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A B S T R A C T

The world health organization (WHO) has declared the Coronavirus (COVID-19) a pandemic. In light of this
ongoing global issue, different health and safety measure has been recommended by the WHO to ensure the
proactive, comprehensive, and coordinated steps to bring back the whole world into a normal situation. This
is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates
which consider the rapid-test as the intervention program. Therefore, we have developed the biologically
feasible region, i.e., positively invariant for the model and boundedness solution of the system. Our system
becomes well-posed mathematically and epidemiologically for sensitive analysis and our analytical result shows
an occurrence of a forward bifurcation when the basic reproduction number is equal to unity. Further, the
local sensitivities for each model state concerning the model parameters are computed using three different
techniques: non-normalizations, half-normalizations, and full normalizations. The numerical approximations
have been measured by using System Biology Toolbox (SBedit) with MATLAB, and the model is analyzed
graphically. Our result on the sensitivity analysis shows a potential of rapid-test for the eradication program
of COVID-19. Therefore, we continue our result by reconstructing our model as an optimal control problem.
Our numerical simulation shows a time-dependent rapid test intervention succeeded in suppressing the spread
of COVID-19 effectively with a low cost of the intervention. Finally, we forecast three COVID-19 incidence
data from China, Italy, and Pakistan. Our result suggests that Italy already shows a decreasing trend of cases,
while Pakistan is getting closer to the peak of COVID-19.
Introduction

It is likely that this infectious disease (COVID-19) originated in an
animal species, and then spread to humans. Person to person spread
of the novel coronavirus reported daily throughout the world. This
virus involves serious respiratory tract infections [1,2]. Therefore, all
the countries are making all-out efforts to deal with a rapidly evolving
situation which is a challenge for the whole world. An emergency
has been declared in infected areas of the world and a serious public
health concern has been paid at a global level. Now, it is important
to understand how to get control by monitoring the spreading of this
disease. Within this urgency, doctors and paramedical staff are on the
front line for treating the COVID-19 patients. While to stop the impact
of this infection and to avoid further spreading some mathematical
estimations are also being performed at each level. Some method has
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been proposed by the researches based on the mathematical modeling
for calculating the basic reproduction number [3,4].

Various ways have been conducted by the government all over the
world to suppress the spread of COVID-19 on their countries, such
as with social distancing, international travel restrictions, rapid-test,
and even lockdown [5]. Many mathematical models conclude that
lockdown is the best way to reduce the spread of COVID-19 effectively
among all the aforementioned control strategies [6]. However, lock-
down interventions are very risky for a country’s economic stability,
Pakistan, India, Iran. Therefore, as a step to prevent the increasing
number of infections, social distancing interventions to minimize the
successful contact of infections and rapid-test to map the spread of in-
fection into options in various countries [5,7], instead of implementing
lockdown in their countries. Computational results give an essential
vailable online 20 April 2022
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way to identify the key critical elements based on the modern decompo-
sition techniques [8–10] in different available reaction routes [11,12]
that allow us to discuss the dynamical properties of the suggested
models of the COVID-19. Recently, some models of the COVID-19
have suggested, they provide a good step forward to understand the
dynamics of this disease [13–16]. Accordingly, some suggested math-
ematical models were reviewed and some computational simulations
investigated for the confirmed cases in China [17]. More recently, we
developed an updated model of the COVID-19, we have also identified
some key critical parameters with sensitivity analysis [18].

Although some mathematical models have been projected so far
for new coronavirus disease prediction, a lot can still be improved.
Defining such models based on mass action law with reaction rate con-
stants and calculating the sensitivities for each model state with respect
to model parameters could improve the outcomes. In a complicated
modeling case like new coronavirus dynamics, it is necessary to pay
more attention to the optimal control problem and sensitivity analysis
more accurately and widely.

Here in this article, we further developed our previous model,
some transmission paths and parameters are added. We focused on
analyzing the effect of COVID-19 rapid-test as an alternative to sup-
press the spread of COVID-19. Another novelty of the paper is the
identification of the critical model parameters, which makes it easy
for the biologists to be used with less knowledge of mathematical
modeling and also facilitates the improvement of the model for future
development. Consequently, here we measure the effect of rapid-test
infection identification on the COVID-19 free equilibrium point and
the reproduction number for local stability. Interestingly, the optimal
control problem applied to the established model shows that the time-
dependent interventions which adapt to the number of infections are
able to reduce the number of COVID-19 infections well and at a
much lower cost. Finally, we give some short time forecasting of three
countries (China, Italy and Pakistan) using our proposed model.

A mathematical model of COVID-19

Let assume the human population can be separated depending on
their health status respected to infection status on COVID-19 disease,
both visually (symptoms) or through a medical test. Next, let us con-
sider that there is a random test to check whether someone is infected
with COVID-19 or not. Then, we split the human class into 5 different
classes.

1. Susceptible class (𝑆): This class presents a healthy individual.
2. Asymptomatic class (𝐴): This class presents an infected indi-

vidual in the early stage of infection. They do not show any
symptoms, but capable to infect through droplets or direct con-
tact with the susceptible individual. Because they do not show
any symptoms, these individuals are still easy to perform social
contact with everyone since they do not realize that they are
infected by COVID-19.

3. Symptomatic Unreported class (𝑈): This class presents an indi-
vidual who gets infected, had symptoms of COVID-19, but did
not detect by the government as a COVID-19 suspect.

4. Symptomatic reported class (𝐼): This class presents an individual
who gets infected, shows a symptoms of COVID-19, and detected
by the government, either it from a rapid test, or from voluntary
action to report to the hospital. We assume that all individuals in
this class will get a specific treatment and supervision, whether
it is through monitored isolation or treatment in the hospital.

5. Recovered class (𝑅): This class present individual who get recov-
ered from COVID-19, and had a temporal immunity.

The transmission diagram which illustrates the interaction between
ach class described in Fig. 1.

The explanation about model construction is as follows. Susceptible
ndividual increased caused by natural birth rate 𝛬, and infection from
2

𝐴,𝑈 and 𝐼 with effective contact rate 𝛽1, 𝛽2 and 𝛽3, respectively. Note
hat 𝛽2 > 𝛽1 > 𝛽3 since undetected infected individuals still have
ull access to perform a contact social with randomly. On the other
and, 𝐼 has the smallest infection rate caused by an infected individual
lready detected by the government, which isolated in the hospital or
onitored by the government to conduct self-isolation in their home.

ndividuals in 𝐴 increased cause by infection from 𝑆, and decreased
aused by recovery to 𝑅 with a rate of 𝜂1, progression in symptomatic
o 𝑈 with a rate of 𝛿 and the infectious detected individual with the rate
f 𝛾1. 𝛾1 present both human awareness to report their health status to
he government about their symptoms, so they can get treatment by the
overnment, or detected by rapid test intervention by the government.
lease note that 𝛾2 > 𝛾1 since we assume that the government has
ore concerned to bring the symptomatic individual into the hospital.
ndetected symptomatic individual 𝑈 increased by progression from

𝐴 and decreased by recovery with constant rate 𝜂2, rapid test 𝛾2 and
death rate induced by COVID-19 𝜉. Detected symptomatic infectious
individual 𝐼 increased by progression from 𝐴, rapid test from 𝑈 , and
ecreased by recovery rate 𝜂3 and death rate induced by COVID-19.
ast, recovered compartment 𝑅 increased by recovery rate from all
nfected individuals. Each compartment decreased by natural death rate
.

