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Abstract

We report enantioselective one-carbon ring expansion of aziridines to make azetidines as a 

new-to-nature activity of engineered ‘carbene transferase’ enzymes. A laboratory-evolved variant 

of cytochrome P450BM3, P411-AzetS, not only exerts unparalleled stereocontrol (99:1 er) over 

a [1,2]-Stevens rearrangement, but also overrides the inherent reactivity of aziridinium ylides, 

cheletropic extrusion of olefins, to perform a [1,2]-Stevens rearrangement. By controlling the 

fate of the highly reactive aziridinium ylide intermediates, these evolvable biocatalysts promote a 

transformation which cannot currently be performed using other catalyst classes.
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Ring-size manipulation has emerged as a powerful strategy to convert readily available 

cyclic structures into ring-expanded or ring-contracted compounds that are more difficult 

to synthesize using conventional means.1 In particular, “cut and sew” strategies relying on 

transition-metal catalyzed oxidative addition across C–C bonds are useful approaches for 

insertion of carbon monoxide or two-carbon fragments such as olefins and alkynes to effect 

one- or two-carbon ring expansions, respectively.2 For nitrogen-containing heterocycles, 

one possible strategy for ring expansion is to induce a [1,2]-Stevens rearrangement by 

formation of an ammonium ylide, resulting in one-carbon ring expansion.3 Pioneering works 

by Hata, West, and Couty demonstrated this approach for 4- to 5-membered ring expansions, 

wherein treatment of an azetidine with a diazo compound in the presence of a copper 

catalyst provided facile access to the corresponding pyrrolidine.4 Conceptually, carbene 

transfer followed by an intramolecular [1,2]-Stevens rearrangement complements “cut 

and sew” reactions for non-carbonylative, one-carbon homologation of nitrogen-containing 

compounds. Given the prevalence of nitrogen heterocycles across numerous sectors of 

the chemical industry, especially pharmaceuticals,5 extending these methodologies to other 

saturated N-heterocycles would represent a new approach for the synthesis of important 

chiral amine building blocks.

Despite their promising properties,6 azetidines are underrepresented relative to closely 

related nitrogen-containing heterocycles: this is due to a lack of robust synthetic methods 

to access these species,7–8 especially using asymmetric catalysis.9–10 Application of a 

ring-expansion strategy for the asymmetric, one-carbon homologation of readily prepared 

aziridines via carbene insertion would be an attractive new entry toward the enantioselective 

synthesis of azetidines (Figure 1). However, this approach comes with two major selectivity 

challenges. The first is the innate reactivity of the intermediate aziridinium ylides, 

which undergo highly favorable cheletropic extrusion of olefins in many contexts.11 

Schomaker and others have demonstrated that these reactive intermediates can be harnessed 

in [2,3]-Stevens rearrangements and other ring-opening reactions.12 However, we are 

unaware of any examples of a one-carbon ring expansion of aziridines through a [1,2]-

Stevens rearrangement strategy. Secondly, the diradical mechanism of the [1,2]-Stevens 

rearrangement13 has made it a challenging reaction class for asymmetric catalysis: few 

asymmetric variations have been reported.14 Enantiopure quaternary ammonium salts can 

undergo [1,2]-Stevens rearrangements with N-to-C chirality transfer;15 however, escape of 
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the radical pair from the solvent cage is often competitive with radical recombination,16 and 

erosion of enantiopurity is often observed. General strategies for stereocontrol over these 

rearrangements are an unmet challenge facing the field of asymmetric catalysis.

The joint selectivity challenges presented by the asymmetric one-carbon ring expansion 

of aziridines into azetidines requires a potential catalyst not only to select for the 

[1,2]-Stevens rearrangement in preference to cheletropic extrusion of olefins, but also 

to exert enantiocontrol over potential radical intermediates. Nature utilizes ring-size 

manipulation in the biosynthesis of natural products, with common strategies for biocatalytic 

ring expansion including oxidative ring expansions17 and carbocation rearrangements.18 

Furthermore, enzymes derived from cytochrome P450BM3, such as cytochromes P411, and 

other hemoproteins have emerged as powerful catalysts for carbene transfer reactions,19 

and formation of strained rings such as cyclopropanes and cyclopropenes with excellent 

stereoselectivities has been reported.20 The most common reactions of enzymatic iron 

carbenoid intermediates are additions across π-systems19–20 or X–H bond insertions:21–22 

biocatalytic C–N bond insertion through Stevens rearrangements of any kind have yet to 

be reported. We envisioned that a carbene transfer enzyme could potentially achieve the 

requisite chemo- and stereoselection necessary to perform this challenging reaction (Figure 

1).

