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Abstract

Objective: This study was undertaken to identify shared functional network characteristics 

among focal epilepsies of different etiologies, to distinguish epilepsy patients from controls, and 

to lateralize seizure focus using functional connectivity (FC) measures derived from resting state 

functional magnetic resonance imaging (MRI).

Methods: Data were taken from 103 adult and 65 pediatric focal epilepsy patients (with or 

without lesion on MRI) and 109 controls across four epilepsy centers. We used three whole-brain 

FC measures: parcelwise connectivity matrix, mean FC, and degree of FC. We trained support 

vector machine models with fivefold cross-validation (1) to distinguish patients from controls 

and (2) to lateralize the hemisphere of seizure onset in patients. We reported the regions and 

connections with the highest importance from each model as the common FC differences between 

the compared groups.

Results: FC measures related to the default mode and limbic networks had higher importance 

relative to other networks for distinguishing epilepsy patients from controls. In lateralization 

models, regions related to somatosensory, visual, default mode, and basal ganglia showed 

higher importance. The epilepsy versus control classification model trained using a 400-parcel 

connectivity matrix achieved a median testing accuracy of 75.6% (median area under the curve 
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[AUC] = .83) in repeated independent testing. Lateralization accuracy using the 400-parcel 

connectivity matrix reached a median accuracy of 64.0% (median AUC = .69).

Significance: Machine learning models revealed common FC alterations in a heterogeneous 

group of patients with focal epilepsies. The distribution of the most altered regions supports 

the hypothesis that shared functional alteration exists beyond the seizure onset zone and its 

epileptic network. We showed that FC measures can distinguish patients from controls, and further 

lateralize focal epilepsies. Future studies are needed to confirm these findings by using larger 

numbers of epilepsy patients.
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1 | INTRODUCTION

Pharmacoresistant epilepsy results in the highest mortality, morbidity, and health care 

resource utilization in people with epilepsy.1,2 Intracranial electroencephalography (EEG)3 

and combined EEG–functional magnetic resonance imaging (fMRI)4 studies provide 

evidence for extensive distribution of functional networks from the regions associated with 

seizure generation. Focal epilepsies are hence increasingly recognized as network disorders, 

and imaging and neurophysiologic methods to investigate large-scale network properties, 

paired with advanced analytic methods, are employed to study epilepsy.3,5,6,7 The role of 

fMRI in evaluation for surgical treatment of epilepsy by investigating epileptic network 

properties is not established. This role is relevant to the surgical workup for both lesional 

and nonlesional focal epilepsies, where an epileptic lesion is not visualized on standard 

clinical imaging.

Functional connectivity (FC) analysis provides a reliable method for identifying brain 

networks based on the correlation of low-frequency fMRI signal fluctuation between 

different brain regions.6 The epileptic networks associated with both generalized8 and 

focal9– 11 epilepsies can be characterized using FC. Focal epilepsies demonstrate 

FC alterations beyond apparent structural findings such as in the default mode 

network (DMN)12,13 and thalami,14,15 among other regions. Although group analysis 

of homogeneous focal epilepsy patients supports the use of FC for seizure focus 

lateralization,16 patient-to-patient variability limits the utility of FC analysis for this purpose 

at the individual level. Machine learning approaches are increasingly used to find subtle 

alterations in brain networks and to overcome the statistical limitations of conventional FC 

analysis.7,17

In this study, we first employed a machine learning approach based on individual FC 

characteristics to identify the most important features that distinguish epilepsy patients 

from healthy controls. We also trained machine learning models to identify features that 

distinguish patients with left versus right hemisphere of seizure onset (i.e., lateralization). 

We used a multicenter pediatric and adult dataset including lesional and nonlesional focal 

epilepsy patients as well as controls. We based our approach on the hypotheses that shared 

FC changes exist across focal epilepsies, and that patients with the same hemisphere 
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of seizure onset share lateralizing FC features. The novelty of our approach lies in its 

inclusion of heterogeneous data to identify common FC attributes among different epilepsy 

localizations and pathologies.

