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Abstract

Background—Stress-only myocardial perfusion imaging (MPI) markedly reduces radiation 

dose, scanning time, and cost. We developed an automated clinical algorithm to safely cancel 

unnecessary rest imaging with high sensitivity for obstructive coronary artery disease (CAD).

Methods and Results—Patients without known CAD undergoing both MPI and invasive 

coronary angiography from REFINE SPECT were studied. A machine learning score (MLS) for 

prediction of obstructive CAD was generated using stress-only MPI and pre-test clinical variables. 

An MLS threshold with a pre-defined sensitivity of 95% was applied to the automated patient 

selection algorithm. Obstructive CAD was present in 1,309/2,079 (63%) patients. MLS had higher 

area under the receiver-operator-characteristic curve (AUC) for prediction of CAD than reader 
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diagnosis and TPD (0.84 vs 0.70 vs 0.78, p<0.01). An MLS threshold of 0.29 had superior 

sensitivity than reader diagnosis and TPD for obstructive CAD (95% vs 87% vs 87%, p<0.01) 

and high-risk CAD, defined as stenosis of the left main, proximal left anterior descending, or 

triple-vessel CAD (sensitivity 96% vs 89% vs 90%, p<0.01)

Conclusions—The MLS is highly sensitive for prediction of both obstructive and high-risk 

CAD from stress-only MPI and can be applied to a stress-first protocol for automatic cancellation 

of unnecessary rest imaging.
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Introduction

Single photon emission computed tomography (SPECT) myocardial perfusion imaging 

(MPI) is the most utilized noninvasive imaging study for patients with known or suspected 

coronary artery disease (CAD)(1), with an estimated 15 million tests performed annually 

worldwide(2, 3). However, widespread use has led to concerns regarding the relatively high 

effective radiation dose associated with SPECT-MPI. In 2015, it was reported that a standard 

rest-stress MPI study carries an effective radiation dose of more than 10 mSv(2, 4, 5), and 

contributed to over 10% of cumulative radiation from medical procedures in the United 

States(2, 3). Additional drawbacks include long procedure times and the subjectivity of 

visual interpretation for perfusion abnormalities.

Currently, most SPECT-MPI protocols utilize two separate image acquisitions, one with 

patient at stress (exercise or pharmacological) and another after rest. However, when stress 

images are normal, rest imaging provides no additional clinical value(5–8). There are data 

from clinical trials, including over 20,000 patients, confirming that the prognosis of a normal 

stress-only MPI is no different than a normal rest-stress MPI(8). Critically, eliminating 

unnecessary rest imaging reduces radiation exposure by up to 75% and laboratory time by 

up to 70%(5, 6, 8, 9). In a stress-first MPI protocol, stress images are acquired and, when 

normal, rest scanning can be cancelled, resulting in a “stress-only” procedure. However, 

successful implementation of stress-only MPI requires timely review of stress imaging 

which poses a significant problem for busy physicians. For this reason, stress-only MPI 

is severely underutilized in United States(2–4). There is an unmet need for a simple 

and efficient method to cancel unnecessary rest imaging without increased work for the 

interpreting physician.

A machine learning approach that combines clinical and image data has been shown 

to improve both the diagnostic and prognostic value of SPECT-MPI results(10, 11). In 

this multicenter study we developed a high sensitivity machine learning score (MLS) for 

prediction of obstructive CAD using stress-only MPI data and pre-test clinical variables for 

use in a stress-first MPI protocol. We recently demonstrated that the MLS could identify 

patients for stress-only imaging at low risk of major adverse cardiovascular events (MACE).

