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Abstract
Wearable devices represent one of the most popular trends in health and fitness. Rapid advances in wearable technology 
present a dizzying display of possible functions: from thermometers and barometers, magnetometers and accelerometers, 
to oximeters and calorimeters. Consumers and practitioners utilize wearable devices to track outcomes, such as energy 
expenditure, training load, step count, and heart rate. While some rely on these devices in tandem with more established 
tools, others lean on wearable technology for health-related outcomes, such as heart rhythm analysis, peripheral oxygen 
saturation, sleep quality, and caloric expenditure. Given the increasing popularity of wearable devices for both recreation and 
health initiatives, understanding the strengths and limitations of these technologies is increasingly relevant. Need exists for 
continued evaluation of the efficacy of wearable devices to accurately and reliably measure purported outcomes. The purposes 
of this review are (1) to assess the current state of wearable devices using recent research on validity and reliability, (2) to 
describe existing gaps between physiology and technology, and (3) to offer expert interpretation for the lay and professional 
audience on how best to approach wearable technology and employ it in the pursuit of health and fitness. Current literature 
demonstrates inconsistent validity and reliability for various metrics, with algorithms not publicly available or lacking high-
quality validation studies. Advancements in wearable technology should consider standardizing validation metrics, providing 
transparency in used algorithms, and improving how technology can be tailored to individuals. Until then, it is prudent to 
exercise caution when interpreting metrics reported from consumer-wearable devices.
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Abbreviations
ECG	� Electrocardiography
EE	� Energy expenditure
GPS	� Global positioning system
HR	� Heart rate
HRV	� Heart rate variability
PPG	� Photoplethysmography
RMR	� Resting metabolic rate
V̇O

2
	� Oxygen consumption

V̇O
2max

	� Maximal oxygen consumption

Introduction

Wearable technology has gained in popularity among a 
broad segment of the general population including elite, 
competitive, and recreational athletes, as well as both the 
physically active and sedentary general population. Even 
in 2015, approximately 1 in 8 respondents (12.5%) to an 
annual nationwide consumer mail panel survey in the United 
States indicated that they currently used a wearable activity 
monitor (Omura et al. 2017). Recent survey data of fitness 
trends in 2019 showed that wearable technology was the 
number one most popular trend (Thompson 2018), and the 
market for such devices continues to grow. These devices are 
broadly marketed to both the general population for physical 
fitness and health monitoring as well as specifically to elite 
athletes as a training tool (Wahl et al. 2017). As such, the 
public health relevance of such wearable devices is increas-
ing and may impact areas, such as physical activity, well-
being, cardiovascular health, mortality risk, dietary habits, 
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among others. For example, higher volumes of physical 
activity energy expenditure measured by wearable devices 
was recently shown to be associated with reduced mortality 
rates, and that higher-intensity activity reduced mortality 
rates to a larger extent than lower-intensity activity (Strain 
et al. 2020). Recent advances in technology have resulted in 
a myriad of wrist-based sensors being built into the current 
generation of fitness watches (Fig. 1). These include digital 
3-axis accelerometers, pulse oximeters, optical heart rate 
sensors, thermometers, barometers, magnetometers, among 

others. These sensors, in combination with ever-improving 
algorithms—most of them proprietary—have led to fitness 
companies marketing these devices as being capable of esti-
mating and monitoring such physiological parameters as step 
count, heart rate (HR), sleep quality, sleep rhythm, energy 
expenditure (EE), maximal oxygen consumption ( V̇O

2max
 ), 

peripheral oxygen saturation, and the “training effect” of 
both individual and cumulative exercise bouts.

Despite these purported advances in physiological moni-
toring capabilities, few published data exist to support the 
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Fig. 1   Web of variables assessed by wearable devices and factors 
that must be considered in accurately reporting these variables. Vari-
ables directly connected to the athlete are those recorded by tech-
nologies. Outer variables are factors that influence the inner measure. 
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validity and reliability of such tracking. Due to the wide-
spread use of these wearable-fitness tracking devices to pro-
mote health, fitness, and an overall active lifestyle, rigorous 
and transparent reporting of validation studies should be 
encouraged to improve precision, accuracy, and reliability, 
and to engender trust in the consumers who purchase and 
utilize such devices. To date, studies investigating the valid-
ity and reliability are sparse, with wide disparity in findings, 
likely due to a variety of reasons including differences in 
devices tested, study population, and experimental design. 
This review summarizes the available studies testing the 
validity and reliability of wearable-fitness devices, discusses 
several publicly available algorithms to estimate select phys-
iological parameters, and presents current knowledge gaps 
and future directions for the wearable technology field to 
address. Specific metrics discussed below include V̇O

2
 and 

V̇O
2max

 estimation, EE estimation, step count estimation, HR 
and HR variability (HRV), which were all selected on the 
basis of being common measures used in applied physiology 
research and are commonly tracked by end-users of con-
sumer-wearable devices. These metrics also have the most 
published research data available on their validity compared 
to gold standard laboratory or research methods of data col-
lection. Additionally, more applied metrics, such as training 
load, stress, and sleep, are discussed as well. These variables 
are also measured in physiology research, although they are 
less common than the aforementioned metrics, and they have 
been selected for discussion because of their special interest 
to the lay population of end-users.

V̇O
2
 and V̇O2max estimation

Oxygen transport and utilization are the most important 
determinants of endurance exercise performance. The 
amount of oxygen that an individual utilizes per unit time 
( V̇O

2
 ) provides a comprehensive view of aerobic capac-

ity and pathophysiology. Traditional V̇O
2
 measurement is 

undertaken in a laboratory setting using open-circuit spirom-
etry and indirect calorimetry in which expired gases are col-
lected and analyzed and V̇O

2
 is calculated using the Haldane 

transformation. Continuous measurement of V̇O
2
 during an 

incremental exercise test to exhaustion is considered the 
gold standard measurement of maximal aerobic capacity, or 
V̇O

2max
 . The major drawback of such testing is the need for 

properly trained staff, expensive equipment, and the lack of a 
field-based or “real-world” setting. Therefore, attempts have 
been made to either adapt equipment to be more portable, 
or to estimate V̇O

2
 based on surrogate physiological param-

eters, such as heart rate, workload, or accelerometry data 
(Carrier et al. 2020; Helm et al. 2021; Snyder et al. 2021).