2 | MATERIALS AND METHODS

2.1 | Participants and datasets

We included clinical and fMRI data from four epilepsy databases in a retrospective, 

sequential, and nonrandomized manner (Table S1). We included all available resting state 

fMRI studies from adult and pediatric patients with or without identified lesions obtained 

in 3-T MRI. An unmatched control group included healthy volunteers with no neurological 

or psychiatric history, and a confirmed normal MRI, previously collected as part of other 

fMRI studies. The diagnosis of pharmacoresistant focal epilepsy and the laterality of seizure 

onset were determined by each center based on their multidisciplinary clinical epilepsy 

surgery evaluation. Demographic, clinical, and imaging characteristics including EEG, 

epilepsy protocol structural MRI, and if performed, invasive EEG studies were documented 

in databases by the treating team at each center. We did not limit the study to those 

who subsequently underwent surgery; however, patients with a history of prior intracranial 

resective or ablative surgery were excluded. An epileptologist (T.G.) reviewed the clinical 

information in databases to confirm the eligibility. Using these criteria, 168 epilepsy patients 

(103 adults, >18 years old at the time of fMRI scan) were included. Of those, 110 patients 

had an identifiable lesion on their clinical MRI; 109 controls (92 adults) were included in 

the primary analysis; 58 patients and 107 control participants contributed to the dataset with 

two runs of resting state fMRI (Table 1). Those labeled as unclear laterality or bilateral 

foci by the treating physicians were excluded from the second part of the analysis. Imaging 

databases and current anonymous analysis of subject data were separately approved by 

institutional review boards at each institution. Anonymized preprocessed data will be shared 

upon request from any qualified investigator.

2.2 | Image processing

Resting state fMRI sequences were acquired with site-specific parameters on clinical 3-T 

MRI scanners (Table S1). An isometric T1-weighted anatomical MRI obtained on the same 

session was used for preprocessing of images using fMRIPrep18 (v20.2), a pipeline that 

uses a combination of tools from validated software packages to provide the best software 

implementation for each stage of preprocessing for high reproducibility. The anatomical 

preprocessing included intensity correction, brain extraction, segmentation, and volume-

based spatial normalization to a standard brain image (ICBM152 Nonlinear Asymmetrical 

template v2009c, labeled as MNI152NLin2009cAsym)19 through nonlinear registration. 

Functional images were coregistered to the anatomical image with nine degrees of freedom, 

followed by head motion parameters estimation, slice-timing correction, and resampling 

into the standard space. The average values for root mean square frame-wise displacement 

(RMS) as the head motion estimate were compared, and were not different between the two 

groups when averaged across epilepsy patients (.26 mm, SD = .22) and controls (.22 mm, 

SD = .26, t- test p > .05). Similarly, RMS difference did not reach significant levels in left 

(.24 mm, SD = .25) and right (.28 mm, SD = .19, t- test p > .05) hemisphere onset patients. 
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Please refer to the workflow section in fMRIPrep documentation for more details on the 

preprocessing pipeline.18

2.3 | FC analysis

We used xcpEngine (v1.2.1)20 to denoise and extract residualized whole brain FC time 

series of cortical parcels from the preprocessed images. Cortical parcels were defined 

according to the validated functional parcellation atlases by Schaefer et al.21 dividing 

cerebral cortex into 400 parcels. Three types of features were calculated from the denoised 

time series for each subject in MATLAB (R2020a). Connectivity matrix is an adjacency 

matrix of Fisher–z-transformed Pearson correlation between each pair of 400-parcel fMRI 

time series. An individualized threshold to select the top 10% correlation values was applied 

to the matrix to increase the reliability of FC within and between subjects.22 Mean FC for 

each parcel, defined as the average of its nonzero correlation values, and degree of FC for 

each parcel were also calculated. The degree of FC is a graph theory measure defined as 

the number of connections (i.e., nonzero value in the top 10% matrix) divided by the total 

number of possible connections for each parcel.23 Cortical parcels in the Schaefer atlases are 

affiliated with one of the seven large- scale functional brain networks: visual, somatomotor, 

dorsal attention, ventral attention (salience), limbic, frontoparietal control, and DMN.21,24 

