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In response to colonization by rhizobia bacteria, legumes are able to form nitrogen-fixing

nodules in their roots, allowing the plants to grow efficiently in nitrogen-depleted

environments. Legumes utilize a complex, long-distance signaling pathway to regulate

nodulation that involves signals in both roots and shoots. We measured the

transcriptional response to treatment with rhizobia in both the shoots and roots of

Medicago truncatula over a 72-h time course. To detect temporal shifts in gene

expression, we developed GeneShift, a novel computational statistics and machine

learning workflow that addresses the time series replicate the averaging issue for

detecting gene expression pattern shifts under different conditions. We identified

both known and novel genes that are regulated dynamically in both tissues during

early nodulation including leginsulin, defensins, root transporters, nodulin-related, and

circadian clock genes. We validated over 70% of the expression patterns that GeneShift

discovered using an independentM. truncatula RNA-Seq study. GeneShift facilitated the

discovery of condition-specific temporally differentially expressed genes in the symbiotic

nodulation biological system. In principle, GeneShift should work for time-series gene

expression profiling studies from other systems.

Keywords: differential gene expression, nodulation, rhizobia, Medicago truncatula, transcriptional dynamic, time

series

1. INTRODUCTION

As most biological processes are dynamic, time-series transcriptome profiling experiments play
a pivotal role in understanding and modeling these processes. However, understanding the
dynamics of a transcriptional response is still a major challenge. Many time-series transcriptomics
experiments apply differentially expressed gene (DEG) detection software packages that only detect
the gene expression change between conditions at each time point. Single time point DEG detection
does not emphasize the sequential nature of time-series data (Larrainzar et al., 2015; Schiessl et al.,
2019). In contrast, full time-series profile DEGs that exhibit differential expression patterns across
the time interval under different conditions will help one understand more about cellular response
to environmental signals at the transcriptomic level.

Some time-series specific approaches deployed for transcriptomic data do not consider the
dynamics of gene expression under two conditions (Jung et al., 2017; Bacher et al., 2018; McDowell
et al., 2018). Replicates also play a key role in time-series experiments, but simply averaging the

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.861639
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.861639&domain=pdf&date_stamp=2022-04-07
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ffeltus@clemson.edu
https://doi.org/10.3389/fpls.2022.861639
https://www.frontiersin.org/articles/10.3389/fpls.2022.861639/full


Gao et al. Nodulation Time-Series Transcriptome Analysis

expressions at each time point can be very misleading (Celeux
et al., 2005; Nguyen et al., 2010). It is a challenge for time-
series analysis software to treat time-series replicates as multiple
individual gene quantifications. To address these issues, we
developed a computational workflow called GeneShift, which
focuses on time-series pattern detection without averaging
replicates. GeneShift is able to detect time-series DEGs between
biological conditions which we demonstrate using a Medicago
truncatula experimental system.

The root nodulation process consists of a series of interactions
between legumes and compatible rhizobial symbiotic bacteria,
including nodule formation, partner selection, suppression of
plant defense responses, and autoregulation of nodulation
(Ferguson et al., 2010; Hayashi et al., 2014; Sprent et al., 2017).
Understanding the transcriptional reprogramming associated
with nodulation is a powerful approach to decipher the genetic
control of nodulation and, thus, to engineer the beneficial
nitrogen-fixing symbiosis into non-leguminous crops. Over the
past two decades, many transcriptome profiling studies have been
conducted to identify the responsible genes and cellular processes
involved in nodulation (Fedorova et al., 2002; El Yahyaoui et al.,
2004; Lee et al., 2004; Benedito et al., 2008; Høgslund et al., 2009;
Libault et al., 2010; Maunoury et al., 2010; Breakspear et al.,
2014; Roux et al., 2014; Larrainzar et al., 2015; Jardinaud et al.,
2016; Schiessl et al., 2019). Although previous transcriptomic
studies have substantially transformed our understanding of
nitrogen-fixing symbiosis, most of them have only profiled the
transcriptional changes of the root at one or two time points
during the nodulation process. Thus, many genes involved in the
nodulation may not have been captured in these analyses due
to the insufficient temporal resolution or missing corresponding
control conditions.

In this study, we applied our GeneShift workflow to study the
nitrogen-fixing symbiosis between M. truncatula and rhizobium
Sinorizobium medicae. We generated RNA-Seq datasets across
five time points in both control and rhizobia-treated roots and
shoots (Figure 1). Our computational approach detected both
known and unknown genes with different expression patterns
under different conditions (Figures 2, 3). Finally, we employed
previously published RNA-Seq data to validate the patterns we
observed inM. truncatula root sections (Schiessl et al., 2019).

2. RESULTS

For this study, we designed and implemented a workflow
whereby time-series gene expression data can be used to identify
full time interval DEGs. We chose to apply this workflow to
analyze the rhizobia response in M. truncatula roots and shoots
as shown in Figure 1A. We generated RNA-Seq data to measure
transcriptional profiles of M. truncatula plants treated with
either S. medicae or mock inoculation as the control for three
biological replicates at each time point [0, 12, 24, 48, 72 h post
inoculation (hpi)]. Defined root segments were harvested for the
root samples, and the entire above-ground shoot was harvested
for the shoot samples.

