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A quantum processor based on coherent 
transport of entangled atom arrays

Dolev Bluvstein1, Harry Levine1,6, Giulia Semeghini1, Tout T. Wang1, Sepehr Ebadi1, 
Marcin Kalinowski1, Alexander Keesling1,2, Nishad Maskara1, Hannes Pichler3,4, 
Markus Greiner1, Vladan Vuletić5 & Mikhail D. Lukin1 ✉

The ability to engineer parallel, programmable operations between desired qubits 
within a quantum processor is key for building scalable quantum information 
systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by 
the connectivity associated with their fixed spatial layout. Here we demonstrate a 
quantum processor with dynamic, non-local connectivity, in which entangled qubits 
are coherently transported in a highly parallel manner across two spatial dimensions, 
between layers of single- and two-qubit operations. Our approach makes use of 
neutral atom arrays trapped and transported by optical tweezers; hyperfine states are 
used for robust quantum information storage, and excitation into Rydberg states is 
used for entanglement generation3–5. We use this architecture to realize 
programmable generation of entangled graph states, such as cluster states and a 
seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to 
realize a surface code state with thirteen data and six ancillary qubits8 and a toric code 
state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this 
architecture to realize a hybrid analogue–digital evolution2 and use it for measuring 
entanglement entropy in quantum simulations10–12, experimentally observing 
non-monotonic entanglement dynamics associated with quantum many-body 
scars13,14. Realizing a long-standing goal, these results provide a route towards scalable 
quantum processing and enable applications ranging from simulation to metrology.

Quantum information systems derive their power from controllable 
interactions that generate quantum entanglement. However, the 
natural, local character of interactions limits the connectivity of 
quantum circuits and simulations. Non-local connectivity can be 
engineered via a global shared quantum data bus15–18, but in prac-
tice these approaches have been limited in either control or size.  
A number of visionary architectures to address this challenge have 
been proposed theoretically over the past two decades. On the basis 
of coherent, dynamical transport of quantum information using 
movable traps or photonic links, these techniques have been the 
subject of intensive experimental explorations across different 
platforms1,19–24. However, progress has been limited to small-scale, 
few-qubit systems lacking either full connectivity, programmability 
or true parallelism.

Our approach to address this long-standing challenge utilizes dynam-
ically reconfigurable arrays of entangled neutral atoms, shuttled by 
optical tweezers in two spatial dimensions (Fig. 1a). Hyperfine states 
are used for storing and transporting quantum information between 
quantum operations, and excitation into Rydberg states is used for 
generating entanglement. Highly parallel operations are enabled via 
selective qubit operations in distinct zones that qubits are dynami-
cally shuttled between. Taken together, these ingredients enable a 

powerful quantum information architecture, which we employ to real-
ize applications including entangled-state generation, the creation of 
topological surface and toric code states, and hybrid analogue–digital 
quantum simulations.

Entanglement transport in atom arrays
Our experiments utilize a two-dimensional (2D) atom array system 
described previously25, with key upgrades to enable coherent trans-
port and multiple layers of single-qubit and two-qubit gates. We store 
quantum information in magnetically insensitive clock states within 
the ground-state hyperfine manifold of 87Rb atoms20, and implement 
robust single-qubit Raman rotations (scattering error per π pulse 
of about 7 × 10−5)26, realized by composite pulses that are robust to 
pulse errors (Extended Data Fig. 3)27. High-fidelity controlled-Z (CZ) 
entangling gates in the hyperfine basis {|0⟩, |1⟩} (Fig. 1a) are imple-
mented in parallel using global Rydberg excitation pulses on the 
|1⟩ ↔ |r⟩ Rydberg transition5. For dynamic reconfiguration, we initial-
ize atoms into two sets of traps: static traps generated by a spatial 
light modulator (SLM) and mobile traps generated by a crossed 2D 
acousto-optic deflector (AOD). To execute a specific circuit, we arrange 
qubits into desired pairs, perform Rydberg-mediated CZ gates on 
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each pair simultaneously and then move all mobile traps in parallel 
to dynamically change the connectivity into the next desired qubit 
arrangement.

Figure 1 shows our ability to transport qubits across large distances 
while preserving entanglement and coherence20. We initialize pairs at 
an atom–atom distance of 3 μm (Fig. 1b) and then create a Bell state 
Φ = ( 00 + 11 )+ 1

2
 in the hyperfine basis (Methods)5. To measure the 

resulting entangled-state fidelity, we apply a variable single-qubit phase 
gate before a final π/2 pulse, resulting in oscillations of the two-atom 
parity σ σz z

1 2  (Fig. 1c)5. We then repeat this experiment, but now move 
the atoms apart by 110 μm before applying the final π/2 pulse. Our 
transport protocol is optimized to suppress heating and loss by imple-
menting cubic-interpolated atom trajectories (Methods), and is further 
accompanied by an eight-pulse XY8 robust dynamical decoupling 
sequence28 to suppress dephasing. The resulting parity oscillations 
indicate that two-atom entanglement is unaffected by the transport 
process20,29. Performing this experiment as a function of movement 
speed30 shows that the fidelity remains unchanged until the total 
separation speed becomes more than 0.55 μm μs−1, corresponding to 
the onset of atom loss (Fig. 1d). We note that the entanglement transport 
in Fig. 1b corresponds to moving quantum information across a region 
of space that can, in principle, host about 2,000 qubits (at an atom 
separation of 3 μm), on a timescale corresponding to <10−3 of the coher-
ence time T2 (Extended Data Fig. 3), directly enabling applications in 
large-scale quantum information systems.

Programmable circuits and graph states
To exemplify the ability to generate non-local connectivity between 
qubit arrays in parallel, we carry out the preparation of entangled graph 
states: a large class of useful quantum information states, with exam-
ples ranging from Greenberger–Horne–Zeilinger states and cluster 
states to quantum error correction (QEC) codes31. Graph states are 
defined by initializing all qubits, located on the vertices of a geometric 
graph, in + ≡ 0 + 1

2
 and then performing CZ gates on the links between 

qubits (corresponding to the edges of the graph)31. N-qubit graph states 
|G⟩ are associated with a set of N stabilizers, defined by S X Z= Πi i j u j∈ i

, 
where X and Z are the Pauli matrices, ui is the set of qubits (vertices) 
connected by an edge to qubit i, and Π denotes a product over qubit 
indices j (ref. 31). The stabilizers each have +1 eigenvalue for the graph 
state |G⟩. Measuring these operators and their expectation values can 
be used to characterize the preparation of the target state.

As an example, Fig. 2a shows the preparation of a one-dimensional (1D) 
cluster state, a graph state defined by a linear chain of qubits32,33. To realize 
this state, we perform one global, parallel layer of CZ gates on adjacent 
atom pairs, move half the atoms to form new pairs and then perform 
another parallel layer of CZ gates (Fig. 2a, b). To probe the resultant 12-qubit 
cluster state, we measure the stabilizer set {Si} = {Zi−1XiZi+1} through readout 
in two measurement settings, given by a local π/2 rotation on either the 
odd or the even sublattice before projective measurement34. We achieve 
the local rotation by moving one sublattice of qubits to a separate zone and 
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Fig. 1 | Quantum information architecture enabled by coherent transport 
of neutral atoms. a, In our approach, qubits are transported to perform 
entangling gates with distant qubits, enabling programmable and non-local 
connectivity. Atom shuttling is performed using optical tweezers, with high 
parallelism in two dimensions and between multiple zones allowing selective 
manipulations. Inset: the atomic levels used. The |0⟩, |1⟩ qubit states refer to the 
mF = 0 clock states of 87Rb, and |r⟩ is a Rydberg state used for generating 
entanglement between qubits (Extended Data Fig. 1b). b, Atom images 
illustrating coherent transport of entangled qubits. Using a sequence of 
single-qubit and two-qubit gates, atom pairs are each prepared in the |Φ+⟩ Bell 

state (Methods), and are then separated by 110 μm over a span of 300 μs.  
c, Parity oscillations indicate that movement does not observably affect 
entanglement or coherence. For both the moving and the stationary 
measurements, qubit coherence is preserved using an XY8 dynamical 
decoupling sequence for 300 μs (Methods). d, Measured Bell-state fidelity as a 
function of separation speed over the 110 μm, showing that fidelity is 
unaffected for a move slower than 200 μs (average separation speed of 
0.55 μm μs−1). Inset: normalizing by atom loss during the move results in 
constant fidelity, indicating that atom loss is the dominant error mechanism 
(see Methods for details).
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then performing a rotation on the unmoved qubits with a homogeneous 
beam illuminating the experiment zone (Fig. 1a, Methods). We measure ⟨Si⟩ 
by analysing the resulting bit-string outputs and plot the resulting raw sta-
bilizer measurements (Fig. 2c). Across all 12 stabilizers, we find an average 
⟨Si⟩ = 0.87(1) (Fig. 2c) (accounting for state-preparation-and-measurement 
(SPAM) errors would yield ⟨Si⟩ = 0.91(1)), certifying biseparable entangle-
ment in a cluster state (all ⟨Si⟩ > 0.5 (ref. 34)). The measured fidelities would 
correspond to a few-percent error per operation for a measurement-based 
quantum computation32,35.