Subcortical structures are not part of this parcellation scheme. To have full brain coverage, 

we added data from 14 subcortical regions with mean FC or degree of FC calculated in a 

similar fashion in the Harvard–Oxford atlas25: bilateral hippocampus, amygdala, thalamus, 

caudate, putamen, pallidum, and nucleus accumbens. This yielded 414 features for training 

models with mean FC or degree of FC measures. The connectivity matrix used cortical 

networks and for interpretation purposes, did not include the subcortical regions.

2.4 | Classification models

Before building the classification model, we used neuroCombat,26 a data harmonization 

method, to adjust for site- or scanner-related biases, and to control for participant age and 

sex. To avoid bias in our independent testing process, harmonization was applied separately 

for each training and testing subset. We used linear support vector machine (SVM) binary 

classifier models from the scikit-learn and LIBSVM Python libraries.27 Three separate SVM 

models were trained using the three selected features: (1) mean FC, (2) degree of FC, and (3) 

connectivity matrix. We optimized the SVMs with a fivefold cross-validated grid search for 

the best C hyperparameter during the training step for all analyses.

Each model’s performance was reported in terms of its accuracy and the area under the 

curve (AUC) of the receiver operating characteristic curve analysis on the unseen testing 

data. We also explored the distribution of regions with the highest contribution to the 

classification model by ranking the features based on their weight (derived from the absolute 

value of their classification coefficients in each model), as well as their affiliation to each 

of the seven networks. For the mean and degree of FC models, we explored the network 

affiliation of 20 features with the highest importance. For the connectivity matrix SVM, the 

weight of each connection was tabulated, and each of the 400 connections with the highest 

weight features (near .5% of the 400 × 400 matrix connections) was reported along with the 

network affiliation of the pair of parcels it connects. Connections were considered “within 
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network” if they connected two parcels affiliated with the same network (for example 

different parts of DMN) or were otherwise considered “between networks.”

In primary analysis (epilepsy vs. control), the participant list was divided equally in a 

stratified fashion into training and testing subsets; data from each participant contributed 

only to either the training or testing subset: 84 patients and 55 controls in training, 84 

patients and 54 controls in testing. Next, to assess generalizability of the best performing 

model, we repeated the analysis 50 times by reiterating the stratified splitting of the dataset 

into 50% training and 50% testing followed by harmonization, and fivefold cross-validation 

with grid search optimization for training in each reiteration. We reported the median and 

range of accuracy and AUC in repeated independent testing.

Given the relatively high number of temporal lobe epilepsy (TLE) patients, we compared 

the likelihood of being misclassified as a control between TLE and non-TLE patients 

using chi-squared test. We repeated the epilepsy versus control analysis within a number 

of subgroups of patients. We used the values from the most accurate models for this 

purpose and reported the testing AUC as the model performance measure, which is a better 

measure than accuracy when there is imbalance in patient to control proportions.28 We 

repeated the primary analysis as TLE versus control after exclusion of non-TLE patients. In 

a similar approach, a subanalysis was performed limiting the participants to adult patients 

and controls (age 18 years or older at the time of the scan), and lesional and nonlesional 

patients.

In secondary analysis (i.e., lateralization), to identify the common important features leading 

to laterality classification, we included all patients in the training step, without a separate 

testing subset. The features were ranked based on their importance and reported similarly 

to the primary analysis. Next, we assessed the generalizability of the best performing model 

similarly to the primary analysis, by splitting the patient data into half, using fivefold 

cross-validation for training, and reporting the median and range of accuracy and AUC.