We constructed a gene expression matrix (GEM) comprised
of 50,984 M. truncatula genes measured in triplicate for two
treatments and five time points for both root and shoot as
depicted by Supplementary Figure 1. T-distributed stochastic
neighbor embedding (tSNE) was used to visualize the global
similarities between the samples (Figure 1B). The samples
were separated into two distinct and non-overlapping groups
based on the shoot and root tissues. tSNE also showed some
separation between control and rhizobia root samples compared
to shoot samples.

To identify M. truncatula genes that were differentially
regulated in treated root and shoot tissues compared to
corresponding controls, we developed GeneShift, a workflow to
detect pattern changes in a time-series experiment (Figure 2).
In our use case, GeneShift first clustered time course expression
patterns for each replicate using two clustering algorithms,
DTW-KMeans (Cuturi and Blondel, 2017) and DP_GP
(McDowell et al., 2018), for control and rhizobia-treated
samples based on discrete expression trajectories as depicted
in Figures 2A–D. Next, GeneShift applied a recurrent neural
network long short-term memory (RNN-lstm) artificial
intelligence (AI) learning model to verify the clustering accuracy
of GeneShift (Figure 2E). By comparing gene trajectories under
two conditions, GeneShift obtained the transition status for all
genes, which were used to identify trajectory sets and individual
DEGs (Figure 2F). More details of the workflow are reported in
the Materials and Methods. We note that GeneShift should work
for any RNA-Seq time-series experiment.

Table 1 provides a global view of transcriptional dynamics
response to rhizobia in M. truncatula yielded by GeneShift.
GeneShift identified 142 root genes and 190 shoot genes
using three out of three replicate sorting (refer to Materials
and Methods; Supplementary Tables 1–4). We then compared
rhizobia and control expression trajectories in both tissues. This
analysis captured 138 root genes and 31 shoot genes that had
shifted expression patterns between the rhizobia treated and
the control samples (Table 1). The shifted genes in both tissues
were grouped into three different categories: A. transitions from
control not expressed to a rhizobia dynamic pattern, B. transitions
from a control dynamic pattern to rhizobia not expressed, and
C. transitions from a control dynamic pattern to a rhizobia
dynamic pattern. Ninety percent of the root-shifted genes were
upregulated under rhizobia treatment. By contrast, only 12 root
genes were downregulated under rhizobia treatment including
plant defensin MtDef4.3 (Medtr8g070780). The root shifted gene
set and shoot shifted gene set were very tissue-specific and no
shifted genes were shared between sets. GeneShift also captured
four root genes and 159 shoot genes that maintained the same
temporal expression pattern within 72 hpi with or without
rhizobia treatment. Fewer expression changes in the shoot are
expected because unlike the root, the shoot does not have a tissue
reorganization response to rhizobia.

To examine the variation in gene expression over 72 hpi, we
visualized the expression patterns of the 142 root genes and 190
shoot genes that GeneShift identified. There were 14 trajectory
sets in the root (R0–R13) and 19 trajectory sets in the shoot
(S0–S18), with two predominant patterns (shift and non-shift)
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FIGURE 1 | Root and shoot displayed transcriptional differences in control and rhizobia samples. (A) Experimental design for the Medicago truncatula transcriptomics

experiment. Gray and green shades represent harvest tissue locations for RNA-seq library construction. (B) T-distributed stochastic neighbor embedding (tSNE)

reveals the transcriptional difference between rhizobia and control samples in root vs. shoot.

(Figure 3). Genes in the largest root trajectory set (R0 with 94
genes in Figure 4A) were predominately upregulated at 72 hpi
in rhizobia-inoculated roots, including the leginsulin related
Legin47 (Medtr0112s0040) and Legin31 (Medtr8g022430).

This trajectory set also includes genes for the vacuolar iron
transporter like VTL4 (Medtr4g094325), early nodulin protein
ENOD10 (Medtr3g415590) and ENOD18 (Medtr7g065770),
early nodulin-like protein PCY68 (Medtr2g090575), the
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FIGURE 2 | Overview of the GeneShift workflow. Major steps of the workflow are shown in steps (A–F). Starting with RNA-Seq data from a biological sample,

GeneShift will detect gene expression pattern changes over time between two conditions. Refer to Materials and Methods for details.

bidirectional sugar transporter SWEET11 (Medtr3g098930),
defensin related PDF44 (Medtr8g010280), nodule-specific PLAT
domain protein NPD1 (Medtr2g103303), and eleven Nodule-
specific Cysteine-Rich (NCR) genes in response to rhizobia.
These genes play essential roles in symbiosis formation, nodule
organogenesis, and autoregulation of nodulation (Durgo et al.,
2015; Kryvoruchko et al., 2016; Trujillo et al., 2019; Burghardt
et al., 2020; Roy et al., 2020).