An important class of graph states are QEC codes, where the 
graph-state stabilizers manifest as the stabilizers of the QEC code and 
can be measured to correct errors on an encoded logical qubit. As an 
example, we prepare the seven-qubit Steane code6,7, a topological colour 
code depicted by the graph in Fig. 2d, in the logical state |+⟩L. To prepare 
this state, we initialize all qubits in |+⟩, apply CZs on the links between 
qubits (in four parallel layers; Extended Data Fig. 5) and then rotate either 
of the two sublattices for measuring stabilizers (Fig. 2e). After sublattice 
rotation, six of the graph-state stabilizers transform into the six Steane 
code stabilizers, given by four-body products of Xi or Zi. Figure 2f shows 
the raw measured expectation values of these six stabilizers. The seventh 
graph-state stabilizer transforms into the logical qubit operator XL and 
has eigenvalue +1 for the graph state |G⟩, while anticommuting with 
logical ZL. Accordingly, in Fig. 2f, we find ⟨XL⟩ = 0.71(2) and ⟨ZL⟩ = −0.02(3), 
demonstrating the preparation of the logical qubit state |+⟩L. Moreover, 
we perform error detection by post-selecting on measurement outcomes 
where all measured stabilizers yield +1 (refs. 36,37; with 66(1)% probability 
of no detected errors). Using this procedure, we obtain corrected  
values of X = 0.991L −0.007

+0.004 and, Z = −0.03(3)L demonstrating the 
error-detecting properties of the Steane code graph (see Extended Data 
Fig. 7 for error correction and logical operations).

Topological states with ancilla arrays
We next make use of transportable ancillary qubit arrays to mediate 
quantum operations between remote qubits1. Owing to the ability to 

quickly move arrays of atoms across the entire system, the use of ancillary 
qubits naturally complements our movement capabilities. Specifically, 
we employ ancillas for state preparation by mediating entanglement 
between physical qubits that never directly interact, followed by projec-
tive measurement of the ancilla array (performed simultaneously with 
the measurement of the data qubits), a form of measurement-based 
quantum computation32,35. In particular, we prepare topological surface 
code and toric code states8,9,38,39, whose states are more difficult to con-
struct by direct CZ gates between physical qubits (requiring an extensive 
number of layers8,40). For these codes, the measured values of the ancilla 
qubits simply redefine the stabilizers and are handled in-software for 
practical QEC operation38. As the redefinition is applied in-software, 
without physical intervention, the projective measurements on the ancil-
lae commute with all operations on the data qubits and can be done at 
any time, and so we measure all qubits simultaneously.

Figure 3a shows the preparation of a 19-qubit graph state creating 
the |+⟩L logical state of the surface code8,38. The surface code is defined 
by X-plaquette and Z-star stabilizers, and logical operators XL (ZL) are 
defined as strings of X (Z) products across the height (width) of the 
graph. To prepare this state, ancillas are moved to perform CZ gates 
with each of their four neighbours and are then measured, projecting 
the data qubits into the surface code state. The graph-state stabilizers 
now transform into the X plaquettes, the Z stars (with value ±1 for a 
measurement outcome of ±1 of the central ancilla) and the logical XL 
operator35,41. Remarkably, this procedure creates a topologically 
ordered state in a constant-depth circuit35,40, where measured ancilla 
values can be used for redefining stabilizers, which can be handled 
in-software for practical QEC operation38. Figure 3b shows the meas-
ured expectation values of the 12 resulting stabilizers, as well as the 
logical operator expectation values with and without error detection. 
We find a raw value of ⟨XL⟩ = 0.64(3), and a corrected value of X = 1L −0.01

+0  
using the measured stabilizers for error detection (with 35(1)% prob-
ability of no detected errors), demonstrating the preparation of this 
topological QEC state (see also Extended Data Fig. 7, showing the 
expected attributes for all prepared error-protected logical states).
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Fig. 2 | One- and two-dimensional graph states using dynamic 
entanglement transport. a, Generation of a 12-atom 1D cluster-state graph, 
created by initializing all qubits (vertices) in |+⟩ and applying CZ gates on the 
links (edges) between qubits. The atom images show the configuration for the 
first and second gate layers. b, Quantum circuit representation of the 1D 
cluster-state preparation and measurement. Dynamical decoupling is applied 
throughout all quantum circuits (Methods). c, Raw measured stabilizers of the 
resulting 1D cluster state, given by Si = Zi−1 XiZi+1 (X1Z2 and Z11 X12 for the edge 

qubits). d, Graph-state representation of the seven-qubit Steane code  
(colours represent stabilizer plaquettes). e, Circuit for preparing the Steane 
code logical |+⟩L state, performed in four parallel gate layers. f, Measured 
stabilizers and logical operators after preparing |+⟩L. Error detection is done by 
postselecting on measurements where all stabilizers are +1. For both the 1D 
cluster state and the Steane code, the stabilizers and logical operators are 
measured with two measurement settings (see text). Error bars represent 68% 
confidence intervals.
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Although surface code states have previously been prepared with 
other methods, our transport capabilities allow us to use the full range 
of motion of ancilla qubits across the entire qubit array to enable peri-
odic boundary conditions and realize the toric code state on a torus9. 
To this end, we create the 24-qubit graph state shown in Fig. 3c by per-
forming five layers of parallel gates and moving the ancillae to their 
separate zone for readout in a separate basis (see also Supplementary 
Video 1 showing the full atom trajectory). The state we prepare has seven 
(owing to periodic boundary conditions) independent X plaquettes and 
seven independent Z stars. Moreover, owing to the topological proper-
ties of this graph, two independent logical qubits can be encoded with 
logical operators X Z,L L

(1) (1) and X Z,L L
(2) (2) that wrap around the entire torus 

along two topologically distinct directions9. Upon projective measure-
ment of the ancilla qubits in the X basis we create the toric code state 
+ +L L

(1) (2). State preparation is verified in Fig. 3d by measuring the toric 
code stabilizers. For the two encoded logical qubits, we find raw  
logical qubit expectation values of X⟨ ⟩ = 0.64(2)L

(1)  and X⟨ ⟩ = 0.38(2)L
(2) , 

and error-detected values of X⟨ ⟩ = 1L
(1)

−0.01
+0  and X⟨ ⟩ = 0.92L

(2)
−0.03
+0.02  (with 

20(1)% probability of no detected errors), demonstrating the prepara-
tion of the toric code. We note that the different expectation values of 
the corrected logical qubits originate from the aspect ratio of our torus, 
where X L

(1) and X L
(2) are protected to code distance d = 4 and d = 2, respec-

tively (see also Extended Data Fig. 7). Our measured fidelities are in 
good agreement with numerical simulations of the circuit (Extended 
Data Fig. 6), wherein each qubit experiences a per-layer error rate inde-
pendent of the number of qubits or the shuttling process, indicating 
that errors in CZ gates (fidelity of about 97.5%; Methods5) constitute 
our dominant error source.

Hybrid analogue–digital circuits
Having established atom movement for realizing digital circuits, we 
now explore the applications to quantum simulation. In particular, 
we perform hybrid, modular quantum circuits composed of analogue 
Hamiltonian evolution, reconfiguration and digital gates (Fig. 4a). 
Together, these tools open a wide variety of possibilities in quantum 
simulation and many-body physics. As a specific example, we measure 
the Renyi entanglement entropy after a quantum quench by effectively 
interfering two copies of a many-body system10,11.

Figure 4b illustrates the experimental procedure. After initializing 
both copies with all qubits in |1⟩, we independently evolve each copy 
under the Rydberg Hamiltonian HRyd for a time t, generating an entan-
gled many-body state in the {|1⟩, |r⟩} basis (Methods)13. Raman and 
Rydberg π pulses then map |1⟩ → |0⟩ and |r⟩ → |1⟩, transferring the entan-
gled many-body state into the long-lived and non-interacting {|0⟩, |1⟩} 
basis42. Finally, we measure entanglement entropy by rearranging the 
system and interfering each qubit in the first copy with its identical 
twin in the second copy, by use of a Bell measurement circuit. Measur-
ing twins in the Bell basis detects occurences of the antisymmetric 
singlet state Ψ =− 01 − 10

2
, the presence of which indicates that sub-

systems of the two copies were in different states owing to entangle-
ment with the rest of the many-body system10,11. Quantitatively, 
analysing the number parity of observed singlets within subsystem A 
yields the purity  ρTr A

2  of the reduced density matrix ρA, and thus yields 
the second-order Renyi entanglement entropy S ρ(A) = − log Tr2 2 A

2   
(Methods). This measurement circuit provides the Renyi entropy of 
any constituent subsystem of our whole closed quantum system, where 

XL ZL ZL
(1)

X
plaquettes

Z
stars

X

X

X X X X

Z

Z

Z

ZX

Z ZZ

Time (μs)

Surface code Toric code (on a torus)

X

Z

X

X

X

XX

X

X

Data qubit
Ancilla

a

b

c

d

Z star

ZL

205 410 615 820 1,1700

S
ta

b
ili

ze
r 

ex
p

ec
ta

tio
n 

va
lu

e

Lo
gi

ca
l o

p
er

at
or

 e
xp

ec
ta

tio
n 

va
lu

e

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

S
ta

b
ili

ze
r 

ex
p

ec
ta

tio
n 

va
lu

e

Lo
gi

ca
l o

p
er

at
or

 e
xp

ec
ta

tio
n 

va
lu

e

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

X
plaquettes

Z
stars

XL
(1)

XL
(1)

ZL
(2)

XL
(2)

X
 p

la
q

ue
tt

e

XL

|0〉 Y(π/2)
|0〉 Y(π/2)
|0〉 Y(π/2)
|0〉
|0〉

Y(π/2)
Y(π/2)

Y(π/2)

XL
(2)

Error detection
Raw

Error detection
Raw

Fig. 3 | Topological surface code and toric code states using mobile ancilla 
qubit arrays. a, Graph state realizing the surface code. Left: the circuit depicts 
formation of the graph state by use of mobile ancilla qubits; each move 
corresponds to performing a CZ gate with a neighbouring data qubit 
(illustrated in box). The logical |+⟩L state is created upon projective 
measurement of the ancilla qubits in the X basis. Right: stabilizers and logical 
operators of the code. b, Measured X-plaquette and Z-star stabilizers of the 
resultant surface code, along with logical operators with and without error 
detection (implemented in postselection). c, Implementation of the toric code. 