3 | RESULTS

3.1 | Primary analysis: Epilepsy versus control classification

From the mean FC model, parcels affiliated with DMN followed by dorsal attention and 

frontoparietal control networks were the most represented among the 20 most important 

features, along with hippocampus and thalamus from the subcortical regions. From the 

degree of FC model, the limbic network followed by DMN had the most representation 

in the top 20 features (Figure 1A,B and Table 2). All three SVM models achieved high 

classification accuracies during training. The mean FC and the degree of FC models 

achieved classification accuracies of 68% and 75%, respectively, and AUC of .74 and .80 

(Figure 2A,B).

Using models trained on connectivity matrix for epilepsy versus control classification, we 

observed higher importance for within-network changes; 30% of the 400 most important 

connections were within-network, despite making up only 16% of all connections. Among 

the 400 most important features, 52 were within-network DMN connections (i.e., DMN–
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DMN), followed by higher representation from between-networks frontoparietal–DMN, 

within-network somatosensory, and within-network salience network connections. Both 

interhemispheric and intrahemispheric connections were among the most important features 

(Figure 3A).

Patients with TLE were more likely to be misclassified in the testing set. For the epilepsy 

versus patient model using a 400-parcel connectivity matrix, TLE was misclassified as 

control in 25 of 84 cases (29.8%), of which 14 had lesions on MRI and 11 were considered 

nonlesional. This was compared to five of 29 (17.2%) misclassifications in non-TLE patients 

(χ2 = 8.30, p < .01). The same model misclassified 26 of 107 (24.3%) control participants as 

patients.

In reiteration of the training process using 400-parcel connectivity matrix measures, 

accuracies reached 100% with AUC = 1.0 during fivefold cross-validation training. The 

median testing accuracy was 75.6% (range = 71.4%–82.6%), and the median AUC was .83 

(range = .80–. 88; Figure 2C,D).

3.2 | Subset analyses results

Given the higher performance on the whole dataset, subset analyses were done using 

400-parcel connectivity matrix measures (AUC = .82 when including all patients). In 

comparison, AUC = .79 was achieved when trained on only TLE patients against the control 

group (Figure S2). The subset analysis using only adult participants achieved an AUC of 

.88, and subset analysis using only lesional patients resulted in AUC = .87. Last, limiting the 

patient group to the nonlesional patients resulted in an AUC of .77.

3.3 | Secondary analysis: Epilepsy lateralization

Using mean FC, the somatosensory and visual parcels followed by subcortical regions 

(pallidum, putamen, and amygdala) showed higher representation among the 20 most 

important features (Figure 4A). Mean FC model achieved lateralization accuracy of 78% 

(AUC = .87). The degree of FC model revealed regions in the default mode and visual 

networks, and subcortical regions (putamen, hippocampus, and caudate) as the 20 most 

important features (Figure 4B) and reached an accuracy of 94% (AUC = .98).

Models trained on the connectivity matrix resulted in the best lateralization accuracies 

(accuracy = 94%, AUC = 1.0). We ranked connections based on their importance in this 

model. Compared to the primary analysis, there was a more distributed representation for 

each of the seven networks, and less within-network connections. Only 17.5% of the most 

important features from secondary analysis were within-network connections, compared 

to 30% in the primary analysis. Between-networks connections involving somatosensory, 

dorsal attention, default mode, salience, and visual networks had higher representation 

among the 400 most important features (Figure 3B).

In assessment of the generalizability of the findings, reiteration with training on 50% of the 

data resulted in 100% training accuracy. The median accuracy for the connectivity matrix 

using a 400-parcel atlas was 64.0% (range = 55.6%–7 1.9%), and the median AUC was .69 

(range = .62–.74; Figure S1).
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4 | DISCUSSION

Our results demonstrate that a supervised machine learning method can identify common 

FC changes in focal epilepsies compared to controls, distinguish patients from controls, 

and potentially lateralize the seizure focus using features derived from resting state fMRI. 