Based on the transmission diagram in Fig. 1 and aforementioned
xplanation, the model equation to describe the effect of rapid test in
he spread of COVID-19 is as follows:
𝑑𝑆
𝑑𝑡

= 𝛬 − 𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

− 𝜇𝑆,

𝑑𝐴
𝑑𝑡

= 𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

− 𝛿𝐴 − 𝛾1𝐴 − 𝜂1𝐴 − 𝜇𝐴,

𝑑𝑈
𝑑𝑡

= 𝛿𝐴 − 𝛾2𝑈 − 𝜂2𝑈 − 𝜉𝑈 − 𝜇𝑈,

𝑑𝐼
𝑑𝑡

= 𝛾1𝐴 + 𝛾2𝑈 − 𝜂3𝐼 − 𝜉𝐼 − 𝜇𝐼,

𝑑𝑅
𝑑𝑡

= 𝜂1𝐴 + 𝜂2𝑈 + 𝜂3𝐼 − 𝜇𝑅.

(1)

his model supplemented with the non-negative initial condition, and
ote that all parameters are positive.

odel analysis

asic properties

Epidemiological meaningfulness of system (1) is one of the
aramount analyzes in this section since it describes the human popula-
ion. We perform the following theorem about the positiveness solution
f the system (1).

heorem 1. Let the initial conditions:

(0) ≥ 0, 𝐴(0) ≥ 0, 𝑈 (0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0

xist in the interval 𝑡 ∈ [0,∞), then the solutions 𝑆(𝑡), 𝐴(𝑡), 𝑈 (𝑡), 𝐼(𝑡) and
(𝑡) of system (1) are positive for all 𝑡 ≥ 0.

roof. From system (1), we obtain:
𝑑𝑆
𝑑𝑡

|

|

|

|𝑆=0,𝐴≥0,𝑈≥0,𝐼≥0,𝑅≥0
= 𝛬 > 0,

𝑑𝐴
𝑑𝑡

|

|

|

|𝑆≥0,𝐴=0,𝑈≥0,𝐼≥0,𝑅≥0
= 𝑆

(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

≥ 0,

𝑑𝑈
𝑑𝑡

|

|

|

|𝑆≥0,𝐴≥0,𝑈=0,𝐼≥0,𝑅≥0
= 𝛿𝐴 ≥ 0,

𝑑𝐼
𝑑𝑡

|

|

|

|𝑆≥0,𝐴≥0,𝑈≥0,𝐼=0,𝑅≥0
= 𝛾1𝐴 + 𝛾2𝑈 ≥ 0,

𝑑𝑅 |

|

|

= 𝜂1𝐴 + 𝜂2𝑈 + 𝜂3𝐼 ≥ 0.

𝑑𝑡

|𝑆≥0,𝐴≥0,𝑈≥0,𝐼≥0,𝑅=0
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Fig. 1. Transmission diagram of COVID-19 with the effect of rapid-test.
The above rates are all non-negative over their boundary planes of the
non-negative cone R5

+. Therefore, we have the direction of vector fields
intended inward from their boundaries. Consequently, we are starting
from the non-negative initial conditions so that all the solutions of the
system (1) remains positive for all the time 𝑡 > 0. Hence, the following
theorem implies the boundedness solution of the system (1).

Theorem 2. The biologically feasible region

𝛺 =
{

(𝑆,𝐴,𝑈, 𝐼, 𝑅) ∈ R5
+ ∶ 𝑆 + 𝐴 + 𝑈 + 𝐼 + 𝑅 ≤ 𝛬

𝜇

}

is positively invariant for the model (1).

Proof. Since
𝑑𝑁
𝑑𝑡

=
𝑑(𝑆 + 𝐴 + 𝑈 + 𝐼 + 𝑅)

𝑑𝑡
= 𝛬 − 𝜇𝑁 − 𝜉(𝑈 + 𝐼) ≤ 𝛬 − 𝜇𝑁,

we have that 𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + 𝛬
𝜇

[

1 − 𝑒−𝜇𝑡
]

. Basically, 𝑁(𝑡) ≤ 𝛬
𝜇

with respect to the condition 𝑁(0) ≤ 𝛬
𝜇 . Therefore, we have that 𝛺

to be positively invariant and attracting which suffices system (1) can
be considered in 𝛺. Hence, system (1) considered being well-posed
mathematically and epidemiologically.

COVID-19 free equilibrium point and the reproduction number

The COVID-19 free equilibrium point of system (1) is given by:

𝐸1 =
(

𝑆1, 𝐴1, 𝑈1, 𝐼1, 𝑅1
)

=
(

𝛬
𝜇
, 0, 0, 0, 0

)

. (2)

To analyze the local stability of 𝐸1, first, we construct the valued
basic reproduction number of system (1) using the next-generation
matrix approach (Please see [19] for further detail, and more example
in [20–25]). The basic reproduction number of system (1) is given by:

0 = asymptomatic +undetected +detected, (3)

where

asymptomatic =
𝛽1𝛬

𝜇(𝛿 + 𝜂1 + 𝛾1)
, (4)

undetected =
𝛽2𝛬𝛿

𝜇(𝛿 + 𝜂1 + 𝛾1)(𝜉 + 𝜂2 + 𝛾2)
, (5)

detected =
𝛽3𝛬

(

𝛿𝛾2 + 𝜉𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
)

𝜇(𝛿 + 𝜂1 + 𝛾1)(𝜉 + 𝜂2 + 𝛾2)(𝜉 + 𝜂3)
. (6)

Note that 0 is the summation of three types of ‘‘local’’ basic reproduc-
tion numbers depending on the origin of the infection, whether it from
asymptomatic (asymptomatic), undetected symptomatic (undetected) or
detected symptomatic ( ) individuals.
3

detected
Fig. 2. Transcritical bifurcation diagram of system (1) using 𝛾1 as the bifurcation
parameter.

Having the basic reproduction number in hand, and using [29], we
have the following theorem regarding the local stability of 𝐸1.

Theorem 3. The COVID-19 free equilibrium 𝐸1 of the system (1) is locally
asymptotically stable if 0 < 1, and unstable if 0 > 1.

0 presents the expected number of secondary cases of COVID-19
which generated by a single infection introduced into a community
of totally susceptible individuals. The results in Theorem 3 shows
that COVID-19 can be eliminated in the community when the basic
reproduction number is less than unity.

Endemic equilibrium point

The COVID-19 endemic equilibrium point of system (1) is given
by

𝐸2 =
(

𝑆2, 𝐴2, 𝑈2, 𝐼2, 𝑅2
)

, (7)

where

𝑆2 =
𝛬

(

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
)

𝐾1𝐼2 +𝐾2
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Fig. 3. A condition of 0 respect to 𝛾1 and 𝛾2.

Table 1
The model parameters and initial model populations for COVID-19 epidemic outbreak
with their biological definitions.