Top: graph state realizing the two logical-qubit product state + +L L
(1) (2) of the 

toric code upon projective measurement of the ancilla qubits in the X basis. 
Bottom: images showing the movement steps implemented in creating and 
measuring the toric code state (Supplementary Video 1). The blue shading in 
the final image represents a local rotation on the data qubit zone. d, Measured 
X-plaquette and Z-star stabilizers, along with logical operators for the two 
logical qubits with and without error detection (implemented in 
postselection).
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the calculation over any desired subsystem A is simply performed in 
data processing10,11.

We use this method to probe the growth of entanglement entropy 
produced by many-body dynamics (see Methods for additional bench-
marking of the technique). Specifically, we study the evolution of two 
eight-atom copies under the Rydberg Hamiltonian, subject to the 
nearest-neighbour blockade constraint4,13. Upon a rapid quench from 
an initial state with all atoms in the ground state |g⟩ ≡ |1⟩, we observe 
that the half-chain Renyi entanglement entropy quickly grows and satu-
rates (Fig. 4c), a process corresponding to quantum thermalization12. 
By analysing the Renyi mutual information IAB = S2(A) +  S2(B) − S2(AB) 
between the leftmost n atoms in the chain (A) and the complement 
subsystem of the rightmost 8 − n atoms (B), we find a volume-law scal-
ing in the resulting state (Fig. 4d)11,12.

Although such thermalizing dynamics is generically expected in 
strongly interacting many-body systems, remarkably, it was demon-
strated previously that for certain initial states this system can evade 
thermalization. Underpinned by special, non-thermal eigenstates called 
quantum many-body scars13,14,43, these states were theoretically predicted 
to feature dynamics associated with a slow, non-monotonic entangle-
ment growth. Figure 4 shows the measurement of entanglement prop-
erties of many-body scars following a rapid quench from the initial state 
Z rgrg≡ ...2 , initialized by applying local Rydberg π pulses (Methods). 
We find that the rate of entropy growth for this initial state is significantly 
suppressed, and the mutual information reveals an area-law scaling 
(Fig. 4d). Furthermore, Fig. 4e shows the single-site entropy in the mid-
dle of the chain, demonstrating rapid growth and saturation for the 
thermalizing |gggg...⟩ state but large oscillations for the |Z2⟩ state13,14. 
Remarkably, the data show that when sites of one sublattice return to 
low entropy, the other sublattice goes to high entropy; this reveals that 
the scar dynamics entangle distant atoms (of the same sublattice) while 
disentangling nearest neighbours, even with only nearest-neighbour 
interactions (Methods). These measurements reveal non-trivial aspects 

of quantum many-body scars, and constitute the direct observation of 
exotic entanglement phenomena in a many-body system.

These observations are in excellent agreement with exact numerical 
simulations in the isolated system (lines plotted in Fig. 4c, e, Extended 
Data Fig. 10). Moreover, whereas the single-site purity approaches 
that of a fully mixed state, our global purity (a 16-body observable 
composed of three-level systems) remains more than 100 times that 
of a fully mixed state (Extended Data Fig. 9), altogether demonstrating 
the high accuracy and fidelity of our circuit-based technique. These 
results demonstrate that combining atom movement, many-body Ham-
iltonian evolution and digital quantum circuits yields powerful tools 
for simulating and probing the quantum physics of complex systems.

Discussion and outlook
Our experiments demonstrate highly parallel coherent qubit trans-
port and entanglement enabling a powerful quantum information 
architecture. The present techniques can be extended along a num-
ber of directions. Local Rydberg excitation on subsets of qubit pairs 
would eliminate residual interactions from unintended atoms, allowing 
parallel, independent operations on arrays with significantly higher 
qubit densities. Two-qubit gate fidelity can be improved using higher 
Rydberg laser power or more efficient delivery methods, as well as more 
advanced atom cooling44. These technical improvements should allow 
for scaling to deep quantum circuits operating on thousands of neutral 
atom qubits. These upgrades can be additionally supplemented by 
more sophisticated local single-qubit control employing, for example, 
parallel Raman excitation through acousto-optic modulator arrays16. 
Mid-circuit readout can be implemented by moving ancillas into a 
separate zone and imaging using, for example, avalanche photodiode 
arrays within a few hundred microseconds45.

Our method has a clear potential for realizing scalable QEC46. For 
example, the procedure demonstrated in Fig. 3c can be used for 
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Fig. 4 | Dynamic reconfigurability for hybrid analogue–digital quantum 
simulation. a, Hybrid quantum circuit combining coherent atom transport 
with analogue Hamiltonian evolution and digital quantum gates. b, Measuring 
entanglement entropy in a many-body Rydberg system via two-copy 
interferometry. c, Measured half-chain Renyi entanglement entropy after 
many-body dynamics following quenches on two eight-atom systems. 
Quenching from |gggg...⟩ (|g⟩ ≡ |1⟩) results in rapid entropy growth and 
saturation, signifying quantum thermalization. Quenching from |rgrg...⟩ 
reveals a significantly slower growth of entanglement entropy. d, Measuring 

the mutual information at 0.5-μs quench time reveals a volume-law scaling for 
the thermalizing |gggg...⟩ state, and an area-law scaling for the scarring |rgrg...⟩ 
state. e, The single-site Renyi entropies for sites in the middle of the chain 
quickly increase and saturate for the |gggg...⟩ quench, but show large 
oscillations for the |rgrg...⟩ quench. The solid curves are results of exact 
numerical simulations for the isolated quantum system under HRyd with no free 
parameters (see Methods for details of data processing). Error bars represent 
one standard deviation.
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syndrome extraction in a practical QEC sequence, wherein ancillas 
are entangled with their data qubit neighbours and then moved to 
a separate zone for mid-circuit readout. We estimate that an entire 
QEC round can be implemented within a millisecond, much faster 
than the measured T2 > 1 s, and with projected fidelity improvements 
theoretically surpassing the surface code threshold (Methods). We 
emphasize that such a mid-circuit readout is essential for realizing 
scalable fault-tolerant quantum computation. Furthermore, the abil-
ity to reconfigure and interlace our arrays will allow efficient, paral-
lel execution of transversal entangling gates between many logical 
qubits38,47. In addition, these techniques also enable implementation 
of higher-dimensional or non-local error-correcting codes with more 
favourable properties48,49. Together, these ingredients could enable an 
approach to universal, fault-tolerant quantum computing with thou-
sands of physical qubits.

Our dynamically reconfigurable architecture also opens many oppor-
tunities for digital and analogue quantum simulations. For example, our 
hybrid approach can be extended to probing the entire entanglement 
spectrum50, simulating wormhole creation51, performing many-body 
purification52 and engineering non-equilibrium states53. Entanglement 
transport could also empower metrological applications such as creat-
ing distributed states for probing gravitational gradients54. Finally, our 
approach can facilitate quantum networking between separated arrays, 
paving the way towards large-scale quantum information systems29,55 
and distributed quantum metrology54,56.
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Methods

Dynamic reconfiguration in 2D tweezer arrays
Our experiments utilize the same apparatus described previously in ref. 25.  
Inside our vacuum cell, 87Rb atoms are loaded from a magneto-optical 
trap into a backbone array of programmable optical tweezers generated 
by an SLM57. Atoms are rearranged in parallel into defect-free target 
positions in this SLM backbone57 by additional optical tweezers gener-
ated from a crossed 2D AOD. Following the rearrangement procedure, 
we transfer selected atoms from the static SLM traps back into the 
mobile AOD traps, and then move these mobile atoms to their start-
ing positions in the quantum circuit. During this entire process, the 
atoms are cooled with polarization-gradient cooling. Before running 
the quantum circuit, we take a camera image of the atoms in their ini-
tial starting positions, and following the circuit we take a final camera 
image to detect qubit states |0⟩ (atom presence) and |1⟩ (atom loss, 
following resonant pushout). We postselect all data on finding perfect 
rearrangement of the AOD and SLM atoms before running the circuit. 
In all experiments here, each atom remains in a single static or single 
mobile trap throughout the duration of the quantum circuit20,58,59.

The crossed AOD system is composed of two independently controlled  
AODs (AA Opto Electronic DTSX-400) for x and y control of the beam 
positions. Both AODs are driven by independent arbitrary waveforms, 
which are generated by a dual-channel arbitrary waveform genera-
tor (M4i.6631-x8 by Spectrum Instrumentation) and then amplified 
through independent MW amplifiers (Minicircuits ZHL-5W-1).  
The time-domain arbitrary waveforms are composed of multiple 
frequency tones corresponding to the x and y positions of columns 
and rows, which are independently changed as a function of time for 
steering around the AOD-trapped atoms dynamically; the full x and y 
waveforms are calculated by adding together the time-domain profile 
of all frequency components with a given amplitude and phase for each 
component. For running quantum circuits, we program the positions 
of the AOD atoms at each gate location and then smoothly interpolate 
(with a cubic profile) the AOD frequencies as a function of time between 
gate positions. The cubic profile enacts a constant jerk onto the atoms, 
which allows us to move roughly five-to-ten-times faster (without heat-
ing and loss) than if we move at a constant velocity (linear profile). 
In our movement protocol, we only do stretches, compressions and 
translations of the AOD trap array: that is, the AOD rows and columns 
never cross each other to avoid atom loss and heating associated with 
two frequency components crossing each other.

We homogenize the AOD tweezer intensity throughout the whole 
atom trajectory to minimize dephasing induced by a time-varying 
magnitude of differential light shifts. To this end, we use a reference 
camera in the image plane to gauge the intensity of each AOD tweezer 
at each gate location and homogenize by varying the amplitude of 
each frequency component; during motion between two locations, we 
interpolate the amplitude of each individual frequency component.