Our approach is relevant to the day-to-day evaluation of patients with epilepsy, as this was 

achieved by using data from a heterogeneous group of adult and pediatric patients with 

epilepsy, with and without identifiable lesions. Our study is based on the assumption that 

there are common identifiable functional network attributes among several types of focal 

epilepsies. Although the roles of individual features used in machine learning methods 

are complex, we used a linear model to identify the relative importance of regions and 

connections in classification models. The distribution of the most prominent classification 

features supports the hypothesis that functional changes in focal epilepsy occur beyond the 

seizure onset zone and the epileptic network, in line with prior studies.7,29 Compared to 

prior fMRI studies, we used a larger, harmonized multisite dataset, and we optimized the 

machine learning approach in several ways. In addition to the inclusion of heterogeneous 

data, we used functional parcellation atlases to boost stability of FC signals and to 

increase the interpretability of findings. Functional parcellation allowed us to identify the 

most important features in each model in the context of their local and global functional 

significance and affiliation with each of the seven large-scale functional networks.21,24

4.1 | Distinguishing FC features for epilepsy

In reviewing the features with the most importance in our primary analysis, parcels 

affiliated with DMN showed higher representation for both mean and degree of FC models. 

Differences in DMN connections between patients and controls were the strongest group 

of features driving the model using the connectivity matrix, as illustrated in Figure 3A 

and Figure S2C. Given that a majority of our patients had TLE, this is in line with 

previous studies showing significant alterations of DMN connections in TLE.30– 32 We 

attribute this to the rich connections of DMN to other brain networks, and its stability and 

symmetry in healthy individuals, which can produce a larger effect size when compared to 

patients. Our observations add to prior studies reporting changes in the DMN connectivity 

in epilepsy,4,12,13,33 with an overall decrease in DMN FC measures in patients (Figure 

S2A,B; see DMN parcels). Higher mean FC represents stronger correlations, and can be 

prominent in regions with strong within-network connectivity such as DMN or the primary 

somatosensory cortex.24 The degree of FC, however, is more representative of each node’s 

role in the higher level FC topology of the brain.34,35 The limbic network exhibits alteration 

in FC and reorganization of connections to DMN and other brain hubs, particularly in 

TLE.4,36 In our results, limbic parcels had higher weights in the models based on the degree 

of FC, and also showed overall higher values in patients compared to controls (Figure S2B; 

see limbic parcels). This is also in line with prior studies looking at graph theory measures in 

TLE.30,37,38

We also looked at the possible role of TLE overrepresentation in model training and found 

limited differences in the distribution of FC measure values between TLE and non-TLE 

groups (Figure S2), and repeated the analysis with only TLE patients. We concluded that 
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our models are not biased toward TLE characteristics. Interestingly, the trained connectivity 

SVM was more likely to misclassify TLE patients as controls compared to non-TLE. This 

may support the notion that TLE is not a homogeneous group of epilepsy patients despite 

clinical similarities.39

4.2 | Lateralizing FC features

In our secondary analysis, the features with the highest importance were distributed 

across different networks. Features from parcels with higher intersubject stability, such as 

somatosensory and visual networks, and the pallidum and putamen rose to higher ranks. 

The presence of an epileptic network can affect/disturb the normal FC networks5,16,38,40 

and thalamocortical connections,15 and can in turn be used to predict neurocognitive41 

and seizure outcomes.42,43 We postulate that our models are sensitive to changes in robust 

connections induced by hemispheric epilepsy networks. We postulate that compared to 

disease-specific FC changes in the limbic network, alterations in networks with higher 

intersubject stability are easier to detect.

4.3 | Machine learning for disease identification and lateralization

FC analysis, particularly using graph theory measures, is increasingly being applied 

to epilepsy research.43,44 Several studies demonstrate promising results for disease 

classification or lateralization/localization of the seizure focus using FC.14,45 Machine 

learning has been used for disease classification in neurological disorders using a wide 

range of features, including those derived from structural MRI,7,46 fluorodeoxyglucose 

positron emission tomography uptake,47 and fMRI.48 In epilepsy, machine learning with 

features derived from volumetric46,49 and diffusion imaging7,50 shows promising results for 

classification and outcome prediction.