Symbols Biological definitions Estimated values Sources

𝑆(0) Initial susceptible individuals 11.081 × 106 [26]

𝐴(0) Initial asymptomatic infected
individuals

3.62 [26]

𝐼(0) Initial recorded symptomatic
infected individuals

1 [26]

𝑈 (0) Initial unrecorded symptomatic
infected individuals

4.13 [26]

𝑅(0) Initial recovered individuals 0 [26]

𝛽1 Transition rate between
susceptible and asymptomatic
infected individuals

4.5 × 10−7 Fixed

𝛽2 Transition rate between
susceptible and unreported
symptomatic infected individuals

1.45 × 10−6 Fixed

𝛽3 Transition rate between
susceptible and reported
symptomatic infected individuals

8.68 × 10−8 [27]

𝛿 Transition rate between
asymptomatic infected and
unreported symptomatic infected

0.0285 [26]

𝛾1 Transition rate between
asymptomatic infected and
reported symptomatic infected

0.1142 [26]

𝛾2 Transition rate between
unreported symptomatic and
reported symptomatic infected
individuals

0.35 Fixed

𝜂1 The recovery rate of unreported
asymptomatic infected case

0.13978 [28]

𝜂2 The recovery rate of unreported
symptomatic infected case

0.2 Fixed

𝜂3 The recovery rate of reported
symptomatic infected case

0.33029 [28]

𝜉 The reported and unreported
symptomatic death rate

1.7826 × 10−5 [28]
4

𝐴2 =
𝐼2

(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
,

𝑈2 =
𝐼2 𝛿

(

𝜇 + 𝜉 + 𝜂3
)

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
,

𝑅2 =
𝐼2𝐾3

𝜇
(

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
) ,

and

𝐾1 =
(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝛽1 +
(

𝛿 𝛽2 + 𝛽3𝛾1
)

𝜇,

+
(

𝛿 𝛽2 + 𝛽3𝛾1
)

𝜉 + 𝛽3
(

𝛿 + 𝛾1
)

𝛾2 + 𝛿 𝛽2𝜂3 + 𝛽3𝜂2𝛾1,

𝐾2 = 𝜇
(

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
)

,

𝐾3 =
(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝜂1
+

((

𝛿 + 𝛾1
)

𝜂2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝛾2
(

𝛿 + 𝛾1
))

𝜂3 + 𝛿 𝜂2 (𝜇 + 𝜉) .

𝐼2 is taken from the positive root of linear equation given by:

𝐾4𝐼 −𝐾5
(

0 − 1
)

= 0 (8)

where

𝐾4 =
(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
) (

𝛿 + 𝜇 + 𝜂1 + 𝛾1
)

𝐾41,

𝐾41 =
(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝛽1,

+
(

𝛿 𝛽2 + 𝛽3𝛾1
)

𝜇 +
(

𝛿 𝛽2 + 𝛽3𝛾1
)

𝜉,

+ 𝛽3
(

𝛿 + 𝛾1
)

𝛾2 + 𝛿 𝛽2𝜂3 + 𝛽3𝜂2𝛾1,

𝐾5 =
(

𝛿 𝛾2 + 𝜇 𝛾1 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2
)

𝜇
(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
) (

𝛿 + 𝜇 + 𝜂1 + 𝛾1
)

.

It can be seen from (8) that 𝐼2 will be positive if 0 > 1. The
existence of the endemic equilibrium is given in the following theorem.

Theorem 4. The COVID-19 endemic equilibrium point 𝐸2 of the sys-
tem (1) exist if condition 0 > 1 holds.

Bifurcation analysis

On the system (1), we assumed

𝑆 = 𝑥1, 𝐴 = 𝑥2, 𝑈 = 𝑥3, 𝐼 = 𝑥4, 𝑅 = 𝑥5,
𝑑𝑆
𝑑𝑡

= 𝑔1,
𝑑𝐴
𝑑𝑡

= 𝑔2,
𝑑𝑈
𝑑𝑡

= 𝑔1,
𝑑𝐼
𝑑𝑡

= 𝑔1,
𝑑𝑅
𝑑𝑡

= 𝑔1.

Therefore, system (1) can be re-written as

𝑔1 = 𝛬 − 𝑥1
(

𝛽1𝑥2 + 𝛽2𝑥3 + 𝛽3𝑥4
)

− 𝜇𝑥1,

𝑔2 = 𝑥1
(

𝛽1𝑥2 + 𝛽2𝑥3 + 𝛽3𝑥4
)

− 𝛿𝑥2 − 𝛾1𝑥2 − 𝜂1𝑥2 − 𝜇𝑥2,

𝑔3 = 𝛿𝑥2 − 𝛾2𝑥3 − 𝜂2𝑥3 − 𝜉𝑥3 − 𝜇𝑥3,

𝑔4 = 𝛾1𝑥2 + 𝛾2𝑥3 − 𝜂3𝑥4 − 𝜉𝑥4 − 𝜇𝑥4,

𝑔5 = 𝜂1𝑥2 + 𝜂2𝑥3 + 𝜂3𝑥4 − 𝜇𝑥5.

(9)

Next, let 𝛽1 as the bifurcation parameter. To do this, we solve 0 = 1
respect to 𝛽1 to yield 𝛽∗1 which is given by

𝛽∗1 =
𝜇(𝛿 + 𝜂1 + 𝛾1)

𝛬
(

0 −undetected −detected
)

Next, substitute 𝐸1 and 𝛽∗1 to the Jacobian matrix of system (9)
which will gave us:

𝐽𝐸1 ,𝛽1=𝛽∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜇 − 𝛬𝛽∗

𝜇
− 𝛬𝛽2

𝜇
− 𝛬𝛽3

𝜇
0

0 𝛬𝛽∗

𝜇
− 𝛿 − 𝜇 − 𝜂1 − 𝛾1

𝛬𝛽2
𝜇

𝛬𝛽3
𝜇

0

0 𝛿 −𝜇 − 𝜉 − 𝜂2 − 𝛾2 0 0

0 𝛾1 𝛾2 −𝜇 − 𝜉 − 𝜂3 0

0 𝜂1 𝜂2 𝜂3 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This matrix has one simple zero eigenvalues, while the other four are
negative. Therefore, we can use a center-manifold approach to analyze
the stability of the endemic equilibrium when  close to one.
0
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Fig. 4. Computational simulations for the model states given in system (1) of the COVID-19 using MATLAB; there are model dynamics of (a) susceptible individuals, (b) asymptomatic
infected individuals, (c) unreported symptomatic infected individuals, (d) reported symptomatic infected individuals, (e) recovered individuals.
Firstly, we look for the right eigenvector and left eigenvector. Let
vector 𝑤⃗ = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) as the right eigenvector of simple zero
eigenvalue of 𝐽𝐸1 ,𝛽1=𝛽∗ . The right eigenvector 𝑤⃗ is given by

𝑤1 = −

(

𝛿 + 𝜂1 + 𝛾1 + 𝜇
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝛿 𝜇
,

𝑤2 =
𝜇 + 𝜉 + 𝜂2 + 𝛾2

𝛿
,

𝑤3 = 1,

𝑤4 =
𝛿 𝛾2 + 𝛾1𝜇 + 𝜉 𝛾1 + 𝜂2𝛾1 + 𝛾1𝛾2

𝛿
(

𝜇 + 𝜉 + 𝜂3
) ,

𝑤5 =

(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝜂1 +
(

𝛾1𝜇 + 𝜉 𝛾1 +
(

𝛾2 + 𝜂2
) (

𝛾1 + 𝛿
))

𝜂3 + 𝛿 𝜂2 (𝜇 + 𝜉)

𝛿
(

𝜇 + 𝜉 + 𝜂3
)

𝜇

(10)

Similarly, let the left eigenvector of 𝐽𝐸1 ,𝛽1=𝛽∗ is given by 𝑣 =
(𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 ). Therefore, the left eigenvector 𝑣 is obtained as follows:
5

1 2 3 4 5
𝑣1 = 0,

𝑣2 =
𝑣4

(

𝜇 + 𝜉 + 𝜂3
)

𝜇
𝛬𝛽3

,

𝑣3 =

(

𝜇 𝛽2 + 𝜉 𝛽2 + 𝛽2𝜂3 + 𝛽3𝛾2
)

𝑣4
𝛽3

(

𝜇 + 𝜉 + 𝜂2 + 𝛾2
) ,

𝑣4 = 1,

𝑣5 = 0.