The SLM tweezer light (830 nm) and the AOD tweezer light (828 nm) 
are generated by two separate, free-running titanium:sapphire lasers 
(M Squared, 18-W pump). Projected through a 0.5 numerical aperture 
objective, the SLM tweezers have a waist of roughly 900 nm (roughly 
1,000 nm for AODs). When loading the atoms, the trap depths are about 
2π × 16 MHz, with radial trap frequencies of about 2π × 80 kHz, and 
when running quantum circuits the trap depths are about 2π × 4 MHz, 
with radial trap frequencies of about 2π × 40 kHz.

Raman laser system
Fast, high-fidelity single-qubit manipulations are critical ingredients of 
the quantum circuits demonstrated in this work. To this end, we use a 
high-power 795-nm Raman laser system for driving global single-qubit 
rotations between magnetic sublevel mF = 0 clock states. This Raman 
laser system is based on dispersive optics, developed and described 
in ref. 26. The 795-nm light (Toptica TA pro, 1.8 W) is phase-modulated 

by an electro-optic modulator (Qubig), which is driven by microwaves 
at 3.4 GHz (Stanford Research Systems SRS SG384) that are doubled 
to 6.8 GHz and amplified. The laser phase modulation is converted to 
amplitude modulation for driving Raman transitions through use of 
a chirped Bragg grating (Optigrate)26. IQ (in-phase and quadrature) 
control of the SG384 is used for frequency and phase control of the 
microwaves, which are imprinted onto the laser amplitude modulation 
and thus give us direct frequency and phase control over the hyperfine 
qubit drive.

The Raman laser illuminates the atom plane from the side in a cir-
cularly polarized elliptical beam with waists of 40 μm and 560 μm on 
the thin axis and the tall axis, respectively, with a total average optical 
power of 150 mW on the atoms. The large vertical extent ensures <1% 
inhomogeneity across the atoms, and shot-to-shot fluctuations in the 
laser intensity are also <1%. For Figs. 1–3, we operate our Raman laser 
at a blue-detuned intermediate-state detuning of 180 GHz, resulting 
in two-photon Rabi frequencies of 1 MHz and an estimated scattering 
error per π pulse of 7 × 10−5 (that is, 1 scattering event per 15,000 π 
pulses)26. For Fig. 4, to shorten the duration of the coherent mapping 
pulse sequence, we increase the Raman laser power and operate at a 
smaller blue-detuned intermediate-state detuning of 63 GHz, with a 
corresponding two-photon Rabi frequency of 3.2 MHz and an estimated 
scattering error per π pulse of 2 × 10−4.

Robust single-qubit rotations
For almost all single-qubit rotations in this work (other than XY8 and 
XY16 self-correcting sequences), we implement robust single-qubit 
rotations in the form of composite pulse sequences. These composite 
pulse sequences are well known in the NMR community27,60 and can 
be highly insensitive to pulse errors such as amplitude or detuning 
miscalibrations. Our dominant source of coherent single-qubit errors 
arise from ≲1% amplitude drifts and inhomogeneity across the array; as 
such, we primarily use the ‘BB1’ (broadband 1) pulse sequence, which 
is a sequence of four pulses that implements an arbitrary rotation on 
the Bloch sphere while being insensitive to amplitude errors to sixth 
order27,60. We benchmark the performance of these robust pulses in 
Extended Data Fig. 3a. Furthermore, by applying a train of BB1 pulses, 
we find an accumulated error consistent with the estimated scattering 
limit (not plotted here), suggesting that the scattering limit roughly 
represents our single-qubit rotation infidelities (about 3 × 10−4 error 
per BB1 pulse owing to the increased length of the composite pulse 
sequence). Randomized benchmarking61 can be applied in future stud-
ies to further study single-qubit rotation fidelity.

Qubit coherence and dynamical decoupling
In our 830-nm traps, hyperfine qubit coherence is characterized by  
inhomogeneous dephasing time T 2

⁎  = 4 ms (not plotted here), T2 = 1.5 s 
(XY16 with 128 total π pulses) and relaxation time T1 = 4 s (including 
atom loss) (Extended Data Fig. 3b, c). All of our experiments in this 
work are performed in a d.c. magnetic field of 8.5 G. Coherence can be 
further improved by using further-detuned optical tweezers (with trap 
depth held constant, the tweezer differential lightshifts decrease as 
1/Δ and 1/T1 decreases as 1/Δ3 (ref. 62), where Δ is the detuning of the trap 
wavelength) and shielding against magnetic field fluctuations.  
For practical QEC operation, atom loss can be detected in a hardware- 
efficient manner46 and the atom then replaced from a reservoir, which 
could in principle be continuously reloaded by a magneto-optical trap 
for reaching arbitrarily deep circuits.

All of our transport sequences20,58,59 are accompanied by dynami-
cal decoupling sequences. The number of pulses we use is a trade-off 
between preserving qubit coherence while minimizing pulse errors. 
We interchange between two types of dynamical decoupling sequence: 
XY8 and XY16 sequences, composed of phase-alternated individual π 
pulses that are self-correcting for amplitude and detuning errors28,63, 
and Carr–Purcell–Meiboom–Gill (CPMG)-type dynamical decoupling 
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sequences composed of robust BB1 pulses. The CPMG-BB1 sequence is 
more robust to amplitude errors but incurs more scattering error. We 
empirically optimize for any given experiment by choosing between 
these different sequences and a variable number of decoupling π 
pulses, optimizing on either single-qubit coherence (including the 
movement) or the final signal. Typically, our decoupling sequences 
are composed of a total 12–18 π pulses.

Movement effects on atom heating and loss
We study here the effects of movement on atom loss and heating in 
the harmonic oscillator potential given by the tweezer trap. Motion of 
the trap potential is equivalent to the non-inertial frame of reference 
where the harmonic oscillator potential is stationary but the atom 
experiences a fictitious force given by F(t) = −ma(t), where m is the 
mass of the particle and a(t) is the acceleration of the trap as a func-
tion of time64,65. By following ref. 66 (equation 5.4), we find the average 
vibrational quantum number increase ΔN is given by

∼
N

a ω
x ω
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where ∼a ω( )0  is the Fourier transform of a(t) evaluated at the trap fre-
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where ħ is the reduced Planck constant. ΔN is the same for all initial 
levels of the oscillator66. Experimentally, we apply an acceleration pro-
file a(t) = jt to the atom, from time −T/2 to +T/2 to move a distance D 
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Several relevant insights can be gleaned from this formula. First, this 
expression indicates our ability to move large distances D with com-
parably small increases in time T. Furthermore, to maintain a constant 
ΔN, the movement time T ω∝ 0

−3/4. Moreover, to perform a large number 
of moves k for a deep circuit, we can estimate ΔN ∝ k/T 4, suggesting 
that we can increase our number of moves from, for example, 5 to 80 
by slowing each move from 200 μs to 400 μs. Move speed could be 
further improved with different a(t) profiles, but inevitably with finite 
resources such as trap depth, quantum speed limits will eventually 
prevent arbitrarily fast motion of qubits across the array30.

We now compare equation (2) with our experimental observations. 
In Fig. 1d we start to observe atom loss when we move 55 μm in 200 μs 
under a constant negative jerk. This speed limit is consistent with our 
above estimates: using ω0 = 2π × 40 kHz and xzpf = 38 nm, we predict 
ΔN ≈ 6 for this move, corresponding to the onset of tangible heating 
at this move speed. More quantitatively, we assume a Poisson distribu-
tion with mean N and variance N and integrate the population above 
some critical Nmax upon which the atom will leave the trap. From this 
analysis we find atom retention is given by N N N(1 + erf[( − )/ 2 ])1

2 max .
Extended Data Fig. 2a, b measures the atom retention as a function 

of move time T and trap frequency ω0/2π. Using the functional form 
above, for both sets of measurements, we extract an Nmax of about 30, 
corresponding to adding about 30 excitations before exciting the atom 
out of the trap. Such a limit is physically reasonable as the absolute trap 
depth of 4 MHz implies only about 100 levels, the atom starts at finite 
temperature, and moreover the effective trap frequency reduces once 
the anharmonicity of the trap starts to play a role. We note that these 
estimates are only approximate (we roughly estimate ω0 for the trap 
depths used during the motion), but nonetheless suggests our motion 
limit is consistent with physical limits for our chosen a(t). Our analysis 
here also neglects the acoustic lensing effects associated with ramping 
the AOD frequency, which causes astigmatism by focusing one axis to 

a different plane and thus deforms the trap and reduces the peak trap 
intensity (and ω0) as given by the Strehl ratio.

Additional heating and loss during the circuit can also be caused by 
repeated short drops for performing two-qubit gates, where the twee-
zers are briefly turned off to avoid anti-trapping of the Rydberg state 
and light shifts of the ground–Rydberg transition. However, drop–
recapture measurements in Extended Data Fig. 2c suggest that the 
500-ns drops we use experimentally have a negligible effect until hun-
dreds of drops per atom (corresponding to hundreds of CZ gates). We 
find that atom loss and heating as a function of number of drops are 
well described by a diffusion model, which would then predict that 
reducing atom temperature by a factor of 2× (reducing thermal veloc-
ity by 2 ×) and reducing the drop time tdrop by 2×, together would 
increase the number of possible CZ gates per atom to thousands.