Though V̇O
2
 estimation has become more common in 

wearable devices, research concerning the accuracy of 

wearables in estimating V̇O
2
 and V̇O

2max
 has struggled to 

keep pace. Data from (Passler et al. 2019) compared five 
commercially available wrist-worn devices against res-
piratory gas analysis and found a mean absolute percent-
age error of > 10% [considered a high error (Henriksen 
et al. 2020)] for the majority of devices. Even within a 
given brand, V̇O

2
 was sometimes overestimated, but other 

times underestimated. Particularly prominent in discussing 
validity and reliability amongst wearable devices is the, 
Towards Intelligent Health and Well-Being Network of 
Physical Activity Assessment (INTERLIVE). This con-
sortium of six European universities and one industrial 
partner develops best-practice guidelines for evaluating 
consumer wearables. A recent review from INTERLIVE 
(Molina-Garcia et al. 2022) regarding the validity of wear-
ables in estimating V̇O

2
 and V̇O

2max
 concluded that popu-

lation-level estimates of V̇O
2max

 demonstrate some degree 
of accuracy, but the margin of error is large for V̇O

2max
 

estimates at the individual level. Within the realm of oxy-
gen utilization, some devices also report arterial oxygen 
saturation (SaO2 or SpO2). Recently, Zhang and Khatami 
(Zhang and Khatami 2022) summarized existing data on 
the validity of this measure, especially in the Apple and 
Garmin smartwatches. They concluded that, despite mil-
lions of people utilizing smartwatches to monitor oxygen 
saturation (and possible sleep apnoea), and although the 
Apple Watch seems to be more accurate than the Garmin, 
none of the popular smartwatches had been well validated. 
Overall, findings suggest that for V̇O

2
 estimates, as well 

as oxygen saturation estimates, wrist-worn activity track-
ers lack the accuracy for sport and healthcare application.

Discrepancies between laboratory-based V̇O
2
 calcula-

tions and wearable technologies may be explained both 
by the algorithms companies utilize as well as individual 
variations in exercising V̇O

2
 . Perhaps the most significant 

challenge in judging the methodology used by wearable 
technologies to estimate V̇O

2
 is the highly secretive, pro-

prietary nature of the variables and algorithms used to 
estimate V̇O

2
 . From the little public information available, 

such as from patent filings and white papers, it appears 
some devices utilize running speed and the inclination of 
the terrain (both presumably derived from the GPS signal 
of the device) to estimate theoretical V̇O

2
 . Technologies 

then apply a “quality” filter to improve data quality. Ulti-
mately, V̇O

2max
 is based on a constructed curve of HR vs 

estimated workload (Firstbeat Technologies Ltd.; US Pat-
ent Application Publication). Without full transparency in 
precisely how each wearable device estimates the param-
eters reported to the user, it is impossible to rigorously 
evaluate the validity and reliability of these metrics.

Considering that wearable technologies often estimate 
V̇O

2
 from HR, along with other variables, the accuracy of 
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HR measurement becomes relevant. Whereas heart rate 
monitors utilizing chest straps have a high level of valid-
ity and reliability (Gillinov et al. 2017), the accuracy of 
wrist-worn devices [which rely on photoplethysmography 
(PPG) to measure HR] remains questionable as exercise 
type and intensity, as well as other factors, such as skin 
tone, temperature, humidity, and proximity of the sensor 
to the skin, may influence application (Støve et al. 2019). 
Acknowledging the inherent flaws when relying solely on 
heart rate or accelerometry to estimate V̇O

2
 (Fudge et al. 

2007), some companies attempt to overcome limitations 
by combining methodologies. For example, one recent 
method attempts to estimate V̇O

2
 from HR and body move-

ment in daily life (Bonomi et al. 2020). This approach 
uses activity recognition techniques to identify contextual 
setting (e.g., cycling, sedentary, walking, etc.) and then 
apply prediction equations specific to a given setting. This 
method may guide future advancements. While merging 
accelerometry and heart rate improves accuracy (Haskell 
et al. 1993), V̇O

2
 predictions still differ from laboratory-

based measurements, particularly at high and low exer-
cise intensities (Acheson et al. 1980; Brage et al. 2003). 
Discrepancies also exist amongst the algorithms wearable 
technologies use, and though general information is pub-
lic—such as how Firstbeat and Garmin utilize submaximal 
exercise data (US Patent Application Publication) whereas 
Polar V800 relies upon HRV at rest (Polar)—proprietary 
information makes accessing these equations difficult and 
limits testing for validation and reliability. Further dis-
crepancies between the predictive equations used in wear-
able technologies and laboratory-based calculation of V̇O

2
 

may be explained considering the individual response to 
exercise. Although the relationship between HR and V̇O

2
 

is linear at sub-maximal intensities, HR can be influenced 
by age, sex, training status, efficiency, economy, emotional 
state, and many other factors, making the translation from 
heart rate to V̇O

2
 prone to errors (Fudge et al. 2007). Dif-

ferences also exist in the biomechanical characteristic 
of locomotion which influence V̇O

2
 . For example, dur-

ing running exercise, differences in vertical displacement 
between individuals alters the metabolic cost of running. 
Even within an individual, biomechanical changes occur 
within an event (Winter et al. 2016), with form usually 
deteriorating throughout an exercise bout as an individual 
tires. Chronic changes also occur with training, and train-
ing generally improves running economy thereby altering 
the V̇O

2
 for a given pace and distance. Other individual 

responses to exercise, such as the presence of the V̇O
2
 slow 

component or cardiac drift, may also result in a disconnect 
between predictive equations and actual V̇O

2
.

Although current uncertainties in the validity of V̇O
2
 

estimation in wearable technologies limit usefulness 
in health and medical practices, accuracy of wearable 

technology is optimized when V̇O
2
 prediction equations 

are based on a person’s unique exercise characteristics 
(Fudge et al. 2007). Application of these technologies 
will therefore expand when technology permits a more 
individualized equation based on physiological and bio-
mechanical responses to exercise, and when algorithms 
become more easily accessible and available for testing.