In our results, high classification performances were achieved during cross-validation 

training for both the primary and secondary analyses, which may represent an 

“overfitting” phenomenon.28 In both primary and secondary analyses, we demonstrated the 

generalizability of each model by applying it to an independent, equal size “unseen” testing 

set and repeating the training using fivefold cross-validation with grid search to achieve a 

range for model performance. We obtained high classification scores (near 100% accuracy) 

during training, but the testing accuracies were lower and within a wide range, suggesting an 

overfitting problem despite employing a cross-validation method. The results are, however, 

consistent with previous machine learning approaches using even larger structural datasets 

and more homogeneous patient populations.7 Although the accuracy on the testing data 

was lower compared to our primary analysis, rather than concluding that those FC features 

do not help with lateralization, we postulate that our secondary analysis was limited by a 

smaller sample size, or a less robust effect size and/or more noise (i.e., being underpowered). 

This view is based on the observed reproducibility of the primary analysis and the range of 

performance in certain iterations, particularly using the connectivity matrix features.

There is limited experience in analysis of fMRI data using machine learning approaches 

in epilepsy; however, the generalizability of those methods to larger groups of patients 

is not established.51– 53 An analysis of the Epilepsy Connectome Project data examined 
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a more homogeneous sample, restricted to 60 TLE patients and 59 controls using three 

classification methods, including SVM with feature selection. The training achieved an 

average accuracy of 83% with FC derived from a slow frequency band; there was no 

separate testing set to test generalizability.54 In another disease classification study with 100 

patients with focal and generalized epilepsies and 80 healthy controls, an SVM trained with 

local asymmetry and global characteristics of the DMN reached an average accuracy of 

77.6% in the testing set.51 A study using independent component analysis-derived features 

to train an SVM for classifying TLE patients (n = 42) from controls (n = 90) reported 

97.5% accuracy during training.55 In terms of efforts for developing lateralization models, 

one study using SVM trained on selected fMRI features from resting state in 12 patients 

resulted in 83% training accuracy.53 Compared to those studies, we have achieved similar or 

better training accuracies. We also examined the generalizability of our method in a separate 

testing dataset. Our results were achieved on a larger, multicenter, heterogeneous dataset and 

using harmonization methods. The linear SVM algorithm we used in this study finds and 

optimizes a decision boundary to separate the two groups using multiple features and is a 

more suitable method for common clinical settings with a limited number of subjects for 

training compared to other simple classifiers or deep learning methods.17

4.4 | Limitations

Despite providing a statistical advantage to the analysis, machine learning methods have 

some limitations. Models are built on a finite number of data points, and the training 

dataset and features used essentially determine the generalizability to other populations. 

We addressed this limitation by pooling data from different sites to increase the number 

of training samples and by employing a harmonization method to account for sex, age, 

and site-specific differences. Despite harmonization, the difference between the adult and 

child population is significant and remains a limitation of this project. Limiting the analysis 

to adult participants showed comparable results to the whole dataset in terms of model 

classification performance. Evaluation of feature importance can provide a window into 

the physiologic basis of the classifications; however, this limited us to using linear SVMs. 

Future studies will focus on using nonlinear as well as data-driven methods to answer 

localization questions.

It is plausible that differences between epilepsy and controls derive from medication 

effects, motion-related artifacts, and other residual uncorrected or unbalanced conditions 

between the two groups. Effect of antiseizure medications is a relevant factor and an 

inherent limitation to our study, and to many studies comparing patients and controls. 

Medications may affect both epileptic and resting state networks in patient groups and 

affect the classification performance or the most important features. Our secondary analysis 

included only patients, and regions identified in our primary analysis are concordant with 

abnormalities reported by previous studies. Another limitation is related to imbalance in 

clinical characteristics of our patients. Comparing the distribution of the most important 

features and reviewing the misclassified patients suggest that TLE and non-TLE subjects 

share attributes in their FC alteration. As a real-world study, the imbalance in clinical 

characteristics might also be reflective of fMRI studies conducted at epilepsy centers for 

surgical patients. Last, we did not limit the study to those with good postsurgical outcomes 
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or intracranial recording. We have adequate confidence in multidisciplinary evaluation of 

patients at our centers for lateralization of seizure onset to consider there to be a low risk 

for mislabeled side of seizure onset. With larger datasets, limiting analysis to patients with 

intracranial evaluation or with favorable surgical outcomes will be feasible.