Two-qubit CZ gates implementation
We implement our two-qubit gates and calibrations following ref. 5. Spe-
cifically, the two-qubit CZ gate is implemented by two global Rydberg 
pulses, with each pulse at detuning Δ and length τ, and with a phase 
jump ξ between the two pulses. The pulse parameters are chosen such 
that qubit pairs, adjacent and under the Rydberg blockade constraint, 
will return from the Rydberg state back to the hyperfine qubit manifold 
with a phase depending on the state of the other qubit. The numerical 
values for these pulse parameters are:

Δ Ω= − 0.377371

ξ = − 0.621089 × (2π)

τ Ω= 0.683201/[ /(2π)]

For our experiments in Figs. 1–3, we operate with a two-photon 
Rydberg Rabi frequency of Ω/2π = 3.6 MHz, giving a theoretical 
τ = 190 ns and a theoretical Δ/(2π) = −1.36 MHz. We choose the negative 
detuning sign to help minimize excitation into the mj = +1/2 Rydberg 
state (mj denotes magnetic sublevel of the 70S1/2 Rydberg state), which 
is detuned by about 24 MHz under the field of 8.5 G (and experiences 
a three-times lower coupling to the Rydberg laser than the desired 
mj = −1/2 state owing to reduced Clebsch–Gordan coefficients). In this 
work, we operate with strong blockade between adjacent qubits, with 
Rydberg–Rydberg interactions V0/2π ranging from 200 MHz to 1 GHz. 
In Fig. 4, we operate with Ω/2π = 4.45 MHz for the two-qubit gates.

Managing spurious phases during CZ gates
The two-qubit gate from ref. 5 induces both an intrinsic single-qubit 
phase, as well as spurious phases that are primarily induced by the 
differential light shift from the 420-nm laser. Under certain configura-
tions, the 420-nm-induced differential light shift on the hyperfine qubit 
can be exceedingly large (>8 MHz), yielding phase accumulations on 
the hyperfine qubit of about 6π. Small, percent-level variations of the 
420-nm intensity can thus lead to significant qubit dephasing.

Reference 5 addresses this 420-induced-phase issue by performing an 
echo sequence: after the CZ gate, the 1,013-nm Rydberg laser is turned 
off, a Raman π pulse is applied and then the 420-nm laser is pulsed 
again to cancel the phase induced by the 420 light during the CZ gate. 
This method echoes out the 420-induced phase, but comes at a cost 
of a factor of two increase in the 420-induced scattering error, which 
is the dominant source of error in our two-qubit CZ gates.

Echo between CZ gates. To address these various issues, here we 
perform a Raman π pulse between each CZ gate to echo out spurious 
gate-induced phases on the hyperfine qubit (Extended Data Fig. 1). 
This approach has several advantages. The 420-induced phase is now 
cancelled by pairs of CZ gates, without explicitly applying additional 
420-nm pulses to echo each individual CZ gate, thereby reducing the 



scattering error of the CZ gate in this work by a factor of approximately 
two. We estimate that this echo technique, having reduced the scattering 
error incurred during each gate, roughly compensates the increased 
scattering rate incurred by spreading our optical power over more space 
in 2D, thereby giving us comparable gate fidelites to the two-qubit CZ 
gate fidelities of ≥97.4(2)% reported in ref. 5. Furthermore, the echo 
between CZ gates also cancels the intrinsic single-qubit phase of the 
CZ gate, removing errors in the calibration of this parameter, as well as 
cancelling any other gate-induced spurious single-qubit phases such as 
a roughly 0.01-rad phase induced by pulsing the traps off for 500 ns for 
the two-qubit gate (Extended Data Fig. 1). In instances where the number 
of CZ gates we apply is odd, we perform the echo for the final CZ gate.

Sign of intermediate-state detuning. To further suppress the effect 
of the spurious, 420-induced phase, we operate our 420-nm laser to be 
red-detuned (by 2 GHz) from the 6P3/2 transition. For red detunings, the 
light shift on the |0⟩ state and the |1⟩ state are of the same sign, minimiz-
ing the differential light shift, whereas for blue detunings <6.8 GHz, 
the light shift on the |0⟩ state and the |1⟩ state have opposite signs and 
amplify the differential light shift.

Sensitivity to axial trap oscillations
In typical Rydberg excitation timescales with optical tweezers, the axial 
trap oscillation frequencies of several kilohertz are inconsequential. 
Here with our circuits running as long as 1.2 ms, with Rydberg pulses 
throughout, we find that the axial trap oscillations can have important 
effects. In particular, the axial oscillations cause the atoms to make 
oscillations in and out of the Rydberg beams: at our estimated axial 
temperature of about 25 μK and axial oscillation frequency of 6 kHz, 
we estimate an axial spread z ≈ 1.3 μm2 . For our 20-μm-waist beams, 
the effect of this positional spread is relatively small on the pulse param-
eters of the CZ gate, but can be significant on the sensitive 420-induced 
phase we seek to cancel by echoing out the phase induced by CZ gates 
separated by about 200 μs (see previous section). When using 
20-μm-waist beams, and a 2.5-GHz blue detuning of our 420-nm laser, 
we find that the dephasing due to the axial trap oscillations is significant 
(Extended Data Fig. 4). To remedy this deleterious effect, we increase 
the beam waist of our 420-nm laser to 35 μm (while maintaining con-
stant intensity) and change the laser frequency to be 2-GHz red-detuned, 
together resulting in a significant reduction in the dephasing associated 
with improper echoing of the 420-nm pulse.

Bell-state preparation and fidelity
In Fig. 1, we prepare the |Φ+⟩ Bell state in the same way that is done in 
ref. 5. After initializing a pair of qubits in |00⟩, we apply X(π/2) pulse–CZ 
gate–X(π/4) pulse. We calculate and plot the raw resulting fidelity of this 
|Φ+⟩ Bell state as the sum of populations in |00⟩ and |11⟩, averaged with 
the fitted amplitude of parity oscillations (example in Fig. 1c), which 
measures the off-diagonal coherences. In Fig. 1d, upon significant loss 
from movement, this fidelity estimate becomes skewed because we 
begin measuring an artificially large population in |11⟩ (as state |1⟩ is 
detected as loss); accordingly, we estimate the |Φ+⟩ population as two 
times the population of |00⟩ once the population difference between 
|11⟩ and |00⟩ becomes greater than 0.1 (an arbitrary cut-off where the 
effects of loss start to become significant). In Fig. 1d, for moves slower 
than 300 μs, we achieve an average raw Bell-state fidelity after the mov-
ing of 94.8(2)%. If we do not move or attempt to preserve coherence 
for 500 μs (that is, if we measure immediately after preparing the Bell 
state), then we measure a raw Bell-state fidelity of 95.2(1)% (not plotted 
here), consistent with the results in ref. 5.

Analysis of error sources
We detail here some of our measured and estimated sources of error for 
an entire sequence (toric code preparation in particular, our deepest 
circuit). We find the total single-qubit fidelity after performing the entire 

sequence is roughly 96.5% for the toric code circuit, which we measure 
by embedding the entire experiment in a Ramsey sequence: that is, we 
perform a Raman π/2 pulse, do all motion and decoupling, and then 
do a final π/2 pulse with variable phase to measure total contrast. We 
are able to account for our single-qubit fidelity quantitatively as being 
composed of our known single-qubit errors in Extended Data Fig. 6c.

Estimated contributions to two-qubit gate error are summarized in 
Extended Data Fig. 6c. These estimates come from numerical simulations 
in QuTiP (version 4.5.0) with experimental parameters. The effects of 
intermediate state scattering and Rydberg decay are included via collapse 
operators in the Lindblad master equation solver. Other error contribu-
tions include finite-temperature random Doppler shifts and position 
fluctuations, as well as laser pulse-to-pulse fluctuations, all of which are 
simulated using classical Monte Carlo sampling of experiment param-
eters. Experimental parameters used for the simulations are as follows: 
blue and red Rabi frequencies (Ωb, Ωr) = 2π × (160, 90) MHz, 6P3/2 interme-
diate state detuning of 2 GHz, intermediate state lifetime of 110 ns, 70S1/2 
Rydberg state lifetime of 150 μs, Rydberg blockade energy of 500 MHz, 
splitting to second Rydberg state of 24 MHz, radial and axial trap frequen-
cies (ωr, ωz) = 2π × (40, 6) kHz, and temperature T = 20 μK. We can also 
use this modelling to project for future performance; by assuming a 10 
times increase in available 1,013-nm intensity and that atoms are cooled 
to a temperature of 2 uK, we project a possible CZ gate fidelity of 99.7%, 
beyond the surface code threshold38,67. Alkaline-earth atoms could also 
offer other routes to high-fidelity operations for QEC68–70.

To understand how our various single-qubit and two-qubit errors 
contribute to our graph-state fidelities, we perform a stochastic simula-
tion of the quantum circuit used for graph-state preparation (Extended 
Data Fig. 6a, b). We utilize the Clifford properties of our circuit, allowing 
for efficient numerical evaluation and random sampling of many pos-
sible error realizations. The simulation is performed under a realistic 
error model, where the rates of ambient depolarizing noise and atom 
loss are measured in the experiment (Extended Data Fig. 6c). The result-
ing stabilizer and logical qubit expectation values agree well with those 
measured experimentally.

Rydberg beam shaping and homogeneity
We shape our Rydberg beams into tophats of variable size through 
wavefront control using the phase profile on an SLM25. This ability 
allows us to match the height of our beam profile to the experiment 
zone size of any given experiment, thereby maximizing our 1,013-nm 
light intensity and CZ gate fidelities. We optimize our Rydberg beam 
homogeneity until peak-to-peak inhomogenities are below <1%. To this 
end, we correct all aberrations up to the window of our vacuum cham-
ber, as done in ref. 25, which yields an inhomogeneity on the atoms of 
several per cent that we attribute to imperfections of the final window. 
To further optimize the homogeneity, we empirically tune aberration 
corrections on the tophat through Zernike polynomial corrections 
to the phase profile in the SLM plane (Fourier plane). With this proce-
dure, we reduce peak-to-peak inhomogeneities to <1% over a range of 
40–50 μm in the atom plane.