Energy expenditure estimation

Energy expenditure (EE) can be defined as the calories 
burned at rest or during physical activity. Direct calorim-
etry quantifies heat production, and while it represents the 
gold standard for measuring human metabolic rate, indirect 
calorimetry is the more common method utilized for assess-
ing EE, even within the research laboratory (Kenny et al. 
2017). While the doubly-labeled water technique represents 
the most reliable measure of indirect calorimetry (particu-
larly for quantifying free-living EE), open-circuit spirom-
etry is the customary measure, primarily because of its ease 
of use and comparatively lower price (Ainslie et al. 2003; 
O’Driscoll et al. 2020). Another method of quantifying 
caloric expenditure—and one used by wearable devices—is 
to calculate EE from anthropomorphic data (such as body 
mass) and exercise parameters recorded through GPS and 
accelerometry. Because EE data are often used to promote 
body mass regulation, the ability of wearable devices to 
accurately report EE has implications for health and disease.

Although insufficient validation studies exist for many 
of the features promoted by wearable technology, EE is one 
of the more frequently examined physiological outputs. In 
general, research demonstrates strong reliability for wearable 
technologies (Evenson et al. 2015), but poor validity (Dük-
ing et al. 2020; Fuller et al. 2020; O’Driscoll et al. 2020; 
Argent et al. 2022). When pitted against the gold standard 
doubly label water technique, accelerometers demonstrated 
varying degrees of validity, prompting researchers to call for 
further development and evaluation of wearable technology 
(Plasqui and Westerterp 2007; Plasqui et al. 2013; Murakami 
et al. 2019). As V̇O

2
 estimation improves when identifying 

contextual setting (Bonomi et al. 2020), evidence also sug-
gests that when accelerometry algorithms recognize various 
types of physical activity, estimation of energy expenditure 
improves (Bonomi et al. 2009). Within this framework, 
data generally agree that the ability of wearable technol-
ogy to accurately report EE depends on the type of exercise 
(Boudreaux et al. 2018), the intensity of exercise (Roos et al. 
2017; Wahl et al. 2017), sex and skin tone of user (Shcher-
bina et al. 2017), and the specific device in question (Kendall 
et al. 2019; O’Driscoll et al. 2020).
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Though calculations for EE are proprietary and prevent 
specific analysis, discrepancies between laboratory-based 
measurement of EE and wearable technologies likely arise 
from limitations in EE calculations as well as individual 
variation in EE that would not be captured using tradi-
tional equations. Common calculations for EE utilize body 
mass, age, activity status, accelerometry data, and heart 
rate. Assuming height, weight, age, and sex are recorded 
correctly, calculations could fall short if levels of activity 
status are unclear (e.g., “I was highly-active last week but 
moderately-active the week prior, so what is my activity 
status?”) or if heart rate data are inaccurate (as mentioned 
in the previous section on V̇O

2max
 ). Individual varia-

tion in EE represents an alternative explanation for the 
observed discrepancies and a large hurdle for wearable 
technologies to overcome, particularly given contempo-
rary limitations on technological capabilities. While dis-
cussion on the individual variations in energy expenditure 
is beyond the scope of this paper, we offer a few example 
scenarios of where energy expenditure could be altered 
and yet go unnoticed by wearable technologies: Resting 
metabolic rate (RMR) accounts for the largest contribu-
tor to total daily energy expenditure and is itself depend-
ent on body size and body composition. While body size 
may be accurately assessed by inputting height and weight 
into wearable devices, many of these activity trackers are 
unable to assess body composition. Even if body fat per-
centages were known, many calculations on EE do not 
account for lean mass vs. fat mass or variations in EE 
that exist within lean tissue. Furthermore, a large vari-
ability in RMR—up to 250 kcal per day—exists outside 
of differences in body composition (Johnstone et al. 2005), 
and again would not be assessed using the traditional cal-
culations for EE. Finally, energy balance also influences 
RMR where RMR may demonstrate an adaptive response 
to caloric restriction thereby predisposing individuals to 
weight regain (Fothergill et al. 2016). For example, fol-
lowing weight loss, RMR for a given fat-free mass may be 
reduced, thereby lowering the total daily energy expendi-
ture and the calories that can be consumed if body mass is 
to be maintained. In addition to body composition then, an 
accurate estimation of EE considers both chronic and acute 
alterations to energy balance. It is unlikely that current 
wearable technologies permit such considerations. For the 
many people using wearable technologies for weight loss 
(or maintenance of lost weight), this last point becomes 
particularly relevant in that wearable devices may be most 
accurate for those in energy balance but may be used most 
often by those in energy imbalance. Therefore, those most 
dependent upon wearable devices for EE may be the ones 
most likely to experience inaccuracies in EE estimation. 
Each of these examples represents not only the individual 
response to energy expenditure, but also the complexities 

of quantifying caloric expenditure and potential pitfalls 
that may explain the lack of validity in wearable technolo-
gies regarding EE.

In addition to limiting our understanding of the validity 
and reliability of these devices, the proprietary nature of the 
energy expenditure calculations also prevents proper use of 
these devices. For example, when using wearable devices 
to determine caloric expenditure for a given exercise ses-
sion, are the number of calories burned for a given exercise 
session based on net or gross expenditure? Perhaps more 
importantly, is this clear to the user? If, for a given 30 min 
exercise session, a wearable device displays that 350 cal 
were burned, does this mean that an additional 350 cal were 
burned above resting metabolic rate, or does this mean that 
a total of 350 cal were burned which includes those attribut-
able to resting metabolic rate? Overall, given the consistent 
finding that wearable devices lack validity in calculating EE, 
and given the inconsistencies in the nature of inaccuracies 
throughout devices, refinements are in order before these 
devices can be relied upon to report EE.