5 | CONCLUSIONS AND FUTURE DIRECTIONS

We demonstrate that our machine learning approach can identify alterations in FC 

characteristics and use them for classification despite real-world heterogeneity in data 

acquisition and clinical characteristics of patients. Our results using machine learning 

approaches need to be confirmed in larger datasets before serving as a biomarker discovery 

tool. This study was a first and necessary step in developing clinically relevant models 

for classification purposes. Future studies should assess whether training at one site can 

be validated at other sites for classification. Due to challenges in generating harmonized 

and comparable testing and training groups per site, we did not assess this across-site 

generalizability. The clinical implementations of this approach include distinguishing 

epilepsy patients from those with nonepileptic events, as well as lateralization of the seizure 

focus to guide invasive studies. The next goals are to achieve greater localization precision 

of the seizure focus for clinical use, and the development of predictors of surgical or 

pharmacological treatment outcomes using larger, multicenter datasets.
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Key Points

• We used a heterogeneous, multicenter adult and pediatric epilepsy dataset 

including patients with and without MRI lesions to identify common 

functional connectivity alterations across focal epilepsies

• The common functional connectivity alterations identified by our machine 

learning models for epilepsy versus control classification included the 

within-network connections of the default mode network, and the degree of 

functional connectivity in the limbic network

• Functional connectivity measures in somatosensory and visual networks, 

basal ganglia, and the default mode network had higher importance 

in machine learning lateralization of focal epilepsy, suggesting common 

distinguishing characteristics within left and right onset focal epilepsies

• We showed that supervised machine learning approaches can use resting state 

functional connectivity MRI measures to distinguish patients from controls 

and potentially lateralize the seizure focus
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FIGURE 1. 
Distribution of features with the highest importance for epilepsy versus control analysis. 

The absolute classification weight values for (A) mean functional connectivity (FC) and 

(B) degree of FC models are illustrated on a scale that ranges from the minimum (min; 

lightest) to maximum (max; darkest) values projected to the standard brain space using 

MMVT tools.56 A number of hemispheric parcels and subcortical regions are highlighted 

based on the Schaefer 400-parcel cortical atlas21 and Harvard–Oxford25 subcortical region 

naming for reference: right hippocampus (1), left thalamus (2), members of the default 
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mode network in prefrontal region (3, RH_Default_PFCdPFCm_4), control network in 

precuneus (4, LH_Cont_pCun_2), right putamen (5), and left amygdala (6), as well as 

members of the limbic networks in both hemispheres (7, RH_Limbic_TempPole_1; 8, 

LH_Limbic_TempPole_8)
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FIGURE 2. 
Classification performance for epilepsy versus control analysis. Receiver operating 

characteristic curve analysis for epilepsy versus control classification compares (A) mean 

functional connectivity (FC), (B) degree of FC, and (C) connectivity matrix. Comparison of 

training and testing sets are illustrated by color lines (Orange: testing, Navy blue: training). 

Models in A and B include features from the Schaefer 400-parcel cortical atlas and 14 

subcortical regions from the Harvard–Oxford atlas,25 whereas C uses only the connectivity 

matrix between Schaefer cortical atlases. (D) Violin plot represents the distribution of 

training and testing accuracies and area under the curve in 50 reiterations
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FIGURE 3. 
Distribution of connectivity matrix features with the highest classification importance. The 

connections with the highest importance (absolute classification weight) are illustrated for 

models using the connectivity matrix for (A) epilepsy patients versus controls (primary 

analysis) and (B) left versus right (lateralization, secondary analysis). Only 40 connections 