The R1 trajectory set (four genes) was highly induced at
48 hpi in rhizobia-inoculated roots. This cluster includes genes

encoding the CLAVATA3 (CLV)/EMBRYO SURROUNDING
REGION (ESR)-RELATED 12 CLE12 peptide (Medtr4g079630),
and the transmembrane protein EPFL19 (Medtr8g090010).
Trajectory set R6 identified transcripts for the early nodulin
protein ENOD11 (Medtr3g415670) that was induced at 12 hpi
in rhizobia-inoculated roots. Three trajectory sets (R3, R4, R5)
displayed a transient up and then down pattern in rhizobia-
inoculated roots compared with continuous non-expression
in the control. Trajectory set R3 (five genes) displayed a
transient upregulation at 48 hpi and includes transcripts for
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FIGURE 3 | Gene expression profile in root and shoot of control and rhizobia-infected Medicago plants over 72 h. (A) Heatmap of 142 root genes and (B). Heatmap

of 190 shoot genes that GeneShift identified. Data are presented in the heatmap using log2 (x+1) transformed FPKM expression values. Each row represents a gene,

and each column represents the expression profile for a single biological sample. The color reference to the left of each heatmap is representing GeneShift trajectory

groups (R = root, S = shoot) and the number of genes in that trajectory set. The trajectory sets contain only one gene were not annotated. The numbers below the

heatmap represent hours post inoculation (hpi). The color bar represents the relative gene expression in a row.

a UDP-glucosyltransferase family protein (Medtr0036s0220), a
frigida-LIKE protein (Medtr7g056317), and a transmembrane
protein (Medtr7g100130). Trajectory set R4 (five genes) had an
expression peak at 24 hpi in rhizobia-inoculated roots. This
trajectory set included transcripts for Nod factor receptor 5
LYR1 (Medtr8g078300), and a peptide transporter PTR3-A-
like protein (Medtr7g498330). Trajectory set R5 (two genes)
identified an upregulation pattern at 12 hpi in rhizobia-
inoculated roots and contained transcripts for the hypothetical

protein Medtr2g100690, and an ATP-dependent RNA helicase
DDX11-like protein (Medtr0147s0050).

In addition to the upregulated trajectory gene sets identified
in rhizobia-inoculated roots, GeneShift also detected three
trajectory sets that contained downregulated genes in rhizobia-
inoculated roots (R7, R10, and R11). Trajectory set R7 (two
genes) identified two transcripts that were upregulated at 72
hpi in uninoculated controls roots: cytochrome P450 family
78 protein (Medtr1g097220) and a phenazine biosynthesis
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PhzC/PhzF family protein (Medtr1g062530). Trajectory R10 (one
gene) displayed a transient up and down at 48 hpi in uninoculated
control roots. This gene encodes an F-box Leucine-Rich Repeat
(LRR) protein (Medtr7g075970). Also, Trajectory R11 (one gene)
contained defensin MtDef4.3 (Medtr8g070780) which showed a
transient up and down at 12 hpi in the uninoculated control
roots. There are only four genes that did not change expression
patterns in the rhizobia-inoculated roots. Two genes belong to
trajectory set R9 that started from relatively higher expression
at 0 hpi and had off expression for the rest of measured time
points in both control and rhizobia-inoculated roots. The other
two genes belong to trajectory set R12 and had a continuous
upward trend in expression from 0 to 72 hpi in both control and
rhizobia-inoculated roots.

To understand the effect of rhizobial inoculation in the
shoot, GeneShift compared pattern changes over time between
control and rhizobia-inoculated in the shoot. Eighty-three
percent of shoot genes did not change expression patterns
upon rhizobial inoculation. The largest shoot trajectory set
S4 (94 genes) showed a first down then up expression pattern
at 12 hpi in both rhizobia-inoculated and control shoots. S4
captured the expression of circadian clock transcriptional factor
LATE ELONGATED HYPOCOTYL LHY (Medtr7g118330)
and circadian clock gene CCA1/LHY/REVEILLE RVE7
(Medtr6g477860). S4 also contained transcripts for six
transmembrane proteins, seven light-harvesting complexes,
a root phototropism-like protein (Medtr3g062540), and other
developmental related genes. Trajectory set S10 (five genes)
also possessed first down then up patterns in both conditions,
but S10 started at a much higher expression level at 0 hpi
compared with S4. S10 includes genes for the staygreen protein
Medtr3g088795, growth-regulating factor Medtr5g027030,
and aminopeptidase Medtr6g033240. Trajectory set S15 (45
genes) displayed the first up then down expression at 12 hpi.
S15 included transcripts for several core clock components:
DNA-binding transcription factor TOC1(Medtr4g108880), LUX
ARRYTHMO (Medtr4g064730), EARLY FLOWERING ELF4
(Medtr3g070490). S15 also contained cytochrome P450s (three
genes), and LRR receptor-like kinases (three genes). Trajectory
set S8 (12 genes) showed similar patterns, but the expression
level at 0 hpi was higher including genes for the lipid transfer
protein nsLTP24 (Medtr4g028360), NADH dehydrogenases (2
genes), and a cytochromes P450 (Medtr3g076530).

Besides non-shifting shoot genes, GeneShift discovered
13 trajectory sets (31 genes) exhibiting a different expression
pattern when plants were inoculated with rhizobia. Trajectory
set S0 (7 genes) trended up at 72 hpi responding to rhizobia-
inoculation and includes genes for auxin response factor 14
(Medtr8g446900), transmembrane proteins (Medtr4g059310 and
Medtr2g040680), and a germin family protein (Medtr2g019250).
At 72 hpi, trajectory set S9 (two genes) displayed an upregulated
pattern in control shoot and a downregulated pattern upon
rhizobia treatment. This trajectory set includes genes for auxin-
binding protein ABP19a (Medtr2g044040) and hypothetical
protein Medtr8g098925. Trajectory set S13 (five genes) exhibited
a 12 hpi peak pattern in the control condition and off expression
in the rhizobia-inoculated condition including genes encoding

TABLE 1 | Medicago truncatula GeneShift results summary for 3/3 replicates.