(11)

Since the eigenvector 𝑣1 = 0 and 𝑣5 = 0, so there is no need to look for a
partial derivative of 𝑔1 and 𝑔5. Therefore, we find the derivatives of 𝑔2,
𝑔3, and 𝑔4 to get the values  and  in the Castillo-Song bifurcation
theorem [30]. From non-zero 𝑔2, 𝑔3 and 𝑔4, the derivatives are as
follows:
𝜕2𝑔2

𝜕𝑥1𝜕𝑥2
=

𝜕2𝑔2
𝜕𝑥2𝜕𝑥1

= 1
𝛬
(

𝜇 + 𝜉 + 𝜂3
)(

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

×
(((

−𝛬𝛽3 + 𝜇2 + 𝜇 𝜉 + 𝜇 𝜂3
)

𝛾2+
(

𝜇 + 𝜉 + 𝜂
)(

−𝛬𝛽 + 𝜇2 + 𝜇 𝜉 + 𝜇 𝜂
))

𝛿
3 2 2
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Fig. 5. Computational simulations for the model states given in system (1) of the COVID-19 using MATLAB; there is the relationship between the asymptomatic infected people
and (a) susceptible individuals, (b) unreported symptomatic infected individuals, (c) reported symptomatic infected individuals, (d) recovered individuals.
+
(

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

((

−𝛬𝛽3 + 𝜇2 + 𝜇 𝜉 + 𝜇 𝜂3
)

𝛾1
+ 𝜇

(

𝜂1 + 𝜇
)(

𝜇 + 𝜉 + 𝜂3
)))

,

𝜕2𝑔2
𝜕𝑥1𝜕𝑥3

=
𝜕2𝑔2

𝜕𝑥3𝜕𝑥1
=𝛽2,

𝜕2𝑔2
𝜕𝑥1𝜕𝑥4

=
𝜕2𝑔2

𝜕𝑥4𝜕𝑥1
=𝛽3,

𝜕2𝑔2
𝜕𝑥2𝜕𝛽1

=
𝜕2𝑔2

𝜕𝛽1𝜕𝑥2
=𝛬
𝜇
.

So that  and  are obtained as follows:

 =
3
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0)

= 𝑣2𝑤1𝑤2
𝜕2𝑔2

𝜕𝑥1𝜕𝑥2
+ 𝑣2𝑤1𝑤3

𝜕2𝑔2
𝜕𝑥1𝜕𝑥3

+ 𝑣2𝑤1𝑤4
𝜕2𝑔2

𝜕𝑥1𝜕𝑥4

+ 𝑣2𝑤2𝑤1
𝜕2𝑔2

𝜕𝑥2𝜕𝑥1

+ 𝑣2𝑤3𝑤1
𝜕2𝑔2

𝜕𝑥3𝜕𝑥1
+ 𝑣2𝑤4𝑤1

𝜕2𝑔2
𝜕𝑥4𝜕𝑥1

+ 𝑣3𝑤2𝑤1
𝜕2𝑔3

𝜕𝑥2𝜕𝑥1

= −2

(

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)2 (𝜇 + 𝜉 + 𝜂3

) (

𝛿 + 𝜂1 + 𝛾1 + 𝜇
)2 𝜇

𝛿2𝛽3𝛬2
< 0

 =
3
∑

𝑘,𝑖=1
𝑣𝑘𝑤𝑖

𝜕2𝑔2
𝜕𝑥2𝜕𝛽1

(0, 0)

=

(

𝜇 + 𝜉 + 𝜂3
) (

𝜇 + 𝜉 + 𝜂2 + 𝛾2
)

𝛽3𝛿
> 0

(12)

As  < 0 and  > 0, the 𝐸1 become unstable when 0 > 1, but close
to one. At the same time, it appears an endemic equilibrium, which
6

is locally asymptotically stable. The following results are stated in the
form of the following theorem.

Theorem 5. System (1) undergoes a forward bifurcation at 0 = 1.

To illustrate the result of Theorems 3, 4, and 5, we give a bifurcation
diagram of system 1 presented by detecting symptomatic variables
with 0 in Fig. 2. To derive Fig. 2, we use parameter value as shown
in Table 1 except 𝛾1 which used as the bifurcation parameter. When
𝛾1 < 0.019, then we have that 0 < 1, which gives a stable COVID-
19 free equilibrium. When 𝛾1 = 0.019, zero eigenvalues appear, and
change of stability appears when we can see that the COVID-19 free
equilibrium becomes unstable, while the endemic equilibrium arises
and locally stable.

Discussion on 0

Based on Theorems 3 and 4, the basic reproduction number in (3)
determines the existence or disappearance of COVID-19. This 0
formed by three-component of a specific infection. The first compo-
nent is asymptomatic = 𝛽1𝛬

𝜇(𝛿+𝜂1+𝛾1)
, which described a number of new

infection from direct contact between a susceptible individual with
the asymptomatic individual during its infection period. To reduce
this local basic reproduction number, various ways can be adopted,
i.e., such as reducing 𝛽 to avoid infection with the asymptomatic
individual. Unfortunately, the asymptomatic individual does not show
any symptoms; therefore, avoid contact with this type of infected
individual is difficult to be estimated. Therefore, the only way is to
reduce random contact between each individual, whether it is a healthy
or infected individual. In several countries [31], the government is
campaigning for the use of medical masks to all people, regardless
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Fig. 6. The effect of transition rate 𝛽1 on (a) susceptible individuals (b) asymptomatic infected individuals, (c) unreported symptomatic infected individuals, (d) reported symptomatic
infected individuals (e) recovered individuals, in computational simulations using MATLAB parameters used 𝛽1 = 4.5 × 10−7 for blue lines, 𝛽1 = 1.2 × 10−7 for green lines and
𝛽1 = 5.2 × 10−8 for red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of whether they are infected or healthy individuals. The other way
to reduce asymptomatic is to enlarging the rate of rapid-test 𝛾1. As
mentioned before, the purpose of this rapid-test intervention is to map
the infected individuals (asymptomatic and symptomatic), so several
actions can be done to these individuals to prevent further infection.
Enlarging 𝛾1 will help the government to be able to focus all health
measures on this individual group, such as monitoring self-quarantine,
isolation in hospitals, and so forth. The long-term effect is that the
government can reduce the number of infections in the field from
this group of individuals. Another way to reduce asymptomatic is by
increasing the recovery rate 𝜂1. Since these individuals do not show any
symptoms, no medical intervention cannot be given to asymptomatic
individuals. Therefore, encourage a healthy lifestyle to enhance self
immunity through a media campaign is a reasonable option.
7

The second component in 0 is undetected, which describes new
infection from the unreported symptomatic cases during its infection
period. Since 𝜕undetected

𝜕𝛿 = 𝛬𝛽2(𝜂1+𝛾1)
𝜇 (𝛿+𝜂1+𝛾1)2(𝜉+𝜂2+𝛾2)

> 0, reducing the pro-
gression rate 𝛿 will reduce undetected. In COVID-19, the incubation
period estimated between 2–14 days [32]. Smaller 𝛿 means that the
infection needs a longer time to show the symptoms. The other way
except increasing rapid-test rate 𝛾2, to reduce undetected can be done
by improving the quality and quantity of health services in hospitals,
which our model represents, i.e., by reducing the death race induced
by COVID-19 (𝜉) and increasing recovery rate (𝜂3). By increasing the
capacity of the hospital, more infected individuals can get proper
medical treatment, which is expected to reduce the rate of death due
to disease, and shorten the duration of infection.

