). Centered data were calculated by subtracting 

the column means from each value. Scaled data were calculated by dividing the centered 

columns by their standard deviations.

Recursive feature random forest—To determine which data type was most accurate 

in differentiating between high-fiber and high-fermented food diet arms, a recursive 

feature random forest (caret, rfeControl, number=100, leave one out cross validation) was 

used. Parameters for each data type were the participant-specific differences from end of 

intervention (week 10) to baseline (week −2 for stool, week −3 for blood). If a participant 

did not have both the baseline and end of intervention time point for a given experimental 

platform they were removed from analysis. All parameters were centered and scaled. To 

decrease redundant parameters of large feature sets, unsupervised parameter filtration was 

used. 16S data were filtered to only ASVs present in at least 25% of samples and rank-

normalized within each sample according to the methods described by (Callahan et al., 

2017). Host proteins were filtered to top 75% (230 proteins total) and microbe proteins 

were filtered to top 50% proteins (2,157 proteins total) with the highest variance across 

participants. CAZyme subfamilies were summed at the family level across samples. The 

recursive feature random forest models returned the minimum feature set needed for highest 

accuracy (Table S5).

Multiple Testing using Significance Analysis of Microarrays (SAM)—The 

identification of parameters differentially expressed between diet groups (unpaired) or 

within the same participant at different time points (paired) and estimation of the False 

Discovery Rate (FDR) was calculated using the siggenes package in R. Significance was 

described as FDR ≤ 0.05 and a q-value ≤ 0.10.

Linear Mixed Effects Modeling—Linear mixed-effects models were used to assess the 

linear correlation between two variables when the same participant contributed multiple 

samples to the model (i.e., participant at multiple time points). Because samples from the 

same participant are not independent from one another and introduces autocorrelation, we 

used the participant term as a random variable in the lme function using the nLME package 

in R. Terms for gender, race, and BMI were included in the model as covariates in the 

analysis of diversity over time.

Total fiber intake (grams) was correlated with the percentage of carbohydrates in stool using 

a linear mixed-effects model using the lme function and participants as the random variable.

Association between rank-order ASV count vs. time point (weeks) and alpha diversity 

(number observed ASVs) vs. fermented food intake were assessed using the lme function 

and participants as the random variable. P-values for all ASVs in association with time were 

adjusted for multiple hypothesis testing using a Benjamini-Hochberg correction.

To determine if the number of observed ASVs over time varied between high-fiber diet 

inflammation groups, a pairwise LME model was used. Number of observed ASVs was 

the outcome variable with both time (in weeks) and inflammation group (binary variable) 
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as the covariates. The inflammation group only compared two groups at a time, so three 

models in total were made to determine significance between fiber inflammatory groups: 

high-inflammation vs. low-inflammation i, high-inflammation vs. low-inflammation ii, and 

low-inflammation i vs. low-inflammation ii. For the model comparing high-inflammation 

and low-inflammation i, the inflammation group factor was significant (p-value = 7.2e-4), 

but the time variable was not (p-value = 0.69). The other two models did not have significant 

p-values.

To determine if fermented food intake varied significantly with the number of observed 

ASVs, the lme function and participants as the random variable, a model was made for total 

fermented food intake and each fermented food group separately, p-values were adjusted 

using Benjamini-Hochberg correction.

Modeling ASV Changes in Relative Abundance and Presence/Absence Over 
Time using a Zero-inflated Beta Random Effect Model (ZIBR)—To identify 

differences in abundance and/or presence of taxa between inflammation clusters over time 

in the high-fiber diet arm, the zero-inflated beta regression model was fit using the ZIBR 

package in R. A filtered dataset was curated as described in (Chen and Li, 2016). ASVs 

were preprocessed using tip_glom (phyloseq package in R, h=0.1), removed if they were 

non-characterized in GreenGenes, and filtered to only ASVs present in at least 25% of 

samples. Since ZIBR cannot handle missing data, missing samples were filled with the 

average ASV abundance for each group at each timepoint. Taxa with significant baseline 

coefficients were filtered out to focus on the significant differences induced by the dietary 

intervention (Table S7).

New ASVs in Participant Samples also Detected in Fermented Foods—New 

ASVs in participant stool samples were calculated by aggregating and summing new ASVs 

for each participant and time point. New ASVs included those not present at either baseline 

time point (weeks −2, 0), but detected at any other time point during the intervention (weeks 

2–9). Fermented food ASVs (Table S5) with less than 250 counts were filtered out. Overlap 

of the new ASVs gained during intervention and also found in the fermented food were 

summed across all participants at each time point.