(12) This novel application of machine learning can improve the utilization of stress-only 

MPI by automatically determining the need for the additional rest MPI imaging.
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Methods

Study Population

The REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE 

SPECT) is a multicenter, international collaborative database of both imaging and clinical 

variables(13). The REFINE SPECT diagnostic registry includes 2,079 patients from 9 

centers without known CAD who underwent both SPECT-MPI and invasive coronary 

angiography (ICA) within 180 days between 2009 to 2014. Patients with a history of CAD, 

determined by a physician at each clinical site, were excluded. History of CAD was defined 

as either previous myocardial infarction or previous revascularization.(14) Pre-defined 

clinical variables as well as deidentified MPI data and ICA correlations were transferred 

to a single core laboratory (Cedars-Sinai Medical Center). The study was approved by 

the institutional review boards at each participating institution and the overall study was 

approved by the institutional review board at Cedars-Sinai Medical Center.

Clinical Data

Clinical information was obtained at each site from patients’ medical records. Prior to 

collection, a homogenous classification of each “pre-test” clinical variable was defined 

to assure standardization among sites. Stress test results, including patient symptoms and 

ECG data, were interpreted by the performing physician at each clinical site. Clinical and 

imaging parameters included in REFINE SPECT are shown in Supplemental Table 1(13). 

Only stress imaging variables and pre-test clinical information collected as part of a standard 

SPECT-MPI protocol were considered for automated MLS development.

Image Acquisition

Details of image acquisition and processing are available in the supplement.

Invasive Coronary Angiography

ICA was performed according to standard clinical protocols within 180 days of MPI. The 

indication for ICA was determined by on-site cardiologists at each participating center. 

Follow-up for ICA results and revascularization details were collected from medical records 

(including all clinic visits, cardiology groups, insurance registries, and hospital visits) at 

each enrolling center. All coronary angiograms were visually interpreted by an on-site 

cardiologist. A luminal narrowing of ≥70% in the left anterior descending artery (LAD), 

left circumflex artery (LCx), or right coronary artery (RCA) or ≥50% stenosis of the left 

main coronary artery (LMCA) was considered significant. Dates of revascularization (if 

performed), revascularization type (percutaneous coronary intervention [PCI] or coronary 

artery bypass grafting [CABG]) and location (which artery) are also available.

Visual Perfusion Analysis

Visual perfusion analysis was performed at each participating center at the time of clinical 

interpretation, with full details in the supplement.
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Machine Learning

The MLS was generated using automated variable selection by information gain ratio 

ranking and model building with a boosted ensemble algorithm which is then tested 

using a 10-fold cross validation procedure. Machine Learning (ML) techniques were 

implemented in the open-source Waikato Environment for Knowledge Analysis (WEKA) 

platform 3.8.0 (University of Waikato, Hamilton, New Zealand)(12). A LogitBoost method 

was implemented in the WEKA platform for training and validation.

Variable Selection

A combination of imaging variables, stress-test variables, and pre-test clinical variables 

were available for selection by the feature selection module (information gain ratio). The 

information gain ratio measures the effectiveness of each variable for building training 

models. Only variables that resulted in an information gain ratio >0 were included for model 

building.

Model Building

Predictive classifiers for obstructive CAD were developed by an ensemble (“boosting”) 

LogitBoost algorithm. The principle behind ML ensemble boosting is to combine the 

prediction of simple classifiers with weak performances to create a single strong classifier. 

These weak predictions are then combined in an ensemble (weighted majority voting) 

to derive an overall classifier, the MLS. More details of the model building process are 

available in the supplement.

Cross Validation

The performance and error estimation of the MLS (variable selection and LogitBoost) were 

assessed using a stratified 10-fold cross validation procedure. With this approach, the total 

patient population is split into 10 equal groups, with similar prevalence of obstructive CAD, 

which act as a split-sample (train-test) method. An MLS is derived from each of the 90% 

(training cohort) and applied to the remaining 10% (testing cohort). This process is repeated 

10 times, with different and non-overlapping data used for testing in each iteration, to ensure 

that the MLS is consistently evaluated on previously unseen data and not performed on the 

same population used for model building. These testing results are then concatenated(15, 

16). This repeated procedure is done to obtain a more accurate and unbiased estimate of 

the diagnostic performance of the model. The repetition of testing removes the uncertainty 

associated with which cases are used for training and which are used for testing. The 

diagnostic accuracy the MLS in each individual testing cohort in Supplemental Figure 1.