with the highest absolute classification weight out of 79 800 potential connections are 

illustrated. Edge thickness represents the weight value for that connection. Node size 

represents the degree of functional connectivity for the involved parcels. (C) Node colors 
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represent each parcel’s affiliation with one of the seven Yeo networks.24 Images are 

illustrated using BrainNet Viewer
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FIGURE 4. 
Distribution of features with the highest importance for lateralization analysis. Similar 

to Figure 1, absolute feature weights from models trained with (A) mean functional 

connectivity (FC) and (B) degree of FC are illustrated. The color scale ranges from the 

minimum (min; lightest) to maximum (max; darkest) feature weight values. A number of 

hemispheric parcels and subcortical regions are labeled based on the Schaefer atlas21 and 

Harvard– Oxford25 atlas terminology for reference: right putamen (1) and left hippocampus 

(4), as well as members of the default mode network in precuneus and posterior cingulate 
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anatomical regions (2, LH_Default_pCunPCC_10; 5, RH_Default_ pCunPCC_9), and 

ventral attention network (3, RH_SalVentAttn_TempOccPar_6)
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TABLE 1

Demographic and clinical characteristics of participants

Patients Adult patients Pediatric patients

n (female:male) 103 (45:58) 65 (34:31)

Median age, years (range) 39 (19– 68) 13 (5– 18)

Seizure focus laterality (left:right)
49:53

a
41:20

a

Seizure focus lobe, temporal/frontal/other 87/8/8 32/11/22

Abnormal clinical MRI, n (%)
b 56 (54.4%) 54 (83.1%)

 MTS/MTS+ 42 12

 MCD/FCD 5 18

 Neoplasm and cystic lesions 5 11

 Vascular/encephalomalacia 4 13

Controls Adult controls Pediatric controls

n (female:male) 92 (44:48) 17 (7:10)

Mean age, years (range) 37.5 (19– 71) 11 (5– 18)

Note: A total of 277 participants contributed to 442 acquisition runs.

Abbreviations: FCD, focal cortical dysplasia; MCD, malformations of cortical development; MRI, magnetic resonance imaging; MTS, mesial 
temporal sclerosis.

a
One adult patient and four pediatric patients had uncertain laterality and were excluded from secondary analysis.

b
MTS/MTS+: MTS and MTS plus another relevant lesion, such as FCD; MCD/FCD: MCD including mostly FCD but also polymicrogyria, 

nodular heterotopias, tuberous sclerosis, and hemimegalencephaly. Neoplasm and cystic lesions: low-g rade tumors, cystic calcified or noncalcified 
lesions such as infection sequelae deemed relevant to the patient’s diagnosis of epilepsy. Vascular/encephalomalacia: stroke and perinatal ischemic 
lesions, cavernous malformations, arteriovenous malformations deemed relevant to patient’s diagnosis of epilepsy.
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TABLE 2

Network affiliations of the features with the highest importance

Mean FC Degree of FC

Network name Count Average weight Network name Count Average weight

Default mode 5 1.10 Limbic 9 .11

Dorsal attention 4 1.15 Default mode 3 .10

Somatomotor 3 1.18 Somatomotor 3 .08

Frontoparietal control 3 1.05 Frontoparietal control 2 .10

Subcortical (hippocampus, thalamus) 2 1.07 Visual 1 .10

Visual 2 .97 Subcortical (putamen) 1 .09

Limbic 1 .95 Salience/ventral attention 1 .08

Note: The network distribution of the 20 features with the highest importance for epilepsy versus control classification for mean FC and degree of 

FC models. Count and average weight of the selected features per seven-network affiliation24 or subcortical parts are listed. Model classification 
weight is measured by an arbitrary unit to rank within each model’s results, but cannot be compared between models and datasets. Seven brain 

network affiliation is based on the Schaefer 400-parcel atlas,21 with the addition of subcortical regions from the Harvard–Oxford atlas.25

Abbreviation: FC, functional connectivity.
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