Number of Genes Root Shoot

All M. truncatula Genes 50,894 50,894

Not Expressed Control Genes Across All Time Points in 1+ Replicates 25,507 23,969

Not Expressed Rhizobia-treated Genes Across All Time Points in 1+ Replicates 23,666 23,815

Genes with 3 Consistent Replicates in both Conditions 142 190

Shift Genes between Control and Rhizobia Conditions 138 31

Genes Shift from Control Not Expressed to Rhizobia Dynamic Pattern 125 14

Genes Shift from Control Dynamic Pattern to Rhizobia Not Expressed 12 11

Genes Shift from Control Dynamic Pattern to Rhizobia Dynamic Pattern 1 6

Non-shift Genes between Control and Rhizobia Conditions 4 159

The underlines represent the expression pattern of genes under specific conditions.

GDSL-like lipase/acylhydrolase (Medtr5g022640), chitinase
(Medtr1g099350), and hypothetical protein Medtr3g070480.
Finally, trajectory set S17 (two genes) showed a similar pattern
except they peaked at 24 hpi in the control condition. S17
includes the genes encoding a DUF247 domain protein
(Medtr7g059475) and a white-brown-complex ABC transporter
family protein (Medtr1g063920).

To interpret the transcriptional dynamics detected by
GeneShift, we performed functional enrichment on each
trajectory gene set (Figure 4B and Supplementary Table 5). Two
root trajectory sets and five shoot trajectory sets compiled by
GeneShift displayed functional enrichment (shown in Figure 4A

and Supplementary Table 2) (Benjamini-Hochberg corrected p
< 0.001). Trajectory set R0 was enriched for late nodulin
protein, peptide transporter (POT family and solute carrier
family 15), and metal ion binding, all of which are characteristic
of nodulation. Another root trajectory set R1 was enriched for
sulfotransferase activity. In the shoot, non-shift 12 hpi down and
up trajectory sets S4 and S10 were enriched for regulation of
photosynthesis, B-box zinc finger, and Na+ symporter, while 12
hpi up and down trajectory sets S8 and S15 were enriched for
oxygen-evolving enhancer protein 3, tyrosine-specific transport
protein, different phosphorylase activities, and the CCT motif
which often involved in light signal transduction. The shoot
shifting trajectory set S13 was enriched for chitinase.

Finally, we asked if the GeneShift-detected gene expression
patterns could be validated by previously published RNA-
Seq data with a similar experimental system. In Schiessl
et al. (2019) Sinorhizobium meliloti (S. meliloti) was used
to inoculate M. truncatula jemalong cultivar Jester and
2–3 mm root tissues were harvested at 10 time points
(0,2,4,8,10,12,14,16,24,36,48,72,96,120, and 168 hpi). We
examined the expression profile of 118 curated GeneShift
detected root genes (R2, R8, R9 were excluded and the reason
will be explained in the discussion section) in their data set
(Figure 5A). The percentage of genes with the same expression
pattern over time in both independent experiments was 74.5%.
Of the GeneShift discovered root genes, 10.2% were not mapped
in the Schiessl et al. transcriptomic study possibly because of
their sequence depth and the slight sequence difference between
the Jemalong A17 and Jester cultivars. The remaining 15.2%
of genes exhibited different expression profiles in their dataset.
Figures 5B–F show the expression profiles of representative
root genes. Thus, even though experimental differences existed
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FIGURE 4 | Functional enrichment of GeneShift output. (A) Expression profiles of several enriched GeneShift trajectory sets corresponding to Figure 3. Control

uninoculated is blue, and inoculated with rhizobia is green. The unit of the y-axis is log2 (FPKM+1), and the unit of the x-axis is time (h) after rhizobia inoculation. Each

thin line represents one replicate. The asterisk next to the trajectory set name indicates the pattern shifting between two conditions. (B) Gene Ontology, KEGG,

fragments per kilobase of gene per million read pairs (FPKM) enrichment analysis of genes assigned to each trajectory set with Benjamini and Hochberg corrected p <

0.001. Each column of the heatmap indicates one trajectory set; each row presents one enriched term.

between the two studies, the majority of the GeneShift patterns
were corroborated.

3. DISCUSSION

A long-standing challenge in any transcriptomic study is to
correctly identify DEGs between biologically distinct sample
groups (e.g., control vs. treated). Time-series transcriptomic
profiling is a powerful approach to understand dynamic
biological processes in a window of time as opposed to
single start/stop snapshots that might miss co-responsive yet
not perfectly synchronized gene regulation. Many time-series
transcriptomic studies use well-known software packages to
detect DEGs, such as DeSeq2, edgeR, and limma, designed for
single time point comparison of aggregated replicates, which is
not appropriate for sequential time-series data (Robinson et al.,
2010; Love et al., 2014; Ritchie et al., 2015). To address these
issues, we developed GeneShift, a workflow that detects similar
or distinctive temporal expression patterns between two sample
conditions. Although several time-series clustering algorithms
are available, these methods can either only handle small GEM
input due to implementation constraints (McDowell et al., 2018)

or require user input parameters (e.g., k cluster estimates) which
can be very challenging to determine (Jung et al., 2017).