External Validation of the MLS

To assess the external validity of the proposed MLS, we performed an additional analysis 

in which 9 of the 10 sites were used to generate a new MLS which was then tested in the 

external held-out population.
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Missing Variables

For all variables with missing values, the default imputation was performed by the WEKA 

platform 3.8.1. These data were imputed with the population’s mean value for continuous 

variables, or with a distinct ‘missing’ label for categorical variables. We also generated an 

MLS without variables with >40% missing values to evaluate the impact of missing values, 

with results available in the supplement.

Clinical Validation of Stress-Only MPI

The MLS was generated using stress-only MPI data but not all studies in the REFINE 

SPECT diagnostic registry were performed using a stress-first MPI protocol. Thus, an 

additional analysis was performed to determine its diagnostic performance for stress-first 

MPI using a clinical validation cohort. Details of the clinical validation procedure are 

available in the supplement.

Statistical Analysis

Continuous variables are presented as mean ± standard deviation (SD) or median 

(± interquartile range) as appropriate. Categorical variables are presented as numbers 

and proportions. The paired Student’s T-test (for normally distributed variables) or the 

Wilcoxon rank-sum test (for non-parametrically distributed variables) were used to compare 

differences between groups. Proportions were compared using Chi-Squared, McNemar’s, 

or Friedman’s Test, when appropriate. The predictive accuracy of the MLS, TPD, 

reader diagnosis and SSS for obstructive CAD were evaluated with a receiver operating 

characteristic (ROC) analysis and pairwise comparisons of AUC according to DeLong et 

al on a continuous scale (17). For the clinical diagnostic algorithm, an ideal MLS would 

be highly sensitive for identifying obstructive and high-risk CAD from stress-only MPI 

data without increasing the frequency of unnecessary rest scans. Therefore, three thresholds 

for MLS were established which corresponded to sensitivities of 90%, 95%, and 99% for 

obstructive CAD based on ROC curve analysis. The calibration of the MLS was assessed 

with a calibration plot and the Brier score. A two-tailed P value < 0.05 was considered 

statistically significant. Statistical calculations were performed using R software version 3.4 

and SPSS (IBM SPSS Software for Windows, Version 24.0).

Results

Myocardial Perfusion Imaging

Baseline characteristics are presented in Table 1. MPI was performed using a D-SPECT 

scanner at four centers (n=1170[56%]), GE Discovery NM 530c at three centers 

(n=808[39%]), and GE Discovery NM/CT570c with attenuation correction at two centers 

(n=101[5%]). A combination of stress and rest imaging were performed in 2005 patients 

(96.4%), with a summary of image acquisition parameters in Table 2. The frequency of each 

missing variable is available in Supplemental Table 2.

Prior to stress imaging, patients underwent either symptom limited treadmill exercise 

testing without adjuvant pharmacologic stress (n=805[39%]) or pharmacologic stress testing 

(1274[61%]) with radiotracer injection at peak exercise or during maximum hyperemia, 
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respectively. Pharmacologic stress agents included adenosine (n=185), dobutamine (n=15), 

dipyridamole (n=494), or regadenoson (n=577). The administered stress activity was lower 

with stress-first imaging [n=793(267± 95 MBq or 7.24± 2.6 mCi)] than when rest imaging 

was performed first [n=1215(880± 398 MBq or 23.8 ± 10.8 mCi)] (p<0.01). All other stress-

MPI results are shown in Table 3. Automatic contours were evaluated by an experienced 

technologist in all cases and corrected in 291 (14%) cases. Most changes were small and 

involved changes in the valve plane position. Two or more corrections were performed in a 

small proportion of the population (2.1%).

Invasive Coronary Angiography

The average time interval between MPI and ICA was 28 days (±39). On ICA, obstructive 

CAD was identified in 1309 (63%) patients and involved 2423 coronary artery segments. 