Step count/physical activity

Whereas physical activity promotes musculoskeletal health 
and disease prevention, a sedentary lifestyle is linked with 
muscle atrophy, decreased quality of life, and a less favora-
ble cardiometabolic profile (Riel et al. 2016). While well 
known that physical activity is meaningful, less is known 
about what constitutes meaningful physical activity. Met-
rics toward this goal have been developed, including the 
recommendation to achieve 10,000 steps per day (Hatano 
1993; Choi et al. 2007). In pursuing meaningful physical 
activity then, monitoring daily step count represents a valu-
able component of health promotion and one of the major 
functions endorsed by wearable technologies. In the research 
setting, the gold standard for quantifying steps is via hand 
tally, where physical activity is tracked by video recording 
and two reviewers independently assign manual step counts 
(Dijkstra et al. 2008; Riel et al. 2016). When video tracking 
is unavailable, the use of accelerometers is preferred to self-
report (Riel et al. 2016), and one of the more common accel-
erometers used in the research setting is the ActiGraph—a 
triaxial accelerometer placed near the hip above the right 
anterior superior iliac spine (Riel et al. 2016).

As physical activity and step count are common features 
of wearable devices, a number of reviews have examined 
these functions in various technologies and under a vari-
ety of settings—laboratory, free-living, walking, running, 
etc. While some studies (Wahl et al. 2017; Montes et al. 
2020) report promising outcomes for reliability and validity 
of step count, a 2020 systemic review (Fuller et al. 2020) 
examining 158 publications, 9 different wearable brands, 
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and 45 devices concluded that, according to the wider body 
of literature, wearable devices are accurate for measuring 
step count in the laboratory, but exhibit a wider range of 
inaccuracy in free-living environments. Even within brands, 
validity differed. For example, whereas the Fitbit Charge 
tended to underestimate steps, the Fitbit Classic overesti-
mated step count. Variability also existed for intra-device 
reliability, where step count differed, not only within the 
same company, but also within the same device. Another 
2020 systematic review (Henriksen et al. 2020) examined 
devices that used a triaxial accelerometer system and found 
that a large heterogeneity between study protocols (test dura-
tion, laboratory vs. free-living, reported metrics, statistical 
analyses, model investigated, etc.) limited conclusions on 
the overall accuracy of these technologies. One of the issues 
manufacturers and researchers face is determining, “What is 
a step?” Does it include the shuffle of the elderly, slide of the 
tennis player, leap of the dancer, march-in-place of the mili-
tary person? For laboratory and validation purposes, as long 
as proprietary algorithms set the criteria for what constitutes 
a step, validation studies will prove difficult as they may 
define a step according to different criteria. Need exists for 
standardized performance benchmarks industries can meet 
to permit uniform testing (Bassett et al. 2017).

A variety of step counters exists, utilizing diverse internal 
mechanisms, and placed on different regions of the body. 
Recent trends, however, favor wrist- and arm-worn activity 
trackers that utilize triaxial accelerometers to detect move-
ment. While some data support the relationship between 
wrist-worn devices and observer-counted steps (El-Amrawy 
and Nounou 2015; Chen et al. 2016), one of the main sources 
of error is when upper-body movement fails to reflect lower 
body locomotion. For example, wrist-worn devices may 
inappropriately record steps when folding laundry (Chen 
et al. 2016), brushing teeth, or when worn on the dominant 
vs. non-dominant wrist. Conversely, some steps occur with-
out wrist movement, such as when walking while pushing 
a stroller (Chen et al. 2016). Under these circumstances, 
devices fail to appropriately log steps. Every arm movement 
of daily living is not accompanied by a step, nor vice versa—
a discrepancy manufacturers have attempted to overcome. 
For example, some devices have altered sensitivity thresh-
olds whereby a certain acceleration must be met before a 
step is counted. This appropriately limits the counting of 
steps due to subtle wrist movements but fails to count steps 
in slower-moving or clinical populations. Other devices uti-
lize a filter where movement must be maintained for ≥ 4 s 
to be counted as a step (Bassett et al. 2017). This method, 
however, eliminates steps of daily, household movements, 
which is concerning because frequent, short-duration bouts 
occur in daily activity (Orendurff et al. 2008). Ultimately, 
step counters are more accurate when placed at the hip or 
ankle compared to the wrist [exceptions exist depending on 

the age of the user and intensity of the activity (Mandigout 
et al. 2019; Fuller et al. 2020)]. Although device placement 
in the laboratory often leans on proximity of the variable 
being measured—such as the heart rate strap worn on the 
torso or step count accelerometer worn on the waist—con-
sumer preference dictates that functionality and fashion be 
united, shifting emphasis towards wrist-worn devices.

While some studies (Evenson et al. 2015; Wahl et al. 
2017) report a general level of accuracy or reliability for 
certain devices and under set conditions, recent systematic 
reviews (Fuller et al. 2020; Henriksen et al. 2020) demon-
strate less confidence in the ability of current technology 
to accurately report step count and raise questions about 
consistency, even within brands. A recent study (Montes 
et al. 2020) investigating five different wearable devices 
under both walking and jogging conditions found that when 
manual counters recorded ~ 800 steps, wearable devices were 
off by as much as 50. Another investigation (Wahl et al. 
2017) estimated that over the course of a marathon, where 
60,000 steps may be taken, some devices would be within 
100 steps whereas others off by nearly 8,000. Therefore, 
while wearable devices appear useful for tracking physical 
activity and step count, one must consider that error waxes 
or wanes depending on the type of activity, the intensity, 
and the environment where exercise occurs. Regarding step 
count and physical activity tracking, INTERLIVE noted the 
lack of consistency in how validity is evaluated, and identi-
fied various domains that validation studies should consider 
(Johnston et al. 2021). To confidently fulfill step goals then, 
users, technology companies, and validation procedures 
must take additional steps.

Heart rate and heart rate variability

Heart rate (HR) increases with exertion and is used to 
indicate exercise intensity or as a correlate for VO2 and 
physiological stress. Changes in heart rate represent use-
ful signposts for training adaptations—where a lower heart 
rate for a given workload represents improved cardiorespira-
tory and muscular fitness. Within the clinical setting, HR is 
commonly measured via electrocardiogram (ECG), which 
detects depolarization and repolarization of the heart using 
electrodes placed on the chest, or by photoplethysmography 
such as in a pulse oximeter. In healthy populations, and in 
particular during exercise, HR is monitored via short-range 
telemetry using an electrical chest strap that transmits data 
via radiowave to a receiver or watch.