Creation and optimization of graph layouts
We outline here a description of how we optimize our graph layouts for 
the cluster state, Steane code, surface code and toric code preparation. 
Our optimization in this work is heuristic, and future work can develop 
appropriate algorithms for designing optimal circuits through atom 
spatial arrangement and AOD trajectories. Extended Data Fig. 5 shows 
all of the graphs we create and the process for creating them. There 
are several parameters we optimize for. (1) Minimize the number of 
parallel two-qubit gate layers. (2) Minimize the total move distance 
for the moving atoms. (3) Have all moving atoms in one sublattice (all 
graphs realized here are bipartite) to facilitate the final local rotation 
of one sublattice. (4) Minimize the vertical extent of the array and the 
number of distinct rows (to maximize 1,013-nm light intensity and 
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minimize sensitivity to beam inhomogeneity between the rows).  
(5) When ordering gates, apply two-qubit gates as early as possible in 
the circuit. If a gate layer induces a bit-flip (X error) then that error can 
propagate during subsequent gates (becoming a Z error on the other 
qubit), so gates should be in the earliest layer possible.

Local (sublattice) hyperfine rotations
We perform local rotations in the hyperfine basis by use of our hori-
zontally propagating 420-nm beam, which imposes a differential light 
of several megahertz on the hyperfine qubit and can thus be used for 
realizing a fast Z rotation. To realize the local Y(π/2) rotation used 
throughout this work, we move one sublattice of atoms out of the 
420-nm beam, then apply [global Y(π/4)]–[local Z(π)]–[global Y(π/4)]. 
This realizes a Y(π/2) rotation on one sublattice and a Z(π) rotation on 
the other sublattice (which is inconsequential as it then commutes 
with the immediately following measurement in the Z basis). To apply 
a Y(π/2) on the other sublattice of atoms, we add an additional global 
Z(π) (implemented by jumping the Raman laser phase) between the two 
Y(π/4) pulses. Future experiments will benefit from an additional set of 
locally focused beams for performing local Raman control of hyperfine 
qubit states, but we find that moving atoms works so efficiently (even 
for moving >50 μm to move out of the 420-nm beam) that this approach 
is well suited for producing a high-fidelity, homogeneous rotation on 
roughly half the qubits.

Local Rydberg initialization
We perform local Rydberg control to initialize the |ℤ2⟩ = |rgrg...⟩ ≡ |r1r1...⟩ 
state for studying the dynamics of many-body scars. We achieve this local 
initialization by applying approximately 50-MHz light shifts between 
|1⟩ and |r⟩ using 810-nm tweezers generated by an SLM onto a desired 
subset of sites, and then apply a global Rydberg π pulse, which excites 
the non-light-shifted atoms. We use this approach here to prepare every 
other atom in each chain into |r⟩, but emphasize that as the locations of 
the SLM tweezers are fully programmable, this technique can be used to 
prepare any initial blockade-satisfying configuration of atoms in |1⟩ and |r⟩.

The 50-MHz biasing light shift is significantly larger than the Rydberg 
Rabi frequency Ω/2π = 4.45 MHz, leading to a Rydberg population on 
undesired sites of <1%. The t = 0 time point of Extended Data Fig. 10b 
shows the high-fidelity preparation of the |ℤ2⟩ state using this approach. 
We note that with 810-nm light, even though the achieved biasing light 
shift is significant, the Raman-scattering-induced T1 (of the hyperfine 
qubit) is still about 50 ms and thus leads to a scattering error ≲4 × 10−6 
during the 200-ns pulse of the light-shifting tweezers. There can also 
be a motional effect from the biasing tweezers, with an estimated radial 
trapping frequency of 150 kHz, which we also deem to be negligible 
during the 200-ns pulse.

Rydberg Hamiltonian
In Fig. 4, we study dynamics under the many-body Rydberg Hamiltonian
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For the entanglement entropy measurements in this work, we choose 
lattice spacings where the nearest-neighbour interaction V0 > Ω results 
in the Rydberg blockade, preventing adjacent atoms from simultane-
ously occupying |r⟩. In particular, the many-body experiments are 
performed on eight-atom chains, quenching to a time-independent 
HRyd with V0/2π = 20 MHz, Ω/2π = 3.1 MHz and Δ/2π = 0.3 MHz. Quench-
ing to small, positive Δ = 0.0173V0 partially suppresses the always- 
positive long-range interactions and thereby is optimal for scar lifetime, 
as derived and shown experimentally in ref. 71.

Coherent mapping protocol
As described in the text, we implement a coherent mapping protocol to 
transfer a generic many-body state in the {|1⟩, |r⟩} basis to the long-lived 
and non-interacting {|0⟩, |1⟩} basis. To achieve this mapping, immedi-
ately following the Rydberg dynamics we apply a Raman π pulse to map 
|1⟩ → |0⟩, and then a subsequent Rydberg π pulse to map |r⟩ → |1⟩ (ref. 72).

Even for perfect Raman and Rydberg π pulses (on isolated atoms), 
there are three key sources of infidelity associated with this mapping 
process. (1) Any population in blockade-violating states (that is, two 
adjacent atoms both in |r⟩) will be strongly shifted off-resonance for 
the final Rydberg π pulse. As such, this atomic population will be left 
in the Rydberg state and lost. (2) Long-range interactions, for exam-
ple, from next-nearest neighbours, will detune the final Rydberg π 
pulse from resonance and thus reduce pulse fidelity. As the long-range 
interactions are not the same for all many-body microstates, this effect 
cannot be mitigated by a simple shift of the detuning. (3) Dephasing 
of the state occurs throughout the duration of the Raman π pulse, 
predominantly from Doppler shifts between the ground states |0⟩ and 
|1⟩ and the Rydberg state |r⟩. Although these random on-site detunings 
are also present during the many-body dynamics, turning the Rydberg 
drive Ω off allows the system to freely accumulate phase and makes us 
particularly sensitive to dephasing errors.

We now detail our mitigation of the above error mechanisms. To 
minimize errors from (1), we perform our many-body dynamics with 

VΩ /(2 ) ≈ 0.012
0
2 . This minimizes the probability of an atom to violate 

blockade to be of order 1%. To help minimize errors from (2), we increase 
the amplitude of the 420-nm laser for the final π pulse by a factor of 
2×, such that (VNNN/Ω)2 = 0.005 (where VNNN is the interactions with 
next-nearest neighbours), reducing pulse errors from long-range inter-
actions to order 1%. Finally, to reduce errors from (3), we perform a fast 
Raman π pulse and leave only 150 ns between ending the many-body 
Rydberg dynamics and beginning the Rydberg π pulse. The 150-ns gap 
is comparably short relative to the T 2

⁎  ≈ 3–4 μs of the {|g⟩, |r⟩} basis, 
leading to a random phase accumulation of the order of about 
0.02 × 2π rad per particle, but is further compounded by having entan-
gled states of N particles in one copy accumulating a random phase 
relative to entangled states of N particles in the second copy. We study 
these various effects numerically in Extended Data Fig. 9c.

Finally, we note that the global Raman beam induces a light-shift- 
induced phase shift of about π on |0⟩ and |1⟩ relative to |r⟩ during 
the Raman π pulse. Similarly, the global 420-nm laser also induces a 
light-shift-induced phase shift of about π between |0⟩ and |1⟩ during 
the Rydberg π pulse. Although the measurements we perform here 
are interferometric (in other words, the singlet state we measure is 
invariant under global rotations) and thus not affected by these global 
phase shifts, in future work these phase shifts can be measured and 
accounted for where relevant.

Measuring entanglement entropy
The second-order Renyi entanglement entropy is given by S (A)=2  

 ρ−log Tr2 A
2 , where ρTr A

2  is the state purity of reduced density matrix 
ρA on subsystem A. The purity can be measured with two copies by 
noticing that Sρ ρ ρTr = Tr ˆ ⊗A

2
A A

     is the expectation value of the 
many-body SWAP operator Ŝ (ref. 10,11). The many-body SWAP operator 
is composed of individual SWAP operators ̂ is  on each twin pair, that is, 
SS ss^ = Π ^i i (with i ∈ A). Measuring this expectation value amounts to prob-
ing occurences of the singlet state |01⟩ − |10⟩

2
 (with eigenvalue −1 under ŝ )i ,  

as all other ̂ is  eigenstates have eigenvalue +1. Occurences of the singlet 
state in each twin pair, that is, the Bell state |Ψ−⟩, is extracted by a Bell 
measurement circuit (with an additional local Z(π), see next paragraph), 
which maps |Ψ−⟩ → |00⟩ and can thereafter be measured in the compu-
tational basis. As such, after performing the Bell measurement circuit, 
we analyse the resulting bit-string outputs and calculate the purity of 
any subsystem A by calculating s⟨Π ˆ ⟩ii∈A : that is, we measure purity as 



the average parity = ⟨(−1)observed |00⟩ pairs⟩ within A. In the absence of exper-
imental imperfections, the purity will equal 1 for the whole system, and 
be less than 1 for subsystems that are entangled with the rest of the 
system.

A Bell measurement circuit can be decomposed into applying an 
X(π/2) rotation on one atom of the twin pair, then applying a CZ gate 
and then a global X(π/2) rotation. In other measurements, we realize a 
local X(π/2) by doing a global X(π/4) rotation, then local Z(π) rotation 
and then global X(π/4). However, we note that for this singlet measure-
ment circuit, the first X(π/4) is redundant as the singlet state is invariant 
under global rotations, and so for the local X(π/2) we only apply the 
local Z(π) and then the second global X(π/4). This effectively realizes 
the X(π/2) on one qubit, up to a Z(π) on the other qubit (not shown 
in circuit diagram in Fig. 4). Under this simplification, the Bell meas-
urement circuit to map |Ψ−⟩ → |00⟩ can be roughly understood as the 
reverse of the Bell-state preparation circuit in ref. 5, which is precisely 
how we calibrate the parameters of the Bell measurement.