Obstructive CAD involved the LAD in 73% of patients (n=958), the LCx in 48% (n=633), 

and the RCA in 53% (n=689). High risk CAD was present in 539 (26%) patients and was 

defined as LMCA stenosis (present in 143 patients), proximal LAD stenosis (present in 286 

patients), or 3-vessel CAD (present in 223 patients).

Analysis and Machine Learning Prediction

A summary of information gain ratio and variable selection is shown in Figure 1. AUC was 

calculated for prediction of obstructive CAD using the entire REFINE SPECT diagnostic 

cohort (n=2079, prevalence=63%). For prediction of any obstructive CAD, MLS had 

a superior AUC than both reader diagnosis and TPD (0.84 vs 0.70 vs 0.78, p<0.01) 

(Figure 2). ROC results for 10 individual hold-out datasets for each of the 10 models are 

shown in Supplemental Figure 1. From the ROCs, three MLS thresholds were identified 

corresponding to predefined sensitivities of 90%, 95%, and 99%. The diagnostic properties 

of each MLS threshold were then compared to reader diagnosis, SSS, and TPD (Table 4).

All MLS thresholds had significantly higher sensitivity than TPD ≥ 1% or SSS >0 (p<0.01 

for all). An MLS of 0.38 had a significantly greater specificity than reader diagnosis or SSS 

but not TPD. An MLS of 0.29, which corresponded to sensitivity of 95% for obstructive 

CAD, had a sensitivity of >95% for high-risk CAD. This threshold (0.29) had superior 

sensitivity for high-risk and obstructive CAD compared to an MLS of 0.38 (p<0.01). 

Although highly sensitive, an MLS threshold of 0.16 (corresponding to 99% sensitivity) 

did not identify significantly more cases with obstructive CAD than an MLS of 0.29 and 

had a significantly lower specificity. There was no difference in the negative predictive value 

(NPV) for the MLS of 0.16 and 0.29 (0.80 vs 0.78, respectively) but both were significantly 

higher than the NPV for an MLS of 0.38 (0.73, p<0.01). An MLS of 0.29 was applied to the 

clinical algorithm. The MLS showed good calibration (Figure 3) with a Brier score of 0.16.

SSS were available in 1139 patients, 729 (64%) of whom had obstructive CAD. The ROC 

for prediction of obstructive CAD between SSS, TPD, and MLS are shown in Supplemental 

Figure 2.

Although developed for prediction of obstructive CAD, an MLS threshold of 0.29 also had 

superior sensitivity for detection of high-risk CAD than reader diagnosis or TPD (96% 

vs. 89% vs. 90%, p<0.01). The frequency of false negative test results for obstructive 
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and high-risk CAD by reader diagnosis, TPD, and MLS are shown in the Figure 4. The 

frequency of false-negative studies between SSS, TPD, and MLS are shown in Figure 5, in 

patients with available segmental scores. Of the 539 patients with high-risk CAD, the MLS 

was negative in 22 (4%). Of these, TPD was negative in 15 (68%) and by reader diagnosis in 

14 (64%). When the stress images were reviewed as part of the internal validation cohort, 14 

(64%) were considered normal.

The diagnostic properties of the MLS to identify stenosis ≥50% (Supplemental Figure 3), 

for prediction of future revascularization (Supplemental Results), for each center separately 

(Supplemental Figure 4), per vessel (Supplemental Figure 5), and when applied to different 

cameras and stress protocols (Supplemental Table 3) are available in the Supplemental Data.

External Validation Results

A new MLS was generated using the data from 9 sites (n=1723) and then tested on the held-

out site (n=356). The new MLS was then compared to readers and TPD for prediction of 

obstructive CAD. This MLS had superior diagnostic accuracy compared to both readers and 

TPD for prediction of obstructive CAD (Supplemental Figure 6). Comparison of the MLS 

generated with and without variables with >40% missing values are shown in Supplemental 

Figure 7.