The third component in 0 is detected which describes a new
infection caused by symptomatic reported cases during its infection
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Fig. 7. The effect of transition rate 𝛾1 on (a) asymptomatic infected individuals, (b) unreported symptomatic infected individuals, (c) reported symptomatic infected individuals (d)
recovered individuals, in computational simulations using MATLAB parameters used 𝛾1 = 0.1142 for blue lines, 𝛾1 = 0.3 for green lines and 𝛾1 = 0.9 for red lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
period. Here, note that this class is monitored by the government,
whether it in the hospital, or monitored by the government tracking
system to conduct self-quarantine in their home. This intervention will
reduce 𝛽3. Discipline implementation of this contact reduction will
reduce 𝛽3 significantly, and more easy to be monitored compared with
minimizing 𝛽1 and 𝛽2.

To finalize our discussion on 0, we perform a sensitivity analysis
of 0 respect to 𝛾1 and 𝛾2. Using parameters value in Table 1 except 𝛾1
and 𝛾2, we plot a condition of 0 = 1 on 𝛾1−𝛾2 plane in Fig. 3. Since 𝜕0

𝜕𝛾1
and 𝜕0

𝜕𝛾2
are negative, the 2nd and 3rd(a) area represents a combination

of 𝛾1 and 𝛾2 and gives 0 < 1, while 1st and 3rd(b) area representing
a condition when 0 > 1. The first information that we can take from
Fig. 3 is that 𝛾1 is more sensitive in determining 0 rather than 𝛾2.
It means that rapid-test intervention into asymptomatic individuals is
more advisable to encourage for the implementation in the field. The
reason is this, by bringing/identify the infected individuals in the field
will give the government flexibility and more focus in the intervention.
Another information that can be taken from Fig. 3 is that the existence
of ‘‘useless’’ intervention, that is the 1st area. The 1st area (𝛾1 < 0.0173)
representing a condition of 0 is always larger than one, no matter the
value of 𝛾2. On the other hand, the 2nd area (𝛾1 > 0.228), represents
an area when 0 is always less than one even though the government
does not take a rapid-test 𝛾2 in unreported symptomatic individual. If
the government only implements 𝛾1 in the area between 0.0173 and
0.228, then implementation of 𝛾2 must be taken carefully, since it can
end up in an unsuccessful intervention (3rd(b) area) or the successful
intervention (3rd(a) area). Therefore, implementing rapid-test need a
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very careful justification for the implementation, since a large rapid-
test intervention leads to a very costly intervention, but small rapid-test
could end up in an unsuccessful intervention.

Sensitivity analysis

Consider a system of differential equations
𝑑𝑥𝑗
𝑑𝑡

= ℎ𝑗 (𝑥, 𝛼), (13)

where 𝑥 ∈ R𝑚 and 𝛼 ∈ R𝑛. The functions ℎ𝑗 , 𝑗 = 1, 2,… , 𝑚 are
often non-linear therefore model differential equations may not solve
analytically. An important technique to analyze system (13) is the
idea of sensitivity analysis. According to this approach, the sensitivity
of each variable concerning parameters can be calculated. The main
equation of sensitivity is given below

𝑠𝑗𝑝 =
𝜕𝑥𝑗
𝜕𝛼𝑝

= lim
𝛥𝛼𝑝→0

𝑥𝑗 (𝛼𝑝 + 𝛥𝛼𝑝) − 𝑥𝑗 (𝛼𝑝)
𝛥𝛼𝑝

. (14)

The first order derivatives given in Eq. (14) represent the
time-dependent sensitivities of all variables {𝑥𝑗 , 𝑗 = 1, 2,… , 𝑚} with
respect to each parameter value {𝛼𝑝, 𝑝 = 1, 2,… , 𝑛}. Furthermore,
the differential equations can be solved for sensitivity coefficients as
below
𝜕𝑠𝑗𝑝
𝜕𝑡

= 𝜕
𝜕𝑡

( 𝜕𝑥𝑗
𝜕𝛼𝑝

)

= 𝜕
𝜕𝛼𝑝

( 𝜕𝑥𝑗
𝜕𝑡

)

= 𝜕
𝜕𝛼𝑝

(

ℎ𝑗 (𝑥(𝑡)), 𝛼
)

. (15)

Using the chain rule of differentiation, Eq. (15) can be further driven
and the sensitivity equations take the Jacobian matrix as follows

̇ =  +  . , 𝑝 = 1, 2,… , 𝑛, (16)
𝛼𝑝
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Fig. 8. The effect of transition rate 𝜂1 on (a) asymptomatic infected individuals, (b) unreported symptomatic infected individuals, (c) reported symptomatic infected individuals (d)
recovered individuals, in computational simulations using MATLAB parameters used 𝜂1 = 0.13978 for blue lines, 𝜂1 = 0.3 for green lines and 𝜂1 = 0.8 for red lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The effect of transition rate 𝛿 on (a) unreported symptomatic infected individuals, parameter used 𝛿 = 0.0285 (blue line), 𝛿 = 0.018 (green line), 𝛿 = 0.008 (red line), (b)
unreported symptomatic infected individuals, parameter used 𝛿 = 0.09 (red line), 𝛿 = 0.05 (green line), 𝛿 = 0.0285 (blue line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
where the matrices  ,𝛼𝑝 and  are defined by

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝜕𝑥1
𝜕𝛼𝑝
𝜕𝑥2
𝜕𝛼𝑝
⋮

𝜕𝑥𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

, 𝛼𝑝 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝜕ℎ1
𝜕𝛼𝑝
𝜕ℎ2
𝜕𝛼𝑝
⋮

𝜕ℎ𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

,  =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝜕ℎ1
𝜕𝑥1

𝜕ℎ1
𝜕𝑥2

⋯
𝜕ℎ1
𝜕𝑥𝑚

𝜕ℎ2
𝜕𝑥1

𝜕ℎ2
𝜕𝑥2

⋯
𝜕ℎ2
𝜕𝑥𝑚

⋮ ⋮ ⋱ ⋮
𝜕ℎ𝑚 𝜕ℎ𝑚 ⋯

𝜕ℎ𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

.