Heart Rate Variability (HRV) describes the time varia-
tion between consecutive heartbeats and reflects the health 
of the autonomic nervous system. A healthy heart displays 
some amount of time oscillation between beats, whereas a 
diseased heart exhibits either a metronome-like rhythm, or 
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abnormal variations between beats (Shaffer and Ginsberg 
2017). Changes in HRV may indicate overtraining or illness, 
and are useful in evaluating training intensities when com-
paring HRVs between exercise bouts (Hinde et al. 2021). 
Similar to HR, HRV is quantified using ECG, where algo-
rithms calculate variability between ventricular contractions 
(Shaffer et al. 2014; Hinde et al. 2021).

The ability of wrist-worn devices to accurately and reli-
ably capture HR has been investigated over a wide range of 
devices and brands with results demonstrating both accuracy 
and reliability, inside and outside the laboratory (Düking 
et al. 2020) Accuracy of HR wavers, however, with altera-
tions in exercise intensity (Spierer et al. 2015; Thiebaud 
et al. 2018; Müller et al. 2019; Thomson et al. 2019; Chow 
and Yang 2020). Regarding accuracy and reliability of HRV, 
a systematic review (Georgiou et al. 2018) examined eight-
een studies and found high correlations for wearable HRV 
and classic ECG at rest. Similar to HR, HRV accuracy and 
reliability decreased during exercise—a finding supported 
by a 2021 investigation (Hinde et al. 2021) that examined 
thirty-two portable devices and found that validity and reli-
ability decreased as HR and exercise intensity increased.

Previously, wearable technologies capable of detecting 
HR did so via chest strap and associated watch. This tech-
nique compared favorably with ECG (Leger and Thivierge 
1988; Goodie et al. 2000). Recent devices, however, detect 
HR and HRV using PPG, although many retain compatibility 
with HR-measuring chest straps. PPG employs light-emitting 
diodes and detectors to monitor light absorption in the blood. 
Transmission of light through the tissue, or reflection of light 
from the tissue, alter light intensity and are associated with 
changes in tissue perfusion (Tamura et al. 2014). Changes in 
perfusion then indicate contraction or relaxation of the heart. 
Validity of devices that use PPG may be compromised due 
to a number of scenarios including motion of the extremi-
ties, wrist positioning, disturbances in sensor–blood interface 
(such as sweat), and skin pigmentation. (Spierer et al. 2015) 
also found that when the devices were evaluated over specific 
exercise modalities, such as stair climbing and resistance train-
ing, reliability waned—a finding confirmed in later research 
(Shcherbina et al. 2017). A study on trail running similarly 
demonstrated poor validity with PPG-based HR sensors 
(Navalta et al. 2020). To optimize the performance of PPG 
monitoring, most manufacturers recommend routine clean-
ing of the PPG sensor—wiping excess dirt, sweat, or other 
debris from the skin—prior to placement, and then securing 
the sensor tightly to minimize motion. In real-world settings, 
it can be difficult to achieve these recommendations given that 
some users sweat heavily during an exercise bout, some run in 
inclement weather or conditions that impair PPG sensor per-
formance (e.g., trail running and open-water swimming, which 
may increase the debris and sediment that contact the sensor), 

and some may experience discomfort when a wrist-worn unit 
is tightened sufficiently to ensure optimal PPG performance.

HRV can also be detected using PPG (Giles et al. 2016), 
and although ECG has been considered superior due to clear 
detection of ventricular contraction, updated algorithms in 
PPG devices have improved pulse detection. Losses in accu-
racy associated with the exercising state may be due to a num-
ber of physiological and technological factors, such as sym-
pathetic stiffening of the blood vessels and sampling rate of 
the devices themselves (Shaffer et al. 2014). Finally, because 
HRV exhibits variation between people, baseline values for 
HRV must be established using resting, personal data prior 
to the influence of other stimuli. Otherwise, HRV values by 
themselves lack meaningful interpretation.

Daily fluctuations in body temperature, circulating hor-
mones, sleep cycle, and metabolism contribute to HRV, and 
gold standard techniques in HRV assessment account for these 
by taking a 24 h HRV recording. Many wearable devices lack 
the battery capacity for 24 h measurement and rely instead 
upon short-term (5 min) data acquisition. When short-term 
measurements are used, recommendations call for resting 
measurements, which influences the use of short-term HRV 
when exercising (Shaffer and Ginsberg 2017). HRV can also 
change based on age, sex, health, and HR itself (Shaffer and 
Ginsberg 2017). Therefore, algorithms for HRV and especially 
the diagnostic outcome of HRV measurement would necessar-
ily take these variables into account. When using short-term 
recordings (compared with 24 h recordings), recommendations 
suggest utilizing frequency domains instead of time interval 
domains (Malik et al. 1996). Therefore, if wearable algorithms 
utilize short-term recordings (which is likely) they will be most 
effective if transforming the data into domains based on fre-
quency. Though short-term recordings refer to HRV measure-
ment over a 5 min span, even shorter recordings (≤ 1 min) 
have become more prevalent. The usefulness of these snapshot 
views remains to be assessed and is not endorsed by lead-
ing scientific societies (Hinde et al. 2021). Once again, the 
INTERLIVE collaboration between universities and industry 
offers a best-practice protocol for validating PPG devices, 
which includes considering instrument placement, target 
population, and testing conditions amongst other considera-
tions (Mühlen et al. 2021). Ultimately, while wearables may 
provide a general overview of fitness and health, future devices 
will permit a 24 h view of HRV and demonstrate more consist-
ency with ECG technology, especially during heavy exercise 
sessions.