Automated Stress-First Clinical Diagnostic Algorithm

A clinical diagnostic algorithm for automated stress-first SPECT-MPI in Figure 6. After 

completion of stress testing, an MLS is automatically calculated from the stress-MPI data 

and pre-test clinical variables. If the score is less than the decision threshold of 0.29, rest 

imaging can be omitted. If the MLS is greater than or equal to the applied threshold of 0.29, 

the patient should proceed with rest imaging.

Discussion

In this study, we applied machine learning to create a clinical diagnostic algorithm for 

stress-first MPI that automatically determines which patients are appropriate candidates for 

stress-only MPI, prior to physician review. An MLS threshold of 0.29, which is generated 

from stress-only MPI data and pre-test clinical variables demonstrated, superior diagnostic 

sensitivity for both obstructive and high-risk CAD than reader diagnosis, and TPD. The 

MLS computation does not require additional clinical or imaging data collection beyond that 

of a standard SPECT-MPI protocol and can be readily incorporated into clinical laboratories. 

Trained on a large population, the MLS provides an adaptive model which can be applied 

to any patient population, omitting the need for pre-test patient selection. As shown in 

Figure 6, all clinical and imaging data, including the MLS are reviewed by the interpreting 

physician prior to finalizing a clinical report. This application of machine learning allows the 

physician to review all test results and, if necessary, the patient may return for additional rest 

imaging on a separate day.

The safety of stress-only MPI is well established(7, 8, 18), but appropriate patient selection 

remains unclear. Current guidelines recommend performing stress-only MPI in patients with 

a “low pre-test probability of CAD”(1), but do not provide a clinical algorithm for patient 
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selection. Prior studies have proposed pre-test risk calculators that require additional clinical 

data collection prior to selecting the appropriate MPI protocol(9, 19). Duvall et al previously 

published pre-test clinical algorithms to predict which patients will have normal stress-MPI 

results with over 80% accuracy(19). These algorithms differ from the proposed MLS 

algorithm in that they use pre-test clinical variables to predict a successful stress-first MPI 

protocol whereas the MLS uses pre-test clinical data, stress-test results and stress imaging 

data to produce a post-test clinical risk score. The MLS algorithm for automatic selection of 

patients for stress-only MPI who were at low risk of MACE was recently published (12). In 

that study, a MLS was superior for prediction of all-cause mortality (N=20,414, AUC: MLS 

0.8 vs TPD 0.7 vs readers 0.68; p<0.01) and selected a similar proportion of patients for 

rest scan cancellation but with significantly lower all-cause mortality compared to clinical 

selection rules (1.3%, 1.2% and 1.0% vs 0.6%, 0.6% and 0.2%) (12). The combination of 

such robust prognostic prediction and the highly sensitive rule out of obstructive CAD could 

be a safe and efficient method for reducing unnecessary rest imaging in clinical laboratories

Stress-only imaging can greatly reduce patient radiation exposure while maintaining the 

robust prognostic value of a normal SPECT-MPI(2, 3). However, in 2015, it was estimated 

that stress-only MPI account for only 3% of studies in North America(3, 4). This can 

be explained in part by the need for timely review of stress imaging which may be 

problematic for physicians with other clinical responsibilities. The ML algorithm provides 

a highly sensitive diagnostic tool that can automatically cancel unnecessary rest imaging 

and ultimately improve the utilization of stress-first MPI in busy cardiology practices. The 

primary endpoint of obstructive CAD on ICA was selected as most SPECT-MPI exams are 

performed clinically to rule out significant coronary artery stenosis. In the REFINE-SPECT 

prognostic database (n=20,414), the indication for exam was suspicion of obstructive CAD 

in more than 90% of cases(12).