9

⎝ 𝜕𝛼𝑝 ⎠ ⎝ 𝜕𝛼𝑝 ⎠ ⎝ 𝜕𝑥1 𝜕𝑥2 𝜕𝑥𝑚 ⎠
For more details and applications of sensitivity analysis in the field of
systems biology, the readers are refereed to [33–40]. The local sensitiv-
ity values are given in Eq. (16) can be computed using SimBiology Tool-
box in MATLAB with three different techniques: non-normalizations,
half normalizations, and full normalizations. Accordingly, in a compli-
cated modeling case like new coronavirus dynamics, it is necessary to
pay attention to sensitivity analysis more accurately and widely. This
helps us to identify the key critical model parameters and to improve
model dynamics.
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Fig. 10. The effect of transition rate 𝜂3 on (a) reported symptomatic infected individuals (b) recovered individuals, in computational simulations using MATLAB parameters used
𝜂3 = 0.33029 for blue lines, 𝜂3 = 0.1 for green lines and 𝜂3 = 0.05 for red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 11. The effect of transition rate 𝛾2 and 𝜂2 on unreported symptomatic infected individuals in computational simulations using MATLAB parameters used (a) 𝛾2 = 0.35 for blue
lines, 𝛾2 = 0.15 for green lines and 𝛾2 = 0.05 for red lines, (b) 𝜂2 = 0.2 for blue lines, 𝜂2 = 0.4 for green lines and 𝜂2 = 0.8 for red lines. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Computational results

Mathematical models and computational simulations help and pro-
vide a good environment to analyze high dimensional models of infec-
tious diseases. Such models may help biologists to predict future model
dynamics and identify critical model parameters. The suggested math-
ematical models of COVID-19 are effective tools that give estimations
and suggestions about controlling the virus and further preventions
more effectively and widely. The values of parameters and initial
populations in this study are obtained from the WHO situation reports
(the National Health Commission of the Republic of China) presented
in [26–28].

There are some numerical approximate solutions of the model equa-
tions (1) for different parameters and initial populations using System
Biology Toolbox(SBedit) for MATLAB; see Figs. 4–11. Accordingly, dif-
ferent model dynamics for initial populations are obtained based on
changing the value of model parameters. Results in this study provide
a good step forward in predicting the model dynamics in the future for
development programs, interventions and health care strategies.

To perform our numerical experiments in this section, due to a short
time interval of simulation, we ignore new-born and natural death rate
in our model. Therefore, we have that 𝐴 = 0 and 𝜇 = 0. With this
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assumption, our model now read as:

𝑑𝑆
𝑑𝑡

= −𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

,

𝑑𝐴
𝑑𝑡

= 𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

− 𝛿𝐴 − 𝛾1𝐴 − 𝜂1𝐴,

𝑑𝑈
𝑑𝑡

= 𝛿𝐴 − 𝛾2𝑈 − 𝜂2𝑈 − 𝜉𝑈,

𝑑𝐼
𝑑𝑡

= 𝛾1𝐴 + 𝛾2𝑈 − 𝜂3𝐼 − 𝜉𝐼,

𝑑𝑅
𝑑𝑡

= 𝜂1𝐴 + 𝜂2𝑈 + 𝜂3𝐼.

(17)

The model dynamics of susceptible, asymptomatic infected, re-
ported symptomatic infected, unreported symptomatic infected and
recovered individuals are shown in Fig. 4. The number of susceptible
individuals decreases dramatically and becomes stable after four days
while the dynamics of recovered people increase gradually and get flat
after 15 days. Interestingly, the number of asymptomatic infected indi-
viduals reaches a high level after 5 days while the number of infected
people in both reported and unreported symptomatic are dramatically
changed between 3 days to 15 days. Furthermore, Fig. 5 explains
the relationship between asymptomatic infected people with the other
groups in the COVID-19. There are almost the same model dynamics for
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Fig. 12. The sensitivity of each model state with respect to model parameters in com-
putational simulations for the coronavirus disease (COVID-19); (a) non-normalization
sensitivity, (b) half normalization sensitivity, (c) full normalization sensitivity.

reported and unreported symptomatic states whereas there are slightly
different model dynamics for susceptible and recovered groups.

Fig. 6 shows that the impact of the transition rate 𝛽1 on all model
variables. The effect of this parameter can easily occur on in the dynam-
ics of the model states. For example, if the value of 𝛽1 is increased then
the number of asymptomatic, unreported symptomatic and reported
symptomatic infected people are also increased, see Fig. 6(b,c,d). Also,
the dynamics of susceptible and recovered people become stable when
the value of this parameter becomes larger and larger, see Fig. 6(a) and
(e).
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Fig. 7 shows that the impact of transition rate 𝛾1 on asymptomatic
infected people, reported symptomatic infected, unreported
symptomatic infected, and recovered people. The effect of this param-
eter can easily occur on the variables 𝐴, 𝐼, 𝑈 and 𝑅. It can be seen that
the model dynamics for such states become flattered when the value
of 𝛾1 is increased, see Fig. 7(a,b,d). On the other hand, the number of
reported symptomatic people becomes larger when the value of this
parameter is increased, see Fig. 7(c). This is an important key element
for controlling this disease.

The impact of transition rate 𝜂1 on asymptomatic infected, reported
symptomatic infected, unreported symptomatic infected, and recovered
people is shown in Fig. 8. Intestinally, the number of infected people
in 𝐴,𝑈, 𝐼 groups is dramatically increased when the value of 𝜂1 gets
smaller, this is illustrated in Fig. 8(a,b,c). Furthermore, the dynamic of
recovered individuals reaches stable very quickly when this parameter
becomes large, see Fig. 8(d).

Fig. 9 shows that the impact of parameter 𝛿 on the dynamics
of unreported symptomatic infected people. The number of infected
people is significantly changed for different values of 𝛿. The effect of
transition rate 𝜂3 on reported symptomatic infected individuals and
recovered individuals are computed and given in Fig. 10. Moreover, the
effect of transition rate 𝛾2 and 𝜂2 on unreported symptomatic infected
individuals are shown in Fig. 11.

The idea of sensitivity analysis has an important role in identifying
the model critical element. The main equation of local sensitivity is pre-
sented in Eq. (16). We use SimBiology Toolbox for MATLAB to calculate
the local sensitivity of each model state concerning model parameters
for the model equations (1). We compute the model sensitivities using
three different techniques: non-normalizations, half normalizations and
full normalizations; see Fig. 12. Interestingly, results provide us further
understanding of the model and helps us to identify the key critical
model parameters. For example, it generally seems that the susceptible,
asymptomatic infected, recovered individuals are more sensitive to the
set of model parameters compared to the reported and unreported
symptomatic individuals, this result is based on non-normalization
approach, see Fig. 12(a). Another interesting result is that the group of
asymptomatic, reported symptomatic, unreported symptomatic people
are very sensitive to almost all model parameters, see Fig. 12(b).
This is an effective step to identify the model critical parameters
for controlling the spread of COVID-19. Accordingly, the parameters
{𝛾1, 𝛾2, 𝜂1, 𝜂2, 𝜂3} are the key critical elements for understanding and to
prevent this disease because they are very sensitive according to full
normalization method presented in Fig. 12(c). As a result, identifying
critical model parameters in this study based on computational simu-
lations is an effective way to further study the model practically and
theoretically and give some suggestions for future improvements of the
novel coronavirus vaccination programs, interventions and controlling
the spread of disease.