Training load, sleep, and stress

Health and performance hang from a tenuous line separat-
ing undertraining from overtraining. Individuals—coaches, 
athletes, or those pursuing health and wellbeing—seek to 
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promote stress-induced adaptation while avoiding any 
injury or chronic fatigue elicited by the over-trained or 
overstressed state. While appropriate physical stress from 
exercise promotes health, additional sources of stress (be it 
physical, social, environmental, etc.) can compile and cre-
ate an overburdened state with an elevated risk of injury or 
illness (Hamlin et al. 2019). Monitoring training stress—
the physiological strain resulting directly from training 
sessions (Paquette et al. 2020)—represents a useful diag-
nostic technique to prevent harm and optimize adaptation. 
The quantification of training load considers both external 
loads (e.g., speed, distance, duration, work) and internal 
loads (e.g., HR, HRV, blood lactate) during a given time. 
Alongside exercise-specific stressors, the monitoring of 
training load may also consider sleep quantity and qual-
ity as a potential diagnostic for assessing physiological 
strain. Finally, daily stress resulting from non-training fac-
tors, such as work, relationships, financial stress, etc., may 
also contribute to overall training load and can be assessed 
through visual analog scales and questionnaires. In the 
laboratory, the gold standard for sleep tracking is polysom-
nography, which records cortical and electro-ocular activ-
ity via electrodes on the scalp (De Zambotti et al. 2019). 
Given the vast number of contributors to physiological 
status and overall stress, however, no gold standard for 
training load quantification currently exists.

For training load to be meaningful it must relate to an 
outcome, such as injury occurrence or performance, and 
investigations must validate the strength of this relation-
ship. Limited data assess the dose–response relationship 
between training load measurements and training outcomes. 
One investigation (Sanders et al. 2017) assessed the rela-
tionships between various measures of training load and 
aerobic fitness in trained cyclists and found the strongest 
dose–response relationship when measures considered 
individual characteristics in the calculation of training load 
rather than assuming a one-size-fits-all approach with pre-
established exercise intensity levels. Similar to many of the 
previously-discussed variables, the rapid rate of industry 
development and deployment, combined with a paucity of 
performance standards, means that assessment of accuracy 
and reliability struggles to keep pace with emerging tech-
niques for quantifying training load (Passfield et al. 2022). 
A 2018 review of consumer wearables for monitoring stress 
and sleep found that 5% of technologies had been formally 
validated (Peake et al. 2018). Need exists for validation of 
training load algorithms that are sport-specific with thresh-
olds that technology companies must meet to promote their 
devices as accurately assessing training load. Recently, a 
group investigating the use of sleep-tracking devices (Meng-
hini et al. 2021) suggested one such evaluation technique. 
Further efforts such as this will promote validity and reli-
ability of future technology.

Technological advancement in wearable devices ena-
bles the acquisition of massive datasets which opens new 
opportunities for insight into health and disease but also 
creates new challenges in determining how best to use 
data in assessing these outcomes. Regarding training load, 
wrist-worn devices reliably track days, distance, duration 
of exercise, as well as speed, cadence, and even surrogates 
for ground reaction forces (Moore and Willy 2019). These 
data are then combined and weighted to assess training 
load. Several quantification methods have been proposed, 
each relying upon a unique combination of variables, and 
each prescribing different weight to those variables. For 
example, “training impulse” uses exercise duration and 
mean heart rate during exercise to assess the intensity and 
overall load of the exercise session. However, mean work 
rate or total accumulated work may not be truly reflective 
of the stress of an individual exercise bout. Time spent in 
different intensity domains, particularly at high intensity, 
may have little effect on overall average heart rate, but may 
induce significant training stress (Black et al. 2017; Clark 
et al. 2018). A different method calculates exercise inten-
sity based on an individual’s heart rate and blood lactate 
relationship. Still others utilize session rating of perceived 
exertion, where athletes rate their perceived level of dif-
ficulty for a given bout of exercise. Sleep patterns may also 
reflect the stress of training, and sleep is included in some 
quantifications of training load by integrating movement 
data from accelerometers with cardiac and environmental 
information (Menghini et al. 2021). Training load can also 
be sport-specific, and the development of power meters in 
cycling enables power output to be included in training 
load calculations for cyclists.

In assessing the utility of sleep-tracking devices, Meng-
hini et al. (2021) state that “unstandardized, undisclosed, 
and often unvalidated data outcomes and algorithms 
are among the main challenges.” This sentiment can be 
expanded to the current state of training load monitor-
ing in general as we remain uncertain of which variables 
best identify the level of stress incurred on an individual. 
In addition to validation standards then, advancements in 
training load quantification will establish best practices 
for which variables to rely upon (and how heavily). In the 
future, additional variables may also emerge, and technol-
ogy will take an individualized approach to training load, 
where a certain distance and pace for one person incurs a 
different training load compared to that same distance and 
pace in another person. Technology may also benefit from 
an ability to sieve through the more general term, “stress” 
and pinpoint anatomical, site-specific load (Moore and 
Willy 2019). Until a method exists in which both internal 
and external loads are reliably accounted for, the calcula-
tion of training load by wearable devices remains deficient.
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Qualitative synthesis and expert opinion

It should be clear that wearable activity trackers have 
advanced rapidly over the past decade and continue to 
feature new capabilities and metrics of interest to the end 
users. Improvements in sensors, engineering, algorithms, 
and incorporating some level of individual data (such 
as height, weight, activity/training level, etc.) have all 
expanded and enhanced the capabilities of these devices 
(Düking et al. 2018). Yet, for all the advances that have 
been made, significant gaps still exist in validity and reli-
ability, particularly in real-world performance circum-
stances. Because of the variety in manufacturer models, 
algorithms, and even the advertised purpose of the weara-
ble device, this topic is quite broad and factors, such as the 
relatively small number of studies and lack of transparency 
from the manufacturers make it difficult to draw rigorous 
scientific conclusions. Nevertheless, recent meta-analyses 
on specific metrics along with available validation studies 
provide some understanding of the validity and reliabil-
ity of these devices. In reviewing the available data on 
measures, such as V̇O

2
 , EE, step count, and others, several 

themes emerge.
First, while some measurements appear to be valid and 

reliable in more controlled circumstances, such as at rest 
or low-intensity activity, under more dynamic conditions, 
such as high-intensity exercise, validity and reliability, are 
significantly lower, and likely undependable. This issue 
is particularly problematic given the application of these 
devices as training tools and aids to improve health and 
fitness. Low confidence in these metrics suggests that 
athletes and other users should not build their training 
and dietary plans around the V̇O

2
 , EE, training load, and 

other measures that are given by these wearable devices. 
Doing so may present significant risk of over- or under-
estimation and could result in imbalanced training load, 
energy imbalance, and other factors ultimately impairing 
performance, health, and fitness.