Pearson Correlation Between Change in Serum Metabolites and Cytokines
—Serum metabolomics was collected for the high-fermented food diet arm. Peak area 

for each metabolite was normalized using the summation of internal standards in each 

sample. Difference between week 10 and −2 was calculated for each serum metabolite 

and inflammatory cytokine. Pearson correlation was calculated between each metabolite-

cytokine pair and p-values were corrected using Benjamini-Hochberg hypothesis correction. 

Significant correlations (p-value adjusted ≤ 0.05) shown in Figure S6B.

Spearman Correlation Between Data Types—The spearman correlation between all 

parameters was calculated. Data input encompassed participant-specific differences from 

both groups, centered and scaled. If a participant did not have both the baseline and end of 

intervention time point for a given experimental platform they were removed from analysis. 

Parameters were filtered using the same methods described for the random forest, grouped 
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into their respective experimental platforms, and designated to host or immune derived. 

Correlations were filtered to only host-microbe comparisons before Benjamini-Hochberg 

hypothesis correction. Correlations between host proteins and microbe proteins are not 

shown here as they were derived from the same sample and experimental platform and 

had inflated internal bias compared to the other cross-omic comparisons. Host protein 

annotation for analysis with their association to CAZymes (Figure 7B) was assigned using 

the Ingenuity Pathway Analysis Core Analysis, Diseases and Functions Analysis. Full 

annotation of proteins in each bin can be found in Table S8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

Diet intervention with systems profiling reveals links in diet-microbiome-immune axis

High fiber diet changes microbiome function and elicits personalized immune responses

Fermented food diet increases microbiome diversity and decreases markers of 

inflammation
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Figure 1. Overview of Fiber Fermented Food Study.
(A) Consort flow diagram for participant enrollment, allocation, follow-up, and analysis. 

Side chart shows the number of participants in high-fiber (Fi) and high-fermented (Fe) diet 

arm collected for each platform. *2 participants were assigned to high fiber, not randomized, 

by special request.

(B) The 14-week study overview timeline, sample types collection, and corresponding 

experimental platforms.

(C) Fiber intake in the high-fiber diet arm shown in boxplots, fiber intake in the high-

fermented food diet arm shown as dotted line.

(D) Fermented food intake in the high-fermented food diet arm shown in boxplots, 

fermented food intake in high-fiber diet arm shown as dotted line. P-values ≤ 0.05 via 

t-test denoted by asterisks and calculated for each time point relative to baseline −2 week 

value.
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Figure 2. Diet-specific effects of a fiber vs. fermented food intervention on the host and 
microbiome.
(A) Accuracy of leave-one-out cross-validation (LOOCV) of random forest models 

predicting diet group; separate models using host-derived data (white bars) or microbe-

derived data (black bars), using parameter changes from baseline to end of maintenance 

as model features. Recursive feature elimination chose the minimum number of parameters 

needed for maximum accuracy.

(B) Differences in myosin-1, model feature selected for host proteomics model.

(C) Differences in rank-order change of Lachnospira, model feature selected for 16S 

amplicon sequence variants (ASVs) model. Purple, fermented group; green, fiber group.
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Figure 3. Participants consuming fiber exhibit shifts in the functional profile of the microbiome.
(A) Observed number of amplicon sequence variants (ASVs) from 16S rRNA amplicon 

sequencing; no significant changes during any intervention time point compared to baseline 

(Week −2 or Week 0) (paired t-test).

(B) Proteins measured using LC-MS (Gonzalez et al., 2020) were categorized as human or 

microbe derived using the HMP1 database (The Human Microbiome Project Consortium, 

2012). Microbe proteins as a percent of total stool proteins increase from baseline to end 

of maintenance phase (Week 10, p-value=0.003 from Week −2, p-value=0.01 from Week 0, 

paired t-test).

(C) CAZymes identified from metagenomic sequencing as significantly changing in relative 

abundance from baseline to end of maintenance phase (FDR ≤ 0.05, q-value ≤ 0.1, 

SAM two-class paired). CAZymes were annotated using dbCan and assigned to functional 

categories (Yin et al., 2012; Cantarel et al., 2012).

Wastyk et al. Page 33

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Significant decreases in two branched chain fatty acids and valeric acid in stool (p-

value=0.044, 0.033, 0.033, paired t-test). Outliers not plotted but all values were included for 

statistical analysis testing (see Methods).

(E) Total fiber intake (grams) correlated with percentage of carbohydrates in stool using 

linear mixed effects (LME) model (p-value=8e-4).
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Figure 4. Fiber-consuming participants exhibit varied immune responses that track with 
differences in microbiome composition and diversity.
(A) Immune features derived from immunophenotyping assays.