Optimal control problem

Characterization of the optimal control problem

In this section, we analyze the optimal control problem related to
the model (1). This optimal control approach aims to minimize the
number of an infected individual (𝐴,𝑈,𝑅) using rapid-test intervention.
As explained in Section ‘‘A Mathematical Model of COVID-19’’ that with
the rapid-test, policymakers could map and detect the infected indi-
vidual; hence, the controlled isolation could be implemented to these
individuals to avoid contact with a susceptible individual. Therefore,
we re-define 𝛾1 and 𝛾2 in system (1) as a time-dependent parameter
𝑢1(𝑡), 𝑢2(𝑡), respectively. Due to a short time of interval simulation
and short term of COVID-19 pandemic, we neglect natural new-born
and the natural death rate from our model, similarly with Section

‘‘Computational Results’’. Also, since 𝑅 does not appear in another part
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o
o

Fig. 13. Numerical simulation of the optimal control problem of the system (18) for the base-case.
f the equation in (17) except in 𝑑𝑅∕𝑑𝑡, we may ignore 𝑅 from our
ptimal control problem. Therefore, system (17) now read as:

𝑑𝑆
𝑑𝑡

= −𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

,

𝑑𝐴
𝑑𝑡

= 𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

− 𝛿𝐴 − 𝑢1(𝑡)𝐴 − 𝜂1𝐴,

𝑑𝑈
𝑑𝑡

= 𝛿𝐴 − 𝑢2(𝑡)𝑈 − 𝜂2𝑈 − 𝜉𝑈,

𝑑𝐼
𝑑𝑡

= 𝑢1(𝑡)𝐴 + 𝑢2(𝑡)𝑈 − 𝜂3𝐼 − 𝜉𝐼,

(18)
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Mathematically, our goal is to find an optimal rate of rapid test which
minimize the following cost functional:

 (𝑢1, 𝑢2) = ∫

𝑡𝑓

0

[

𝑎1𝐴 + 𝑎2𝑈 + 𝑎3𝐼 + 1
2
𝑏1𝑢

2
1 +

1
2
𝑏2𝑢

2
2

]

𝑑𝑡. (19)

The first three-component in the integrand is a cost related to a high
number of COVID-19 infections in the community, while the last to
component related to rapid-test intervention. Note that 𝑎1, 𝑎2, 𝑎3, 𝑏1, and
𝑏2 are the weight constant that will balance each component in this cost
function.

Here we seek an optimal solution
(

𝑢∗1 , 𝑢
∗
2
)

such that

∗ ∗ { }
 (𝑢1 , 𝑢2) = min  (𝑢1, 𝑢2) ∈  | , (20)
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Fig. 14. Numerical simulation of the optimal control problem of system (18) when 𝑏1 and 𝑏2 is smaller ten times than in the base-case.
where  =
{

𝑢𝑖|𝑢𝑖 is Lebesgue measurable and 0 ≤ 𝑢min
𝑖 ≤ 𝑢𝑖

≤ 𝑢max
2 ≤ 1

}

be the set of admissible control. To investigate the exis-
tence of optimal control, we use Pontryagin’s Maximum Principle to
govern the necessary condition of the optimal control problem. The
Lagrangian for the optimal system (18) can be defined as:

(𝑆,𝐴, 𝐼, 𝑈, 𝜆𝑗 , 𝑢𝑖) = 𝑎1𝐴 + 𝑎2𝑈 + 𝑎3𝐼 + 1
2
𝑏1𝑢

2
1 +

1
2
𝑏2𝑢

2
2

= 𝜆1
[

−𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)]

+ 𝜆2
[

𝑆
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
)

− 𝛿𝐴 − 𝑢1(𝑡)𝐴 − 𝜂1𝐴
]

+ 𝜆
[

𝛿𝐴 − 𝑢 (𝑡)𝑈 − 𝜂 𝑈 − 𝜉𝑈
]
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3 2 2
+ 𝜆4
[

𝑢1(𝑡)𝐴 + 𝑢2(𝑡)𝑈 − 𝜂3𝐼 − 𝜉𝐼
]

,

where 𝜆𝑗 for 𝑗 = 1, 2, 3, 4 are the costate variable related to 𝑆,𝐴,𝑈, 𝐼 ,
respectively. The costate variable 𝜆𝑗 satisfies the following system of
ordinary differential equations:

𝑑𝜆1
𝑑𝑡

= − 𝜕
𝜕𝑆

=
(

𝛽1𝐴 + 𝛽2𝑈 + 𝛽3𝐼
) (

𝜆2 − 𝜆1
)

,
𝑑𝜆2
𝑑𝑡

= − 𝜕
𝜕𝐴

= −𝑎 + 𝛽 𝑆
(

𝜆 − 𝜆
)

+ 𝛿
(

𝜆 − 𝜆
)

+ 𝑢
(

𝜆 − 𝜆
)

+ 𝜂 𝜆 , (21)
1 1 1 2 2 3 1 2 4 1 2
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𝑢

T
t

𝑢

i

e

(

𝑑𝜆3
𝑑𝑡

= − 𝜕
𝜕𝑈

= −𝑎2 + 𝛽2𝑆(𝜆1 − 𝜆2) + 𝑢2(𝜆3 − 𝜆4) + (𝜉 + 𝜂2)𝜆3,
𝑑𝜆4
𝑑𝑡

= − 𝜕
𝜕𝐼

= −𝑎3 + 𝛽3𝑆(𝜆1 − 𝜆2) + (𝜉 + 𝜂3)𝜆4,

with the transversality condition 𝜆𝑗 (𝑡𝑓 ) = 0 for 𝑗 = 1, 2, 3, 4. Using the
optimality condition 𝜕

𝜕𝑢𝑖
= 0, we get:

†
1 =

𝐴(𝜆2 − 𝜆4)
𝑏1

,

𝑢†2 =
𝑈 (𝜆3 − 𝜆4)

𝑏2
.

aking into account the lower and upper bound for 𝑢1 and 𝑢2, we get
he characterization:

∗
1 = min

{

max
{

𝐴(𝜆2 − 𝜆4)
𝑏1

, 𝑢min
1

}

, 𝑢max
1

}

,

𝑢∗2 = min
{

max
{

𝑈 (𝜆3 − 𝜆4)
𝑏2

, 𝑢min
2

}

, 𝑢max
2

}

. (22)

Numerical experiment on the optimal control problem

The optimal control system which involves the system of state
variables in (18), costate variables in (21), and optimal characterization
in (22) is analyzed using the Runge–Kutta forward–backward iterative
numerical approximation method [21,23,41]. The idea of this method
as follows. First, give an initial guess for control variables 𝑢1 and 𝑢2
for all time 𝑡 ∈ [0, 𝑡𝑓 ]. Using this value, and the initial condition for
state variables, solve system (18) forward in time to find values of state
variables in all-time 𝑡 ∈ [0, 𝑡𝑓 ], and calculate the cost function (19).
Next, solve the costate system (21) backward in time using the transver-
sality condition of costate variables, an initial guess of 𝑢𝑖 and solution
of state variables from the previous step. Next, update the control
variables using Eq. (22). Repeat this scheme until the convergence
criteria achieved. In this article, the terminate condition is until the
error of the optimal solution 𝜙∗ =

{

𝑆∗, 𝐴∗, 𝑈∗, 𝐼∗, 𝑢∗1 , 𝑢
∗
2
}

in iteration-𝑘
s less than small constant 𝛿, or in this case:

rror =
‖

‖

‖

𝜙(𝑘) − 𝜙(𝑘−1)‖
‖

‖

‖

‖

𝑥(𝑘)‖
‖

< 𝛿.

For the base-case, we choose the weight cost:

𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2) = (10, 10, 1, 106, 105).

Note that 𝑎1 and 𝑎2 are larger than 𝑎3 because it is quite difficult for the
policymaker to handle the undetected crises. Furthermore, we have that
𝑐1 > 𝑐2 since the rapid test for the asymptomatic individual is easier to
implement if the candidate had already shown the symptoms. We run
our simulation for 𝑡 ∈ [0, 120].