GeneShift applies a two-step clustering procedure to
ameliorate the input data size problem and three methods to
evaluate the two-step clustering performance. The variability of
gene expression profiles can also impact the accuracy of DEG
identification in time-series studies. Most clustering methods
use average values of independently measured expression which
might miss useful information (Celeux et al., 2005; Nguyen et al.,
2010). GeneShift utilizes each replicate as an independent pattern
and sorts the replicates based on their consistency in clustering
results. Time point averaging across replicates is unnecessary.
GeneShift focuses on the temporal patterns of each replicates,
which means small expression changes can be addressed as
long as multiple replicates agree with each other. For example,
as shown in Figure 5D, peptide transporter Medtr7g098150
exhibited a very small upregulation trend in rhizobia-inoculated
roots, validated by another RNA-Seq dataset (Schiessl et al.,
2019). GeneShift detects high confidence small expression
changes which provide DEGs that might have been overlooked
by other approaches.

We applied GeneShift to time-series RNA-Seq data from M.
truncatula responding to S. medicae inoculation and captured

Frontiers in Plant Science | www.frontiersin.org 7 April 2022 | Volume 13 | Article 861639

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gao et al. Nodulation Time-Series Transcriptome Analysis

FIGURE 5 | Validation of root time-series expression profiles detected by GeneShift (A) Pie chart of GeneShift detected 118 time-series root DEGs expression profiles

from our Sinorhizobium medicae inoculation M.truncatula experiment in comparison to previously published S. meliloti induced M.truncatula transcriptomic data.

(B–F) Expression profiles of representative genes in our study S. medicae vs. Schiessl study S.meliloti. Y-axis, log2 (FPKM+1); x-axis, time (h) after rhizobia inoculation,

each dot represents mean value of replicates, and shading indicates confidence interval.

142 root genes and 190 shoot genes with validated patterns in
both control and rhizobia inoculated (Table 1). One limitation
of GeneShift is it picks up genes with expression differences at 0
hpi which has little biological meaning and is often noise. For
example, as shown in Figure 3, the pattern differences across
two conditions are driven by 0 hpi dispersed expressions in
the R2, R8, R9 trajectory sets. We excluded those 24 genes
from further discussion. There were 114 root genes that shifted
expression patterns upon rhizobia inoculation. The number
of time-series DEGs GeneShift detected was small compared
to the previously reported 3,290 single time point DEGs that
Schiessl et al. examined using DESeq2 with the threshold of

the absolute fold change of over 1.5 and a false discovery rate
(FDR) adjusted p < 0.05. This might be due to the stringency
of the 3/3 replicate sorting consistency criterion in our study
since GeneShift identified 1,278 root time-series DEGs using 2/3
replicate sorting criteria as depicted in Supplementary Table 6.

There were 62 time-series DEGs that GeneShift discovered
that have not been identified by a previous approach over the
12–72 hpi time window (Schiessl et al., 2019). One explanation
is that many genes were not mapped in M. truncatula cultivar
Jester Some of those genes showed a common feature in that
the three replicates exhibited the same trajectory pattern, but
the three replicate expression values exhibited high variance
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across the time series. Previous DESeq2 approaches were not
able to detect these DEGs because they were categorized as
dispersion outliers. One of those genes, Medtr2g089070, a target
of transcription factor ABF3, was found in the R0 trajectory set
by GeneShift, suggesting GeneShift can identify time-series DEGs
based on the full expression pattern. A gene-wise dispersion
estimation is implanted in many DEG detection packages like
DESeq2 and limma Love et al. (2014), Ritchie et al. (2015),
but GeneShift addresses this issue via bypassing the need for
dispersion estimation.

Most (82.5%) of 114 root time-series DEGs that GeneShift
identified were induced around 48 or 72 hpi. Why is this? One
possibility is statistical in that the gene expression at early time
points fluctuated among replicates making them hard to make
into the 3/3 replicate sorting filter we applied. With 2/3 replicate
sorting criteria, GeneShift detected 59 early rhizobial induced
genes distributed in 24 trajectory sets. The other explanation
is biological; the infection threads reach the primordia and
nodules are formed around 48 hpi in this system, suggesting
a majority of rhizobial triggered transcriptional events happen
after 48 h. In addition, the cell-type complexity in the root
section we harvested may have diluted some rhizobial related
gene expression changes in early infection stages.

Figure 3 summarizes the expression profiles of trajectory sets
discovered by GeneShift. GeneShift detected three leginsulin
peptide related MtN11/16/17 genes (Legin38: Medtr0416s0030,
Legin42: Medtr0093s0090, legin47: Medtr0112s0040) in
trajectory set R0. They displayed upregulation in 72 hpi with
rhizobia inoculation in the root. Those genes exhibited consistent
expression patterns in the Schiessl et al. RNA-Seq dataset as
well, suggesting those legin genes are involved in the M.
truncatula nodulation process regardless of rhizobial partner.
Interestingly, a previous study found that Asian soybean cultivars
accumulated drastically higher leginsulin than North American
soybean cultivars (Krishnan et al., 2015). However, very limited
biological functions have been discovered for this hormone-like
cysteine-rich peptide.