(B) Heatmap depicting differences in immune features (grouped by feature type) from 

baseline (Week −3) to end of intervention (Week 10), rescaled from minimum change > −1 

to maximum change < 1, no change=0. Each row is a participant, rows are clustered using 

hierarchical clustering by feature values in the fiber arm.

(C) Counts of the mean positive (red) or mean negative (blue) changes in endogenous 

immune cell signaling from baseline (Week −3) to end of maintenance (Week 10) for the 

three clusters. Non-significant changes shown in light color, significant changes shown in 

dark color (SAM, two-class paired, q-value ≤ 0.1).

(D) Average number of observed ASVs at baseline (Week −2 and Week 0) high-

inflammation cluster (red), low-inflammation i cluster (gold), and low-inflammation ii 

cluster (blue) (unpaired t-test significant p-value = 0.037).
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(E) Significant taxa binned using tip_glom (phyloseq package in R) identified in pairwise 

comparisons using a zero-inflated beta regression, plotted over time. Percentage of 

participants with taxa present in high-inflammation (red) and low-inflammation i (gold) 

clusters shown in the first three panels (group logarithmic model adjusted p-value ≤ 0.05); 

abundance (percent of composition) of high-inflammation (red) and low-inflammation ii 

(blue) clusters shown in fourth panel (group beta regression model adjusted p-value ≤ .05); 

abundance (percent of composition) of low-inflammation i (gold) and ii (blue) clusters 

shown in fifth panel (group beta regression model adjusted p-value ≤ 0.05).
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Figure 5. High-fermented food diet increased microbiota diversity and altered composition.
(A, B) Observed ASVs (A) (p-values generated using paired t-test) and Shannon diversity 

(B) increased from baseline through choice phase. Observed ASVs significantly correlated 

with time using linear mixed effects (LME) model (p-value=2.3e-3 for Observed ASVs, 

p-value=1.4e-3 for Shannon).

(C) Total fermented food intake, yogurt, and vegetable brine drinks positively correlated 

with observed ASVs using linear mixed effects (LME) model (p-value adjusted ≤ 0.05).

(D) Rank normalized ASVs that were significantly correlated with fermented food 

consumption over time using an LME model (p-value adjusted ≤ 0.05). Graphs are colored 

by taxonomic family.

(E) New ASVs (not present at baseline weeks −2 or 0 but detected at any other time 

during the intervention) that were detected in fermented foods were aggregated and summed 

for each participant and plotted as a percentage of all new ASVs by time point for the 

high-fermented food diet arm. Dotted line indicates trend for high-fiber diet arm.
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Figure 6. Fermented food consumption decreases levels of inflammation.
(A) Cytokines, chemokines, and other serum proteins plotted that change significantly from 

baseline (week −3) to end of intervention (week 10) (SAM two-class paired, FDR ≤ 0.05, 

q-value ≤ 0.1). Negative correlations for levels of each analyte across time calculated using 

LME. NPX refers to the normalized protein expression used by Olink Proteomics’ log2 

scale. Fgf-21 also significantly decreased across time (data not shown).

(B) Cell type-specific endogenous signaling proteins, measured using CyTOF, that change 

significantly from baseline (week −3) to end of intervention (week 10) (SAM two-class 

paired, FDR < 10%). Arcsinh ratio plotted from week −3 to week 10.

(C) Fold change of cell frequencies (calculated as percentage of CD45+ cells) that change 

significantly from baseline (week −3) to end of intervention (week 10) (Wilcoxon paired 

test, adjusted p-value ≤ 0.05).
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Figure 7. Interaction between the host immune system and microbiota.
(A) Correlation of difference between baseline and end of maintenance was calculated for 

each parameter and percent of significant pairwise correlations between microbe and host 

assays were plotted. Light grey denotes correlations with a p-value adjust ≤ 0.05, dark grey 

shows p-value adjust ≤ 0.01 (corrected using Benjamini-Hochberg hypothesis correction).

(B) Positive and negative correlations between host proteins annotated by disease or function 

(source: Ingenuity Pathway Analysis) and CAZymes.

(C) Changes in stool butyrate levels vs. blood B-cell frequency changes from baseline (week 

−3 stool, week −2 blood) to end of maintenance (week 10) for both high-fiber (green) and 

high-fermented food (purple) arms. B cells are defined as CD45+CD66-CD3-CD19- (Figure 

S3); frequency quantified as B cell frequency as a fraction of CD45+CD66- cells.

(D) Correlations between CAZymes (colored by CAZy family) and immune cells signaling 

capacity for various cell types and stimulatory cytokines.
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