Second, the proprietary nature of algorithms used to 
estimate these metrics impedes validation testing and 
likely slows innovation. This presents a challenge because 
independent validation of algorithms would significantly 
improve consumer and scientific confidence in how these 
calculations are made, and whether assumptions used 
in these measures are indeed valid and applicable to the 
population or individual using these devices. Moreover, 
open-source, or otherwise publicly available data could 
help drive innovation and improvement in these algorithms 
and enhance transparency and consumer confidence. Sys-
tematic reviews of individual metrics have shown that 
although some algorithms perform well at the population 
level, the estimation error at the individual level is still 

large and thus, do not provide useful information for the 
end-user of most consumer-wearable devices. One possi-
bility is that a “one-size-fits-all” algorithm that is univer-
sally applied to all users is not nuanced enough to accu-
rately estimate these metrics at the individual level. Future 
research should focus on not only validating algorithms at 
the population level, but also reducing estimation error at 
the individual level.

Third, accounting for individual differences and environ-
mental factors is both complex and challenging, yet essential 
for the best performance of wearable devices. Adapting dif-
ferent algorithms to specific sub-populations based on age, 
sex, training history, presence or absence of cardiometabolic 
and/or respiratory disease, race, ethnicity, body composition, 
etc. may yield results more useful to a broader audience. 
Moreover, estimates are almost certainly impacted by inter-
individual variability in factors, such as running economy 
(or cycling efficiency, or economy/efficiency in other exer-
cise modalities), actual vs. predicted maximal HR, muscle 
fiber type distribution, V̇O

2
 slow component and cardiac 

drift during prolonged exercise, and biomechanical, mus-
culoskeletal, and neurophysiological factors that influence 
stress, recovery and injury, many of which are not prop-
erly accounted for in algorithms used to estimate common 
metrics.

Acknowledging the complexity of these challenges, 
future development should encourage more robust testing 
and transparency. Particularly in light of the recent COVID-
19 pandemic, which necessitated many people to monitor 
their own exercise regimens to a greater extent due to loss of 
organized exercise classes, gym access, face to face coach-
ing, etc., it seems prudent to hold these wearable activity 
tracking devices to a higher standard. It would seem logical 
to develop a standard analogous to a “Phase 3” clinical trial 
validating the efficacy and safety of medical therapies and 
devices and indeed the International Federation of Sports 
Medicine recently published a perspective proposing the 
establishment of a global standard for wearable devices in 
sport and fitness (Ash et al. 2020). The proposed quality 
assurance standard would commission testing of marketing 
claims and endorse the claims that are validated. However, 
practical constraints, such as budget, facilities, and human 
resources, necessary for testing and validation may make 
widespread adoption of such a standard difficult. Ulti-
mately, the nature of this field of wearable activity trackers is 
dynamic, one of constant change, updates, redesign, and new 
models, and will necessitate continual review and research. 
In light of this, it is likely that the science will always be 
lagging to supporting new devices emerging into the mar-
ket. If so, this begs the question: Is it the role of scientists to 
validate the claims of manufacturers? Rather than place the 
burden on the scientific community, manufacturers should be 
encouraged to provide full transparency for the algorithms 
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they use in their wearable devices with rigorous, transparent, 
and complete reporting of algorithm development, valida-
tion, and real-world testing.

Interpretation for lay public/practical 
application

Highlighting the validity and reliability challenges in weara-
ble technology then begs the questions, “How are people uti-
lizing this technology?” and “What are the general levels of 
acceptance for metrics reported by these devices?” Accord-
ing to a 2019 survey, the majority of wearable technology 
users turn to their devices for tracking step count (60%). 
Heart rate (44%), calories burned (42%), and sleep monitor-
ing (40%) represented the next highest metrics (Global Web 
Index 2020). Figure 2 provides a normalized representation 
of average acceptance for various metrics. Users mentioned 
managing their fitness levels (47%) and feeling in control 
of their health (45%) as the primary reasons they use this 
technology (Global Web Index 2020). Indeed, this ability 
to collect activity data supports one’s adoption of wearable 
technology (Canhoto and Arp 2017). Additionally, users 
expressed a desire to track more health parameters in the 
future, with blood pressure (53%), heart rate (51%), blood 
sugar (45%), cardiac issues (42%), and stress issues (42%) 
at the top of the list (Global Web Index 2020).

Wearable technology is here to stay (Market Research 
Future; Pew Research Center; SurveyMonkey; Thomp-
son), which likely means that users will continue collecting 
health- and fitness-related data, but will also desire assis-
tance in interpreting these data. In fact, over half of survey 

respondents in 2014 were willing to share their data with a 
physician (Accenture Interactive). In another survey, two 
thirds of respondents expressed a desire for a physician or 
health coach to guide them in understanding their wearable 
technology data in making lifestyle changes. Three fourths 
of respondents were willing to pay for this service (The Har-
ris Poll). Thus, as the use of wearable technology grows 
more widespread, and as companies producing these devices 
add features that generate even more data, health profession-
als will likely find their patients or clients asking them for 
recommendations based on self-collected health and fitness 
data. But if data are unreliable and lack validity, health pro-
fessionals may struggle in guiding patients or clients to the 
next best steps for their health and fitness goals. Figure 3 
summarizes the Mean Absolute Percentage Error for vari-
ous physiological variables recorded by consumer-wearable 
devices reported in recent studies.