GeneShift also discovered three defensin related genes that
displayed two different expression patterns upon rhizobia
inoculation. Both PDF27 (Medtr8g023090) and PDF44
(Medtr8g010280) start trending up from 24 hpi in the rhizobia-
inoculated root, whereas another defensin related gene MtDef4.3
(Medtr8g070780) was not induced by rhizobia. MtDef4.3 had
an up and down expression pattern at 12 hpi without rhizobia.
Phylogenetically, MtDef4.3 and MtDef4.4 are close to a Prunus
persica defensin gene, which displays antimicrobial activity
through specific lipid binding and membrane permeabilization
(Kaur et al., 2012; Nanni et al., 2013). This suggests that MtDef4.3
might be involved in controlling the access of rhizobia infection
by rhizobia. Besides MtDef4.3, three other genes were also
downregulated by rhizobia inoculation (8 genes belonging
to the R8 trajectory set were excluded) in roots. These genes
encode F-box/LRR protein Medtr7g075970, cytochrome P450
family 78 protein Medtr1g097220, and phenazine biosynthesis
PhzC/PhzF family protein Medtr1g062530. As shown in
Figure 4, Trajectory set S13 (five genes) was enriched for
chitinase, an inducible enzyme group that has been associated
with plant defense systems (Boller, 1987). A previous study

found chitinase regulates Nod factor levels and infection thread
in Lotus japonicus (Malolepszy et al., 2018). Our results showed
chitinase encoding gene Medtr1g099350 was downregulated
by rhizobia in the shoot, suggesting root-shoot signaling
involves in the rhizobial induced chitinase pathway. To our
knowledge, few genes have been discovered that exhibit time-
series downregulation in rhizobia-inoculated plants. Those
rhizobial induced down-regulating genes are worthy of further
empirical validation.

GeneShift identified 10 different root transporter genes
across several trajectory sets. Four peptide transporter
genes (Medtr1g026750, Medtr7g098150, Medtr7g098090,
and Medtr3g069420) were categorized in R0 and displayed 48
hpi to 72 hpi upregulation in rhizobia-inoculated roots whereas
peptide transporter PTR3-A-like proteinMedtr7g498330 showed
24 hpi up-and-down expression in rhizobia-inoculated roots.
In Arabidopsis, NPF/PTR family proteins transport large
substrates and plant hormones (Tsay et al., 1993). Our study
suggests peptide transporters are induced by rhizobia at different
times depending on the substance they transport. Besides
peptide transporters, GeneShift also detected MtSWEET11
(Medtr3g098930), a nodule-specific sugar efflux transporter in
trajectory set R0. MtSWEET11 is associated with infection thread
and symbiosome membranes of infected cells (Kryvoruchko
et al., 2016). A previous study demonstrated the expression of
MtSWEET11 increased by 4 dpi (Kryvoruchko et al., 2016), and
our study suggests the upregulated expression might start from
12 hpi. As shown in Figure 5C, GeneShift also detected VTL4
(Medtr4g094325), a vacuolar iron transporter in trajectory set R0
that upregulated in rhizobia-inoculated roots at 48 hpi. Iron is a
key element during nodule development because iron functions
as a co-factor of many metalloenzymes (González-Guerrero
et al., 2014). Previous transcriptomic data has demonstrated that
VTL4 was explicitly expressed in nodules vs. rhizobia-inoculated
roots (Roux et al., 2014; Walton et al., 2020). Besides VTL4,
GeneShift also detected an iron man family member, IMA10
(Medtr4g026390), in trajectory set R0. IMA10 also started
trending up in rhizobia-inoculated root from 48 hpi. The Iron
man family consists of peptides that control iron transportation
in plants (Grillet et al., 2018). A previous study has found
LjSEN1, a homolog to VTL1 in Arabidopsis thaliana was
expressed exclusively in nodule infected cells and continuously
increased from 10 to 24 dpi (days post inoculation) in L. japonicus
(Hakoyama et al., 2012). They also found LjSEN1 is essential for
bacteroid differentiation in nodule development. Our findings
confirm the crucial role of iron in nodule development and refine
the time of induction of those gene expressions by rhizobia.
Medtr4g094352, MtN21/EamA nodulin-like protein is one of
the transporter encoding genes classified into trajectory set R0
by GeneShift. A previous study demonstrated an enhanced
vascular immunity in an AtUMAMIT5 (UMAMIT is the name
of MtN21/EamA-like transporter family in A. thaliana) mutant
suggesting it might modify sap composition and acts as an
inhibitor for xylem-infected pathogens (Denancé et al., 2013),
but this needs to be validated with more experiments. The
gene for MtABCG9 (Medtr8g059150), an ATP-binding cassette
(ABC) transporter also induced by rhizobia in root from 48 hpi.
A recent study showed the expression of MtABCG56, another

Frontiers in Plant Science | www.frontiersin.org 9 April 2022 | Volume 13 | Article 861639

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gao et al. Nodulation Time-Series Transcriptome Analysis

gene in the ABC transporter family, is induced by rhizobia from
6 hpi and it mediates cytokinin transportation which is crucial
for nodule development (Jarzyniak et al., 2021).

GeneShift discovered three early nodulin genes which were
induced by rhizobia treatment at different times. ENOD10
(Medtr3g415590) and ENOD18 (Medtr7g065770) were both
categorized in trajectory set R0 with a 72 hpi upregulation pattern
in rhizobia-induced roots. However, ENOD11 (Medtr3g415670),
encoding a putative cell wall repetitive proline-rich protein, was
categorized in trajectory set R6 with a 12 hpi upregulation
pattern in rhizobia-induced roots. ENOD11 has been used as
an early infection marker gene, which is consistent with the
expression pattern detected by our study (Journet et al., 2001).
The range of times of rhizobial induction suggests more roles for
ENOD genes are involved during nodule development. GeneShift
also detected Plantcyanin PCY70 (Medtr4g130780) and PCY68
(Medtr2g090575), which are two early nodulin-like genes in
trajectory set R0. AtENODL14 (At2G25060), a homolog of
PCY70, was identified in a phosphoproteomic analysis of plasma
membranes treated with effectors of plant immunity (Benschop
et al., 2007; Denancé et al., 2014). More experimental evidence is
required to elucidate the functions of ENOD and ENODL genes.