Calibrating and benchmarking the interferometry. To validate the 
interferometry measurement (and check for proper calibration), we 
benchmark it separately from the many-body dynamics and coher-
ent mapping protocol. We perform this benchmarking by preparing 
independent qubits in identical, variable single-qubit superpositions 
(through a global Raman pulse of variable time) and ensuring that the 
interferometry rarely results in |00⟩ for all the variable initial product 
states (Extended Data Fig. 8a). We find this is an important benchmark-
ing step, because we find that small miscalibrations of the Bell measure-
ment can lead to lower fidelity (that is, higher entropy) for different 
initial product states and thereby result in additional spurious signals 
in an entanglement entropy measurement. We note that this measure-
ment is particularly sensitive to the single-qubit phase immediately 
before the final X(π/2) pulse (induced by the CZ gate and cancelled by 
a global Z(θ) pulse).

Additional many-body data and details
To benchmark our method of measuring entanglement entropy in a 
many-body system, in Extended Data Fig. 8b we study the entanglement 
dynamics after initializing two proximal atoms in |1⟩ and resonantly 
exciting to the Rydberg state for a variable time t. Under conditions of 
Rydberg blockade, this excitation results in two-particle Rabi oscilla-
tions between |11⟩ and the entangled state W r r= ( 1 + 1 )1

2
 (top 

panel of Extended Data Fig. 8b)3,13,72. The state purity of this two-parti-
cle system is measured by performing Bell measurements on atom 
pairs from two identical copies. Locally, the measured purity of the 
one-particle subsystem reduces to a value of about 0.5 when the system 
enters the maximally entangled |W⟩ state, at which point the reduced 
density matrix of each individual atom is maximally mixed. In contrast, 
the purity of the global, two-particle state remains high. The observa-
tion that the global-state purity is higher than the local-subsystem 
purity is a distinct signature of quantum entanglement11,12.

For the data shown in Fig. 4c, e, we subtract the data by an extensive 
classical entropy as is done in ref. 12. This fixed, time-independent offset 
is given by the entropy per particle, that is, (global entropy at quench 
time t = 0) × (subsystem size)/(global system size). In Extended Data 
Fig. 9a, we show the raw entanglement entropy measurements along-
side numerics, to indicate the size of the extensive classical entropy 
contribution. In plotting, we also delay the theory curves by 10 ns to 
account for the fact that the Raman π pulse cuts off the final 10 ns of the 
Rydberg evolution, which is done to keep the coherent mapping gap 
as short as possible and minimize Doppler dephasing. Furthermore, 
in Extended Data Fig. 9b we plot the measured global purity and com-
pare it with numerical simulations incorporating experimental errors 
(Extended Data Fig. 9c).

In Extended Data Fig. 10, we show additional many-body data on the 
eight-atom chain system, with the same parameters as those used in 

the main text. We show the measured single-site entropy of each site 
in the eight-atom chain for the |ℤ2⟩ quench in Extended Data Fig. 10a. 
Furthermore, in Extended Data Fig. 10b, we plot the global Rydberg 
population, measured in both the {|1⟩, |r⟩} basis and the {|0⟩, |1⟩} basis.

Data availability
The data that supports the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | CZ gate echo, atomic level structure, and typical 
pulse sequence. a, The two-qubit gates we apply, in addition to applying a 
controlled-Z operation between the two qubits, also induce a single-qubit 
phase Z(ζ ) to both qubits, composed of the intrinsic phase of the CZ gate5 and 
additional spurious phases from the 420-nm Rydberg laser and pulsing the 
traps off. Since we apply all gates in parallel by global pulses of the Rydberg 
laser, if a qubit is not adjacent to another qubit, it does not perform a CZ gate 
but still acquires the same Z(ζ ) (identical to being adjacent to another qubit in 
state |0⟩, which is dark to the Rydberg laser). As diagrammed, we cancel the 
additional, undesired Z(ζ ) by applying a π pulse between pairs of CZ gates.  

This echo procedure removes any need to calibrate the intrinsic phase from the 
CZ gate, and renders us insensitive to any spurious changes in Z(ζ ) slower than 
~200 μs. The additional Y(π) propagates in a known way through the CZ gates 
and multiplies certain stabilizers by a −1 sign, which simply redefines the sign of 
stabilizers and logical qubits. b, Level diagram showing key 87Rb atomic levels 
used. Our Rydberg excitation scheme from |1⟩ to |r⟩ is composed of a 
two-photon transition driven by a 420-nm laser and a 1013-nm laser (see ref. 25 
for description of laser system). A DC magnetic field of B = 8.5 G is applied 
throughout this work. c, A typical pulse sequence for running a quantum 
circuit.
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Extended Data Fig. 2 | Movement characterization and multiple 
drop-recaptures. a, Atom retention as a function of average separation speed 
2D/T (as is plotted in Fig. 1d of the main text for separating Bell pairs), with 
subtracted background loss of 0.7%. The inset in Fig. 1d of the main text is 
normalized by (Atom retention)2 (without subtracting background loss). Dark 
curve is calculated using experimental parameters and Eq. 2, matched to the 
experimental data by setting Nmax = 26 and averaging over a range of ω0/2π of 
±15% around an average ω0/2π = 40 kHz. b, Atom retention as a function of 
inverse trap frequency (2π/ω0) after the four moves of the surface code circuit. 
For calculating the atom loss here we set Nmax = 33 and average the trap 
frequencies over a range of ± 15%. We note that these quantitative estimates are 

sensitive to ω0 which we roughly estimate. c, Atom loss as a function of drop 
time and number of drop loops, with 100 μs wait between each drop. When 
running quantum circuits we use 500-ns drops for each CZ gate (to avoid 
anti-trapping of the Rydberg state and light shifts of the transition), for which 
we observe here that hundreds of drops can be made (corresponding to 
hundreds of possible CZ gates per atom) before atom loss becomes significant. 
d, By rescaling the x-axis of the data to t Ndrop , we find the data of the various 
tdrop collapse onto a universal curve, suggesting a diffusion model for 
explaining the atom loss after a certain number of drops. By modeling such a 
diffusion process analytically we obtain the black curve with a temperature of 
10 μK and a trapping radius of 1 μm.
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Extended Data Fig. 3 | Robust single-qubit control and qubit coherence.  
a, Robust BB1 single-qubit rotation in comparison to a normal single-qubit 
rotation, as a function of pulse area error. An arbitrary BB1(θ, ϕ) rotation on the 
Bloch sphere of angle θ about axis ϕ is realized with a sequence of four pulses: 
(π)φ + ϕ(2π)3φ + ϕ(π)φ + ϕ(θ)ϕ, where φ = cos−1 (−θ/4π)60. Pulse fidelity is measured 
here for a π pulse, defined such that the fidelity is the probability of successful 
transfer from |0⟩ → |1⟩, including SPAM correction. b, Preserving hyperfine 
qubit coherence using dynamical decoupling (XY16 with 128 total π pulses). 

Qubit coherence is observed on a timescale of seconds, with a fitted coherence 
time T2 = 1.49(8)s. Data is measured with either a + π/2 or −π/2 pulse at the end of 
the sequence, and these curves are then subtracted to yield the coherence 
y-axis. c, Hyperfine qubit T1, measured by the difference of final F = 2 
populations between measurements starting in |F = 2, mF = 0⟩ and |F = 1, mF = 0⟩. 
Atom loss without cooling is separately measured (predominantly arising from 
vacuum loss) and normalized to also measure the intrinsic spin relaxation time 
T ′1 in the absence of atom loss. All data here is measured in 830-nm traps.
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Extended Data Fig. 4 | Effect of axial trap oscillations on echo fidelity of 
420-nm Rydberg pulse. a, Noise correlation measurement of the 420-nm 
Rydberg laser pulse intensity. In the blue-detuned configuration used in this 
figure only, the 420-nm laser induces an 8 MHz differential light shift on the 
hyperfine qubit, and consequently a phase accumulation of 32π during a 2-μs 
pulse (our CZ gates are 400-ns total). Small fluctuations of the 420-nm laser 
intensity lead to large fluctuations in phase accumulation of the hyperfine 
qubit, and thus cause significant dephasing. The echo sequence diagrammed 
here probes the correlation of the accumulated phase between two 420-nm 
pulses separated by a variable time τ, and thus informs how far-separated in time 
the 420-nm pulses can be while still properly echoing out fluctuations in the 
420-nm intensity. b, Hyperfine coherence (a proxy for echo fidelity) versus gap 
time τ between the two 420-nm pulses. The echo fidelity decreases initially due 

to a decorrelation of the 420-nm intensity, but then increases again, showing 
that the correlation of the 420-nm intensity is non-monotonic. The decaying 
oscillations are fit to a functional form of y = y0 + Acos2(πfτ)exp[−(τ/T)2]. c, The 
fitted oscillation frequency f of the correlation / decorrelation of the noise 
follows a square-root relationship with the trap power, and is consistent with the 
expected axial trap oscillation frequency. These observations indicate that a 
significant portion of the correlation / decorrelation of the 420-nm noise  
arises from the several-μm axial oscillations of the atom in the trap. For this 
measurement, we intentionally displace the 420-nm beam by several μm in 
order to place the atom on a slope of the beam, increasing our sensitivity to this 
phenomenon. For the other experiments in our work, we minimize sensitivity to 
these effects by operating in the center of a larger (35-micron-waist) 420-nm 
beam and operating red-detuned of the intermediate-state transition.
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Extended Data Fig. 5 | Movement schematics. Schematics showing the 
gate-by-gate creation of a the 1D cluster state, b the Steane code, c the surface 
code, and d the toric code (see also Supplementary Video 1), in a side-by-side 
comparison. These various graph states are all generated in the same way, and 
encoding a desired circuit is a matter of positioning the atoms in different 