So, what can be done? Perhaps this is the push the wear-
able technology industry needs (as the previous section 
mentioned) to create standards for new devices and capa-
bilities (Cardinale and Varley 2017), as well as marketing 
what those true capabilities are. Additionally, the health field 
will need to devise best practices so providers know how to 
handle the data their patients or clients present to them. This 
could include comparing the wearable technology data with 
already accepted measures of health and fitness (e.g., com-
paring time and distance walked using the wearable device 
with the 6-Minute Walk Test norms chart) (Chiauzzi et al. 
2015).

Furthermore, validity and reliability issues may be 
addressed if wearable technology users and their health 
providers look at data trends over time, instead of simply as 
vital signs taken in the moment. For instance, if a wearable 
technology user starts experiencing a higher-than-normal 
resting HR, this could signal overtraining and/or possible 
sickness, whereas receiving a resting heart rate measure-
ment of 80 bpm in the doctor’s office only indicates that the 
patient is not currently experiencing tachycardia or bradycar-
dia. Indeed, studies show that deviations in one’s wearable 
technology metrics over time can signal disease, or risk for 
disease (Li et al. 2017; Rose et al. 2019; Lown et al. 2020). 
Currently, although wearable devices can track changes over 
time, wearable devices cannot detect what is a meaningful 
change. Rather, various algorithms have been created and 
must be applied to find anomalies in the user’s generated 
data to predict future illness (Lown et al. 2020; Alavi et al. 
2021; Sunny et al. 2022). These algorithms require multiple 
steps to be useful, including first downloading the data to an 
application programming interface (API), processing it for 
uniformity, and filling in missing data points (Sunny et al. 
2022). For healthcare providers to accurately predict dis-
ease risk based on deviations in user’s wearable technology 
data, current restrictions require them to employ the use of 

Metric General Acceptance

VO2 ✔✔

VO2max ✔

Energy Expenditure ✔✔

Step Count ✔✔✔

Heart Rate ✔✔✔✔

Heart Rate Variability ✔✔

Training Load ✔

Sleep & Stress ✔

Fig. 2   Normalized representation of average metric acceptance. Con-
sensus is taken from expert opinion and other literature. ✔ = not gen-
erally accepted. ✔✔✔✔ = widely accepted
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these relevant algorithms, which are external to the wearable 
device itself (Guk et al. 2019; Sunny et al. 2022).

If consumers and their health providers are monitoring 
changes over time, this is a path to greater personalized 
health and fitness training (Li et al. 2017; Rose et al. 2019). 
As stated earlier, V̇O

2
max

 estimation, HRV, and training load 
become more accurate when an individualized, and not a 
one-size-fits-all, approach is used. Designers of wearable 
technology could create a more robust, yet user-friendly, set-
up process for new purchases, making it more individualized 
to the wearer. This could include showing users pictures of 
various types of exercise, allowing them to swipe through 
options, thereby obtaining a closer look at their true physical 
activity levels. For example, apps such as the “Diet ID” have 
recently been developed using this method, giving health 
providers a more accurate view of patient or client nutrition. 
Figure 4 provides a comparison between how users are rely-
ing upon consumer-wearable devices along with an expert 
recommendation on how best to utilize these devices.

If wearable technology companies provide consumers 
with more individualized capabilities, this would improve 
the generated outputs and represent an additional marketing 
tool to boost sales. It would also enable the identification of 

a specific baseline of health for each user so deviations that 
signal disease could be found more easily (Guk et al. 2019). 
Furthermore, creating wearables with the ability to track 
data changes themselves would simplify data processing and 
make these devices more valuable to the health field. While 
consumers and health professionals should continue to push 
the wearable technology industry toward greater standards 
for reliability and validity, improving data tracking and 
implementing greater individualization can provide a win 
for all stakeholders.

Summary and conclusion

Wearable technologies are powerful tools for health and 
fitness and have become indispensable training tools for 
athletes of all levels. Yet, for all their merits, significant 
limitations exist, primarily related to the validity and reli-
ability of the metrics these devices purport to measure. 
The rapid rate of development and deployment of new 
technologies, sensors, algorithms, and other components 
of these devices may lead athletes and other users to 
believe that these sophistications are highly accurate and 

Fig. 3   Mean absolute percent-
age error (MAPE) for various 
physiological variables recorded 
by wearable devices from recent 
investigations. MAPE indicates 
the predictive accuracy of 
devices. Although no standard-
ized thresholds exist for high or 
low error, MAPE > 3% has been 
considered high for laboratory-
based studies and > 10% has 
been considered high for studies 
in free-living conditions. Note: 
studies normally found a range 
for MAPE. Therefore, “X” indi-
cates the approximate average 
of various devices and scenarios 
tested. 1, Passler (2019); 2, 
Henriksen (2020); 3, Nelson 
(2016); 4, Montoye (2017); 
5, Wallen (2016); 6, Navalta 
(2020); 7, LeBoeuf (2014); 8, 
Carrier (2020); 9, Henriksen 
(2021)
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Fig. 4   Comparison between how users are relying upon wearable 
devices with expert recommendation and 5-star rating on how best to 
rely upon wearable devices. 5-star, excellent reliability; 4-star, good 
reliability; 3-star, moderate reliability; 2-star, poor reliability; 1-star, 

very poor reliability. 1, Evenson (2015); 2, Global Web Index (2020); 
3, Canhoto (2017); 4, Rose (2019); 5, Li (2017); 6, McDonough 
(2021); 7, Kerner (2017); 8, Montgomery-Downs (2012)
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valid, yet published data suggest this may be the case in 
limited circumstances, primarily at rest and during low-
intensity activity. These limitations make it difficult to 
be confident in metrics the end-user is seeing from these 
devices and challenging for the practitioner to interpret the 
meaning of the data generated by these devices. Improv-
ing transparency in development and validation of these 
metrics, along with better tailoring to individuals should 

increase the validity and reliability of these devices. While 
it is acknowledged that no technology or device performs 
perfectly under all circumstances, the breakdown in per-
formance of many wearable devices in certain real-world 
settings begs the question, are they more advanced tech-
nology or advanced marketing to the end user? Scientists 
and practitioners alike would do well to remember that 
good science is often not good marketing; and conversely 

Fig. 4   (continued)
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(and perhaps more importantly), good marketing is not 
always good science.
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