GeneShift validated the rhythmic expression pattern
of several key players in circadian clock control such as
TOC1 (Medtr4g108880), LHY (Medtr7g118330), ELF4
(Medtr3g070490), LUX (Medtr4g064730), and RVE7
(Medtr6g477860). Our results are consistent with the previous
report on the transcriptional behaviors of TOC1 and LUX in
the leaves of 28 day M. truncatula ecotype R108 inoculated with
S. meliloti (Kong et al., 2020). Their study also suggests that
LUX is involved in nodule development because of the reduced
nodule number in two Tnt1 insertion mutants, although more
experimental study needs to be done to support the statement.
The recent study also revealed the expression pattern we
observed with those clock-associated transcripts is also displayed
in the root and nodule (Achom et al., 2021).

In conclusion, legumes utilize a long-distance signaling
pathway to regulate nodulation. The nodule development process
is accompanied by massive transcriptional reprogramming
including the activation and repression of sets of genes. We
present transcriptomic data on plants responding to rhizobia
from both root and shoot tissue and a computational workflow
which will serve as a useful resource for future nodulation studies.
The GeneShift workflow provides a powerful way to profile
the time-course transcriptional response to rhizobia during
nodulation. We note that the GeneShift workflow can also be
applied to any time-series transcriptomic datasets and is a general
purpose option for time series transcriptome analytics.

4. MATERIALS AND METHODS

4.1. Biological Material Harvest and
Rhizobial Inoculation
Medicago truncatula A17 plants were grown, inoculated and root
sections harvested as in Poehlman et al. (2019). Specifically,
M.truncatula A17 seeds were scarified for 5–8 min in sulfuric
acid, rinsed 5 times with distilled water, washed with 3% bleach,

rinsed another 5 times in distilled water, and imbibed in water
with gentle rocking for 2 h at room temperature. Seeds were
then placed in a moist chamber (petri dish) at 4◦C for 48 h in
the dark, followed by germination at room temperature for 24 h
in the dark. The germinated seedlings (radicals about 1–2 cm)
were placed on an aeroponic chamber in nodulation media as
described previously (Penmetsa and Cook, 1997) under a 16h/8h
light/dark cycle. At 3.5 h into the light cycle on the third day after
loading onto the apparatus, a set of plants was marked with ink 1
cm from the root tip (at the distal end of the rhizobia-susceptible
root maturation zone) to be used for tracking the location of the
nodule susceptibility zone and 2 cm root sections starting 1 cm
from the root tip were harvested from 10 experimental plants
(0h sample). S. medicae ABS7 (150 OD600 units) in nodulation
medium or bacteria-free nodulation medium (mock inoculation)
was then added to the apparatus. Tissue sections 2 cm long were
harvested from the nodule susceptibility zone from 10 plants each
at 12, 24, 48, and 72 hpi, using the marked plants to determine
the location of the developing nodules. For shoot samples, we
harvested all tissue above the hypocotyl from the same plants.
Three biological replicates of the time course for both inoculated
and uninoculated samples were collected for RNA-Seq analysis.

4.2. RNA Isolation, Library Preparation, and
Sequence Data Processing
RNA was isolated from M. truncatula root and shoot samples
using the E.Z.N.A.Â R© Total RNA Kit (Omega Bio-tek, USA)
according to the manufacturer’s protocols. RNA libraries were
made and sequenced by Novogene Co., 740 Ltd. (Beijing) from
100 to 1,000 ng of total RNA prepared by a stranded kit
(Illumina TruSeq Stranded 741 Total RNA Kit or NEB Next
UltraTM II Directional RNA Library Prep Kit for Illumina).
These libraries were included in a final dataset consisting of 60
libraries, including 30 libraries from this study (three replicates
of five time points each for inoculated and uninoculated wild
type (A17) shoot segments) and 30 libraries previously reported
from inoculated and uninoculated wild type (A17) root segments
(Poehlman et al., 2019). The PBS-GEM workflow (https://github.
com/wpoehlm/PBS-GEM) was used to process RNA sequencing
reads on Clemson University’s Palmetto Cluster (Pertea et al.,
2016). Poor quality reads and adapters were removed using
Trimmomatic-0.38 (Bolger et al., 2014). Next, cleaned reads were
mapped to theMt4.0v1 reference genome using hisat2-2.1.0 (Kim
et al., 2015). Gene and transcript abundances were estimated
using stringtie-1.3.4d (Pertea et al., 2015). We also processed
134 RNA-Seq samples from a previous study (Schiessl et al.,
2019) using GEMmaker (https://github.com/SystemsGenetics/
GEMmaker).

4.3. Time-Course Expression Clustering
Using GeneShift Workflow
GeneShift is a workflow that enables the detection of gene
expression pattern changes over time from two different
conditions as shown in Figure 2. GeneShift begins with a time-
series gene expression matrix where it produces a set of gene
cluster shift status accompanying biological replicate sorting
and plots showing different expression patterns between the
two conditions. The GeneShift workflow takes advantage of
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soft-DTW-KMeans (Cuturi and Blondel, 2017) and DP_GP
(McDowell et al., 2018) to perform a high quality clustering.
Below are is the six phases of the GeneShift workflow.