Although trained from the entire population, the diagnostic properties of the MLS were 

not different when generated from low-dose stress first images compared to stress images 

acquired after rest imaging using higher isotope dosages. Thus, when applied to low-dose 

stress-first images, the MLS recognizes these differences and adjusts the feature selection 

algorithm to maintain its high diagnostic sensitivity for abnormal test results. Additionally, 

an MLS threshold of 0.29 was associated with a diagnostic sensitivity of 95% for obstructive 

CAD from stress-only images, without the use of computed tomographic AC. The high 

sensitivity of the MLS offers a novel approach to increase the feasibility of stress-only MPI 

in laboratories without access to attenuation correction and when applied to different stress 

imaging protocols.

Another limitation of SPECT-MPI is the relatively low sensitivity for detection of stenosis in 

the LMCA or proximal LAD(20, 21). The CORE320 study previously reported a sensitivity 

of 75% for detection of LMCA stenosis(21). Other studies have estimated the sensitivity 

of SPECT-MPI was just 54.5% and 55.0% for detection of stenosis in the LMCA and 

LAD, respectively(20). In our study, the MLS threshold of 0.29 was associated with a 

diagnostic sensitivity of 95% for all obstructive CAD, including high risk lesions in both 

the LMCA and proximal LAD. The MLS was trained using the REFINE SPECT diagnostic 

cohort, which has an overall prevalence of 63% for obstructive CAD, which is higher than 
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the general population undergoing stress testing(22). We included only patients who had 

gone for coronary angiography to ensure that coronary anatomy was accurately defined 

since SPECT MPI may be interpreted as normal in patients with high-risk CAD, including 

those with low pre-test likelihood of disease(23). This high-risk population is ideal for 

training the computer to learn features of high-risk CAD from stress-first MPI data and 

clinical variables, allowing the computer to recognize abnormal stress MPI data that would 

have otherwise been considered normal by both TPD and readers. The incorporation of 

clinical variables to the MLS further improves its sensitivity of detecting obstructive CAD in 

images that would have been considered normal by readers. As shown in Figure 1, ischemic 

EKG changes were high predictors of an elevated MLS which is consistent with prior 

studies, especially given the high frequency of pharmacologic stress testing in the study 

population(24). Similarly, post-stress wall motion abnormalities are associated with the 

presence of obstructive CAD(25), and wall motion extent had the fourth highest information 

gain ratio.

A highly sensitive MLS is critical to safely cancel unnecessary rest imaging prior to 

physician review, but this was achieved at the cost of specificity. The specificity of the 

MLS reflects the frequency of patients who would have additional rest imaging without 

obstructive CAD. Importantly, in North America, rest imaging is performed prior to stress 

testing in over 92% of nuclear cardiology laboratories(2, 10). Thus, despite a lower 

specificity, the MLS threshold of 0.29 would lead to an overall reduction in unnecessary 

rest imaging and ultimately radiation exposure from SPECT-MPI. It is also notable that 

the NPV of the proposed MLS was 78% despite a sensitivity of 95%. This is likely due 

to the high prevalence of obstructive CAD in the study population who were all referred 

for ICA. The prevalence of abnormal stress perfusion, defined as stress TPD ≥5%, in 

this population was 64.7% compared to only 25.5% in the overall REFINE registry(26). 

Assuming the prevalence of obstructive CAD is proportional to the prevalence of abnormal 

SPECT perfusion, we would estimate 25% of patients having obstructive CAD in the 

overall REFINE registry. Thus when applied to the general patient population referred for 

SPECT-MPI the NPV would be estimated at 95%.

There are limitations to the current study. Automatically generated myocardial contours 

were evaluated by an experienced technologist and corrected in a small subset of cases. 

Most adjustments were small, but the MLS algorithm would require technologist verification 

prior to generating an MLS. The information gain ratios provide a group importance for a 

given feature in the whole population but not an explanation for a given patient. Although 

not reported in this study, the individual importance of features can be determined to 

provide patient-specific explanations as recently demonstrated(11). Another limitation is 

that the time interval between SPECT-MPI and ICA was relatively long. This interval 

is similar to prior studies with similar inclusion criteria(27), and significant changes in 

coronary artery stenosis are unlikely to occur over this timeframe. When generating the 