For the base case, we use parameter value as shown in Table 1,
and the numerical results are given in Fig. 13, and the final number of
infected individuals at 𝑡 = 30, total cost function (19), and a number of
an averted infected individual given in Table 2. Please note that we use
two different y-axes to identify the number of the infected individual,
with and without control, since the scale of an infected individual
without control is almost ten times larger than with controls. It can
be seen that the time-dependent control succeeds in suppressing the
number of infected individuals in all classes. The Control profile for
𝑢1 and 𝑢2 is relatively different. It can be seen that rapid test for the
symptomatic individual (𝑢2) should be given at a maximum rate since
the early time of simulation, and start to decrease to it minimum value
after day 70, where the total of infected individuals are already decreas-
ing. On the other hand, rapid-test for asymptomatic individual start to
be implemented at day 35 when a total of individual infected start to
increase, and it starts to decrease when the number of asymptomatic
individuals also shows a decreasing trend. It is interesting to see that
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Table 2
Numerical result for the base-case in Fig. 13.

Case  New infection averted

No control 2.43 × 106 –
Time-dependent control 4.87 × 105 138 000

Table 3
Numerical result for Fig. 14.

Case  New infection averted

No control 2.45 × 106 –
Time-dependent control 5.5 × 105 157 740

Table 4
Numerical result for Fig. 15.

Country 𝛽1 𝛽2 𝛽3
China 4.015 × 10−8 7.4827 × 10−8 8.04 × 10−9

Italy 3.768 × 10−8 5.4767 × 10−8 7.536 × 10−9

Italy 1.817 × 10−7 3.634 × 10−7 3.5 × 10−8

the dynamic of the symptomatic individual has three outbreaks. The
first outbreak occurs as a consequence of 𝑢1 start to increase in day
35, while the second outbreak occurs when 𝑢1 starts to decrease to its
minimum value in day 62. When 𝑢2 starts to decrease in day 70, the
infected population will start to increase, and the symptomatic class
will reach the third outbreak on day 90. Using the control profile, which
depends on time, as shown in Fig. 13, we can avoid new cases as much
as 138 thousand cases with the cost of intervention more than 50%
cheaper than without the intervention.

Our second simulation conducted to see the impact of a cheaper
rapid-test cost on the dynamic of the infected population. To do this,
we redefine the weight parameter of the base case as (𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2) =
(10, 10, 1, 105, 104), while the other parameters remain the same. It can
be seen that 𝑏1 and 𝑏2 for this scenario are ten times smaller than
in the base-case. The dynamic of the infected population and the
control profile can be seen in Fig. 14, and the numerical results are
shown in Table 3. Similar to the base-case scenario, the time-dependent
control could avoid more than one hundred thousand new cases. As a
consequence of a cheaper rapid-test cost, it can be seen that 𝑢1 and 𝑢2
can remain at the maximum rate for a longer period than in the base-
case. Furthermore, we can see that instead of having three outbreak
as in the base-case, the symptomatic undetected case only have two
outbreak in this scenario. Therefore, we can conclude that a massive
implementation of rapid-test as a consequence of a cheaper cost for the
implementation could prevent a future outbreak of COVID-19.

Application of the proposed model to forecast some COVID-19
incidence data

In this section, we present some examples of how our model in (17)
can fit COVID-19 incidence data. The incidence data used in this article
can be accessed in [42]. We fit the daily infected data to compartment 𝐼
in the proposed model (17) for the early outbreak period. We use
parameter value as shown in Table 1, except 𝛽1, 𝛽2, and 𝛽3 which we
estimated from the real data. We use COVID-19 incidence data from
China (Date of 22 January 2020–27 May 2020), Italy (Date of 6 March
2020–27 May 2020) and Pakistan (6 March 2020–27 May 2020). To fit
these real incidence data, we use the software MATLAB. The results are
shown in Fig. 15, and the parameters that been estimated can be seen
in Table 4. It can be seen that our model could fit the Incidence data
in China. For data of Italy, our model suggests that the disease In Italy
shows a decreasing trend and will tend to zero cases approximately
after day 150 of simulation (Late of July 2020). On the other hand, our
numerical results for Pakistan data show that our proposed model can
capture the dynamics of COVID-19 in the early period of the outbreak.
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Fig. 15. Confirmed COVID-19 data (dotted) vs. simulation of model (17) in (a) China,
(b) Italy and (c) Pakistan.

Conclusions

Let us summarized the discussion started with the mathematical
modeling and concluded with the prime results, while all the data for
studies are obtained from the WHO situation reports NHCRC.

• Here we have modeled the dynamics of all possible cases of
human to human transmission, i.e., susceptible, asymptomatic
infected, reported symptomatic infected, unreported symptomatic
infected, and recovered individuals to analyze accurate transmis-
sion dynamics of the COVID-19 outbreak.

• The solutions of the model equations for different parameters and
initial populations have been numerically approximated using
System Biology Toolbox (SBedit) for MATLAB.

• The modeling and simulation based on the suggested sensitivity
analysis indicate that almost all model parameters may have a
role in spreading this virus among susceptible, infected, recorded
symptomatic, unrecorded symptomatic, and recovered individu-
als.

• The effect of the control strategies on the model is analyzed
graphically and analytically. From the analysis of the basic re-
production number, we found that rapid-test intervention, which
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aims to detect infected individuals among the human population,
is promising to suppress the spread of the COVID-19. The success
level of rapid-test also depending on how the government follows
up the cases that have been detected with the help of rapid-
test, for instance, with self-quarantine monitored for the infected
individual if the case is not yet serious. Increasing the quality of
the hospital by upgrading the capacity of the hospital or increase
the number of medical staff can also increase the chance of
COVID-19 eradication program.

• The prospect of rapid test intervention to help the eradication
program of COVID-19 analyzed using the optimal control theory.
We find that a time-dependent rapid test intervention could re-
duce the number of new COVID-19 infection at a lower cost. We
also find that rapid tests could reduce the size of future outbreak,
delay the time of it appearance, furthermore, it also could elimi-
nate the possibility of outbreak occurrence if the implementation
of rapid-test is set to be adapted to the increasing number of
infections.

• The coronavirus, which is the cause of COVID-19, is very easy to
mutate. Based on [], until 2022, the virus variants for COVID-19
are divided into three, namely variants of concern (4 serotypes),
Variants of Interest (3 serotypes), Variants under monitoring
(7 serotypes), and De-escalated variants (27 serotypes). These
serotype differences are shown in the virus’s physiology and its
consequences on people infected with COVID-19, such as the
speed it spreads, the response to the environment, and how
dangerous the serotype is to humans. Therefore, further analysis
is needed regarding these serotype differences. Differences in
vaccine efficacy against different serotypes make it difficult to
predict the dynamics of COVID-19 with simple models. Multiple
variants model can be considered to understand this issue better.

• Many types of vaccines have been introduced in various parts of
the world. Not all communities in various countries accept this
vaccination policy. In addition, several countries have not yet
achieved the high vaccination coverage recommended by WHO.
Based on this, the mathematical model in this paper needs to
be developed by considering the complexity of this vaccination
problem, such as differences in vaccine efficacy, multiple phases
and vaccine booster, and others.

Results in this study provide a good step forward in predicting the
model dynamics in the future for development programs, interventions,
and health care strategies. For further development of the model, the
reader could consider the existence of the maximum capacity of the
hospital since the low capacity of the hospital will prolong the infection
period. An application of optimal control problems to model the rate
of rapid-test intervention as the time-dependent variable could be con-
sidered to handle the budget limitation on the COVID-19 eradication
program.
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