initial positions and applying an appropriate AOD waveform. To realize a 
desired circuit, atom layouts and trajectories are optimized heuristically in the 
way described in the Methods text. Panel c also shows the definition of surface 
code stabilizers as ordered in the main text.
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Extended Data Fig. 6 | Error simulations and tabulated single-qubit and 
two-qubit error estimates. We compare our measured graph state fidelities to 
those from a stochastic Monte Carlo simulation of our system for a, the surface 
code and b, the toric code. We find that the simulated stabilizers agree well  
with the experimental data for this empirical depolarizing noise model.  
In addition, for the surface code (toric code) in the experiment we find 35% (20%) 
of measurements detect no stabilizer errors, compared to 40% (26%) in the 
simulation. We assume two-qubit errors are described by rates of 0.2% Y error, 
0.2% X error, 0.5% Z error, and 0.5% loss per qubit per parallel layer (4 layers for 
surface code, 5 layers for toric code), corresponding to a 97.2% CZ-gate fidelity. 
We also add ambient, single-qubit errors at a rate of 0.1% Y error, 0.1% X error, 
0.4% Z error, and 0.2% loss per qubit per parallel layer, as well as an initial 1% loss 

before the circuit begins (empirically factoring in SPAM errors). c, Tabulation of 
single-qubit (SQ) and two-qubit (TQ) gate errors that are measured, estimated, 
and extrapolated. Simulated TQ fidelities include the 0.6% scattering error from 
the 420-nm echo pulse. The estimated TQ fidelities are given for the 
experiments of the surface code and toric code, but is an underestimate of the 
TQ fidelities for the cluster state and Steane code measurements where we 
increase the 1013-nm intensity by 2× and reduce the 420-nm intensity by 2×, 
increasing gate fidelity. The Bell state estimate of CZ gate fidelity is similarly 
done with 2× higher 1013 intensity, but includes the 420-nm echo pulse, and 
consequently yields a similar gate fidelity as the surface and toric code 
estimates.
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Extended Data Fig. 7 | Properties of encoded logical states. a, Summary of 
logical error probabilities for the various error correcting graphs made in this 
work (all in logical state |+⟩L), for raw measurements as well as implementing 
error correction and error detection in postprocessing. Error correction for 
the Steane code is implemented with the Steane code decoder36,73 and is 
implemented with the minimum-weight-perfect-matching algorithm for the 
surface and toric codes38. For the even-distance toric code, when correction is 
ambiguous we do not flip the logical qubit, and accordingly the distance d = 2 
logical qubit does not change under the correction procedure. We remark that 
the observed fidelities are comparable to similar demonstrations in 
state-of-the-art experiments with other platforms8,74. These will need to be 
improved to surpass the threshold for practical error correction38 
(see Methods text). b, Lifetime of the logical |+⟩L state on the surface code, with 
correction and detection performed in postprocessing as in a. After state 

preparation, the |+⟩L state is held for a variable time before projective 
measurement, with two π pulses applied for dynamical decoupling (lifetime 
can be extended significantly further by applying e.g. 128 π pulses as done in 
Extended Data Fig. 3b). Some experimental parameters are slightly different 
here compared to those in a, hence the higher error rates here at the time 0 
point. c, Logical π/2 rotation on the Steane code to prepare logical qubit state 
|0L⟩. The Steane code, surface code, and toric code all have transversal 
single-qubit Clifford operations on the logical qubit8,36 (including in-software 
rotations of the lattice), which is a high-fidelity operation in our system since 
the transveral rotations are implemented in parallel with our global Raman 
laser and the physical single-qubit fidelities are high. We show a logical π/2 
rotation here for the Steane code as an example but emphasize that we can 
readily realize the various basis states for all of these codes.
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Extended Data Fig. 8 | Benchmarking the interferometry measurement.  
a, To benchmark our gate-based interferometry technique, we prepare variable 
single-particle pure states (by applying a variable-length resonant Raman 
pulse) and then reconfigure the system and apply the interferometry circuit on 
twin pairs. The interferometry circuit converts the anti-symmetric singlet state 
|Ψ−⟩ to the computational basis state |00⟩, while converting the symmetric 
triplet states to other computational states. We plot the resulting twin pair 
output states in the left panel. We rarely observe the |00⟩ state (1.95(2)% of 
measurements), with a measurement fidelity independent of the initial state. 
This low probability P00 of observing |00⟩ corresponds to a high extracted 
single-particle purity of 2P00 − 1 = 0.961(3) (right panel). We find this 
measurement to be a useful benchmark, as interferometry miscalibrations can 

result in significant state-dependence of the observed purity that would  
then compromise the validity of the many-body entanglement entropy 
measurement. b, Benchmarking the entanglement entropy measurement with 
Bell state arrays. (Top) Microstate populations during two-particle oscillations 
between |11⟩ and r r( 1 + 1 )1

2
 under a Rydberg pulse of variable duration. Faint 

lines show measurement results in the {|1⟩, |r⟩} basis, and dark lines show results 
in the {|0⟩, |1⟩} basis after the coherent mapping process. (Bottom) Measured 
local and global purities by analyzing the number parity of observed |00⟩ twin 
pairs in each measurement. For this two-particle data we use a gap of 230 ns in 
the coherent mapping sequence as opposed to the 150-ns gap used in the 
many-body data.
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Extended Data Fig. 9 | Raw many-body data and numerical modeling of 
errors. a, Raw measured Renyi entropy without subtracting the extensive 
classical entropy, as a function of subsystem size for quenches from |rgrgrgrg⟩ 
and |gggggggg⟩. The Renyi entropy of the 4-atom subsystem is the same 
underlying data as the half-chain entanglement entropy plotted in Fig. 4d of the 
main text. In the main text, we subtract the data by a fixed offset given by the 
classical entropy-per-particle, corresponding to the time = 0 offset for each 
subsystem size. The extensive, classical entropy offset is slightly larger for the 
|rgrgrgrg⟩ quench due to non-unity fidelities both of preparing |r⟩ and mapping 
|r⟩ → |1⟩. b, Raw global purity after the |gggggggg⟩ quench. The global purity is a 
sensitive proxy for the fidelity of our entire process. We find this 16-body 
observable, composed of three-level systems, remains > 100× the purity 
expected for a fully mixed state of 8 qubits (1/28) (see inset). For comparison of 
scale we also plot single-particle purity to the 8th power, to indicate what the 
global purity would be if the measurement results on each twin were 
uncorrelated. c, Global purity for the 8-atom quench calculated through 

numerical modeling of the three-level system {|0⟩, |1⟩ ≡ |g⟩, |r⟩} with a variety of 
simulated error sources. We model the experimentally measured purity by 
calculating the expectation value of the SWAP operator in the {|0⟩, |1⟩} basis 
between two independent chains, taking into account that residual population 
in |r⟩ results in atom loss and measurement associated with the +1 eigenvalue of 
the SWAP operator (as the twin state |00⟩ can no longer be detected). The top 
curve includes only errors from population left in |r⟩ following the coherent 
mapping step (see methods text). The second-from-top curve includes 
single-site dephasing (T 2

⁎ ) during the Rydberg dynamics and the coherent 
mapping gap, modeled by a random on-site detuning which is 
Gaussian-distributed with zero mean and standard deviation of 100 kHz. The 
third and fourth curves include multiplication by the experimentally observed 
raw global purity at quench time t = 0, and then further multiplying empirically 
by an exponential decay exp[−16 × t/(70 μs)] as a simple model for scattering 
and decay errors with an experimentally estimated rate of roughly 70 μs for 
each of the 16 atoms between the two chains.
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Extended Data Fig. 10 | Local observables and entanglement entropy for 
quantum many-body scars. a, Experimentally measured single-site entropy 
for each site in the 8-atom chain when quenching from the scarred |ℤ2⟩ state, 
including the classical entropy subtraction. Solid curves plot exact, ideal 
(imperfection-free) numerics of HRyd (Eq. 3); excellent agreement between data 
and numerics is found for every atom in the chain. b, (Top) Same data as Fig. 4f 
of the main text, showing single-site entropy of the middle two atoms in the 
chain, for two different initial states75. (Bottom) Measurements of the 
many-body state in the Z-basis with the interferometry circuit turned off. 
Characteristic of the scars from the |ℤ2⟩ = |rgrgrgrg⟩ state, the Rydberg 
excitation probability on the sublattices exhibits periodic oscillations71. In the 
bottom row, the dark data points are measured in the {|1⟩, |r⟩} basis, and the faint 
data points are measured in the {|0⟩, |1⟩} basis after the coherent mapping 
sequence. Measurements in both bases agree well with exact numerics (solid 
lines), which we emphasize has no free fit parameters and does not account for 
any experimental imperfections, such as detection infidelity. Moreover, the 
data indicate the high fidelity of preparation into the |ℤ2⟩ state by use of local 

Rydberg π pulses. In plotting, we delay the theory curves and the {|1⟩, |r⟩} basis 
measurement by 10 ns to account for the fact that the Raman π pulse we apply 
cuts off the final 10 ns of the Rydberg evolution, when measuring in the {|0⟩, |1⟩} 
basis. c, Numerical simulations of the single-site Renyi entropy on two adjacent 
sites in the idealized ‘PXP’ model of perfect nearest-neighbor blockade14. The 
system size is 24 atoms with periodic boundary conditions, showing the same 
out-of-phase oscillations in the entanglement entropy of the two sublattices.  
d, Diagram of the constrained Hilbert space of the system14. The early-time, 
out-of-phase entropy oscillations75 of the scars can be understood in this 
constrained Hilbert space picture, where the scar dynamics are known to take 
the state from the left end (|rgrgrgrg⟩) to the right end (|grgrgrgr⟩) (dark circles 
represent |r⟩ and white circles represent |g⟩)14. Near these crystalline ends of 
this constrained Hilbert space, the Rydberg atoms can fluctuate (high 
entropy), but the ground state atoms are pinned (low entropy). Our analysis 
shows that entanglement between atoms on the same sublattice contributes to 
the eventual degradation of the revival fidelity of the |ℤ2⟩ state.
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