4.3.1. Gene Expression Matrix
The two input datasets for the GeneShift workflow were an
M. truncatula shoot GEM and a root GEM (Figure 2A).
Each GEM combined three replicates and two conditions:
inoculated and uninoculated. Quantile normalization and log2
transformation were applied to ensure heteroskedasticity and
suitable comparison between different time points as depicted
in Supplementary Figure 1. Before GeneShift clustering of the
gene expression patterns, we extracted an "off" GEM consisting
of all unexpressed genes which did not need to be clustered.
Unexpressed genes were determined by expression sorting. If
one biological replicate was 0.00 fragments per kilobase of gene
per million read pairs (FPKM) through all the measured time
points, the gene expression under that condition was categorized
as unexpressed.

4.3.2. Initial Clustering
GeneShift applied soft-Dynamic TimeWarping (DTW)K-means
clustering to perform this unsupervised learning task (Cuturi
and Blondel, 2017). K-means is one of the fastest clustering
algorithms that separate samples in k groups and minimizes
the within-cluster sum-of-squares criterion. We used DTW
score with K-means clustering instead of the default Euclidean
distance, to compute the best possible alignment for comparing
time series. Soft-DTW is a differential loss function that can
compute the soft-minimum of all costs by all possible alignments
between two time series (Cuturi and Blondel, 2017). We utilized
the python tslearn package to perform the initial clustering
(Tavenard et al., 2020). For each treatment, all M. truncatula
expression patterns are separated into k groups as depicted in
Figure 2A, and we iterated through K-values ranging from 35 to
90 with a step size of 5.

4.3.3. Fine Clustering
This step captures the temporal shifts in the initial clustering
outputs (shown in Figure 2C). We used the DP_GP_cluster to
fine cluster the expressions in each k group. DP_GP_cluster is a
software that models gene expression trajectory using a Dirichlet
process Gaussian process model (McDowell et al., 2018). We ran
DP_GP in fast mode with specified sample iteration parameter:
max_num_iterations= 1,000.

4.3.4. Choose Optimal Clusters
We performed three analyses to choose an optimal value
for n_clusters. We selected k ranging from 35 to 90 as
described in initial clustering and fine clustering each k
cluster output via DP_GP_cluster. We next calculated
the Davies-Bouldin index (Davies and Bouldin, 1979)
Calinski-Harabasz index (Caliński and Harabasz, 1974),
and silhouette coefficient (Rousseeuw, 1987) for each k
depicted in Supplementary Figures 2A,B. In GeneShift,
the performance at each k was calculated using the python
scikit-learn package: ’sklearn.metrics.davies_bouldin_score’;
’sklearn.metrics.calinski_harabasz_score’; ’sklearn.metrics.

silhouettescore’. When the Davies-Bouldin index is closer to
zero, it indicates a better partition. When the Calinski-Harabasz
index is higher, clusters are dense and well separated. The
Silhouette score is bound between –1 for incorrect clustering and
1 for highly dense clustering, and scores around zero indicate
overlapping clusters. As shown in Supplementary Figure 2,
the value of 50 and 55 are the best picks for the given M.
truncatula root data andM. truncatula shoot data based on their
performances in three tests.

4.3.5. Deep Learning Classification Model
To evaluate the ability of GeneShift to identify time-series
expression patterns from GEM, we used neural network
classification. Briefly, we used an RNN-LSTM as a training model
with a 30 train test split of data to evaluate GeneShift classification
performance. Each trajectory set had to contain at least two
samples or else the confusion matrix will not be aligned due to
the train test split. The details of the LSTMmodel can be retrieved
from the GeneShift github repository. The output is a confusion
matrix as shown in Supplementary Figure 3 and the F1 score for
the shoot data is 83% and for the root data is 84%.

4.3.6. Post-clustering Analysis
After selecting the optimal number of pattern clusters, we
used replicate sorting to obtain high quality expression shifting
status between control and treated conditions. If two or three
replicates of the one gene expression are categorized into the
same trajectory cluster, it was qualified for the comparison
between conditions. For three out of three replicate sorting,
we identified 142 qualified genes falling into 14 expression
patterns in M. truncatula root and 190 qualified genes falling
into 19 expression patterns in M. truncatula shoot depicted in
Table 1. In the M. truncatula root, 138 genes shift expression
trajectory from control to rhizobia condition and 4 genes remain
the same expression trajectory under two conditions. In M.
truncatula shoot, only 31 genes exhibited a shift in expression
trajectory between the two conditions, and the rest of 159 genes
showed the same expression trajectory under both conditions.
Supplementary Table 6 depicts the genes where 2/3 replicates
are sorted in M. truncatula root and shoot. We next further
categorized shifted genes based on their expression patterns
under two conditions as depicted in Figure 2F and Table 1.

To interpret shifting and non-shifting expression patterns,
we performed functional enrichment to the genes assigned
to each GeneShift index using FUNC-E (https://github.com/
SystemsGenetics/FUNC-E). Enriched terms were identified
using Fisher’s exact test with a significance threshold of
p<0.001 after Benjamini and Hochberg correction (Benjamini
and Hochberg, 1995). Gene model annotations for the Mt4.0v1
genome were obtained from Phytozome (Goodstein et al., 2012)
and parsed as input.
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