MLS, missing data was imputed using either population means or without the specific value, 

as described above. Despite this, the MLS algorithm was highly sensitive for obstructive 

and high-risk CAD and reflects clinical settings where not all data is available for MLS 

computation. Because all patients underwent ICA with 6 months of SPECT-MPI there is 

an overall selection bias of the study population. Although this high-risk population was 
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ideal for training a computer to recognize abnormal SPECT-MPI, the true NPV is likely 

underestimated. Finally, although we studied a large, multicenter, international cohort, due 

to this selection bias, validation in a prospective, unselected population is needed

Conclusion

In this study, machine learning was used to develop a diagnostic algorithm for stress-only 

MPI that automatically determines the need for additional rest images, prior to physician 

review. An MLS threshold of 0.29 was associated with superior diagnostic sensitivity for 

obstructive and high-risk CAD than SSS, TPD, or expert readers. The proposed MLS 

algorithm can improve implementation of stress-first MPI protocols, ultimately reducing 

cost, scanning times, and radiation dosages. Future studies will be aimed at applying the 

MLS algorithm to an external population to ultimately determine its validity worldwide.

New Knowledge Gained

Machine learning can detect obstructive and high-risk CAD from stress MPI with high-

sensitivity and could be applied in an automated clinical algorithm to select patients for 

stress-only MPI without increased burden to the interpreting cardiologist.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation List

CAD Coronary artery disease

ICA Invasive coronary angiography

LAD Left anterior descending

LCx Left circumflex artery

LMCA Left main coronary artery

MLS Machine learning score
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MPI Myocardial perfusion imaging

SPECT Single photon emission computed tomography

SSS Summed stress score

TPD Total perfusion deficit
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Figure 1. Variable Selection.
A combination of imaging (blue bar: 21 selected), stress test (red bar: 14 selected) and 

clinical (green bar: 19 selected) variables ranked by their mean [95% CI] information 

gain ratio within 10-fold cross-validation for prediction of obstructive CAD. *: denotes the 

alternative view (supine for D-SPECT or prone for Discovery).
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Figure 2. Receiver operator characteristics for prediction of obstructive CAD in all patients 
(prevalence=1309/2079 [63%]).
*p<0.01 for AUC comparison by Delong Test. AUC: area under the receiver operating 

characteristic curve, CAD: coronary artery disease, CI: confidence interval, MLS: machine 

learning score, TPD: total perfusion deficit
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Figure 3. Calibration plot showing the observed vs. predicted risk of obstructive CAD.
The machine learning score (MLS) showed good calibration with a Brier score of 0.16.

CAD=coronary artery disease
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Figure 4. Diagnostic safety of automated cancellation of rest MPI in all patients.
Frequency of false negative test results among each method of interpretation for SPECT-

MPI in total population (n=2079). High-risk(HR) coronary artery disease(CAD) refers 

to 3-vessel CAD, LMCA stenosis ≥50%, or proximal LAD stenosis ≥70%. Three-vessel 

CAD refers to stenosis ≥70% of the LAD, LCx, and RCA. *p<0.01. LCx=left circumflex 

artery, LMCA=left main coronary artery, pLAD=proximal left anterior descending artery, 

RCA=right coronary artery, TPD=total perfusion deficit, MLS=machine learning score.
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Figure 5. Frequency of false negative results in population with available segmental scores 
(n=1139).
High-risk(HR) coronary artery disease(CAD) refers to 3-vessel CAD, LMCA≥50% or 

pLAD≥70%. Three-vessel CAD refers to stenosis ≥70% of the LAD, LCx, and RCA. 

*p<0.01. LCx=left circumflex artery, LMCA=left main coronary artery, pLAD=proximal 

left anterior descending artery, RCA=right coronary artery, SSS=summed stress score, 

TPD=total perfusion deficit, MLS=machine learning score
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Figure 6. Proposed automated stress-first SPECT-MPI algorithm.
MLS: machine learning score.
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Table 1.

Baseline Characteristics

All Patients (n=2079) With CAD (n=1309) Without CAD (n=770) p value

Age 64.7±11.2 65.7 ±10.9 63±11.6 <0.01

BMI 28.6±5.7 28.3 ±5.1 29.1 ±6.7 <0.01

Male sex 1385(66.5) 973(74.3) 412(53.4) <0.01

Hypertension 1422(68.3) 918(70.1) 504(65.5) 0.03

Hyperlipidemia 1297(62.3) 849(64.8) 448(58.3) <0.01

Diabetes 610(29.3) 412(31.5) 198(25.8) <0.01

Family History 694(33.3) 447(34.1) 247(32.1) 0.34

Peripheral Vascular Disease 123(5.9) 92(7.0) 31(4.0) <0.01

Smoking 521(25.0) 345(26.3) 176(22.9) 0.08

Continuous variables reported as mean ± SD; categorical variables reported as n(%). BMI= body mass index (kg/m2).
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Table 2.

SPECT-MPI Acquisition

n(%)

Imaging Acquisition 

Stress-Rest on Same Day 717(34.5)

Rest-Stress on Same Day 1221(58.8)

Stress and Rest on Separate Days 66(3.2)

Stress-Only 74(3.6)

Imaging Protocol (Stress) 

2-Position 1759(84.6)

1-Position NC 219(10.5)

Supine + AC 101(4.9)

Imaging Protocol (Rest) 

2-Position 422(20.2)

1-Position NC 1483(71.3)

Supine + AC 95(4.6)

Stress Gated 2077(99.9)

Rest Gated 1996(96)

2-position (supine/upright or supine/prone). AC: attenuation corrected, NC: non-attenuation corrected
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Table 3.

Stress and Imaging Results

Results All Patients (n=2079) With CAD (n=1309) Without CAD (n=770) p value

Resting HR (BPM) 72±14 73±14 71±14 <0.01

Stress HR (BPM) * 141±20 139±19 144±22 <0.01

Stress BP (systolic) * 166±25 166±24 167±27 0.48

Stress BP (diastolic) * 79±11 79±11 79±11 0.61

% MPHR * 91±11 90.5±10.3 91.3±11.0 0.24

Exercise Duration (min) * 7.6±2.9 7.5±2.8 8.0±3.2 0.02

SSS (n=1139) 7.4±6.7 9.5±6.9 3.7±4.3 <0.01

TPD (n=2079) 7.2±8.8 9.8±9.7 2.63±4.1 <0.01

MLS (n=2079) 0.63±0.27 0.75±0.22 0.43±0.21 <0.01

Values presented in mean ± SD

*
Stress HR, BP % MPHR and exercise duration shown for patients that underwent exercise stress testing (n=805).

BPM=beats per minute, BP=blood pressure (mmHg), CAD= coronary artery disease, HR= heart rate, MPHR=maximum predicted heart rate (%), 
SSS=summed stress score, TPD= total perfusion deficit, MLS=machine learning score
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Table 4.

Diagnostic Testing Characteristics for Prediction of Obstructive CAD from SPECT-MPI (n=1309/2079[63%])

Reader Diagnosis SSS>0 TPD≥1% MLS≥0.38 MLS≥0.29 MLS≥0.16 p value*

Sensitivity 
† ‡ § 87% 88% 87% 90% 95% 99% <0.01

Specificity 
† ‡ § 40% 38% 45% 48% 31% 7% <0.01

*
p-value was calculated using Cochran’s Q Test among all variables

†
p<0.01 by Cochran’s Q Test for MLS 0.29, Reader, and TPD

‡
p<0.01 by McNemar’s Test for MLS 0.38 and MLS 0.29

§
p<0.01 by McNemar’s Test for MLS 0.29 vs MLS 0.16.

Note: SSS was available in 1139 patients (prevalence 729/1139 [64%]). For reader diagnosis, a score of 0 (normal) was considered negative.

CAD= coronary artery disease, MLS=machine learning score, SSS= summed stress score, TPD=total perfusion deficit
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