We initiated our studies by screening a panel of hemoproteins for the model reaction of 

benzyl aziridine-1-carboxylate 1 with ethyl diazoacetate (EDA) as a carbene precursor to 

provide enantioenriched azetidine 2 (Table 1) in suspensions of Escherichia coli (E. coli) 
whole cells. We were delighted to find that a variant of P411BM3-CIS23 with the additional 

mutations P248T, I263G, and L437F (“Parent F2”), provided the product with 3.6% yield, 

73 total turnover numbers (TTNs), and 90:10 er favoring the (S)-enantiomer (Entry 1). 

Parent F2 is derived from hemoproteins originally engineered for the cyclopropanation of 

heteroatom-substituted olefins24 and is 17 mutations away from its wild-type progenitor, 

cytochrome P450BM3 from Bacillus megaterium, which natively catalyzes the oxidation of 

long-chain fatty acids.25 Control experiments revealed that hemin is unable to catalyze 

this reaction (see SI for details). Further control reactions indicated that the observed 

formation of the ring-opened hydrolysis product of 1 is not an enzyme-dependent process. 

No other aziridine-derived byproducts (e.g., cheletropic extrusion products11, carbene 

insertion into the benzylic C–H21c, or α-amino C–H bonds of the substrate21e) were 

identified, including a second ring expansion to form the corresponding pyrrolidine.4 

Further experiments demonstrated that neither 2 nor the unsubstituted benzyl azetidine-1-

carboxylate underwent ring expansion under the disclosed conditions. Chemoselectivity for 

aziridine ring expansion over azetidine ring expansion in this system can be attributed to the 

increased pyramidalization at nitrogen observed for acylaziridines and related compounds, 

which increases their N-nucleophilicity relative to less strained amides.26

Encouraged by this promising initial activity and high enantioselectivity, we chose Parent 

F2 as a starting point for directed evolution to improve enzyme performance using iterative 

site-saturation mutagenesis (SSM) of residues located in the heme domain (Entries 2–11), 

screening for improved azetidine yield by gas chromatography. Sites were selected for 

mutagenesis based on success in previous directed evolution campaigns of P450BM3 as 
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well as prior knowledge of residues responsible for substrate binding and catalysis in the 

heme domain of this protein scaffold.17a Ten beneficial mutations were identified during 

this campaign, resulting in a more efficient ‘azetidine synthase’ (P411-AzetS) with a net 

improvement of 16-fold in TTN and improved enantioselection (99:1 er). With P411-AzetS 

in hand, we next examined the impact of varying the reaction conditions on the product 

yield (Entries 12–17). Notably, increasing the scale from 4 μmol to 100 μmol resulted in 

an increase in the reaction yield. When the concentrations of 1 and EDA were doubled 

to 20 mM and 30 mM, respectively, a decrease in reaction yield was observed (although 

TTN increased). The ring expansion reaction also proceeded in clarified cell lysate, albeit 

with decreased yields when compared to analogous reactions performed with whole-cell 

suspensions. Lastly, decreasing the reaction temperature from 22 to 4 °C did not have a 

meaningful impact on the reaction yields when run in whole-cell suspensions.

Next, we sought to examine the substrate scope of this reaction and whether or not the 

new selectivities we observed could be extended to other substrates (Scheme 1). When 

this reaction was run at 0.5-mmol scale, azetidine 2 could be formed in 75% yield, 1490 

TTN, 67% isolated yield, and 99:1 er. Other aromatic groups could be used in lieu of 

a phenyl group with uniformly high enantioselection observed in all cases. Notably, a 

thiophene-bearing aziridine could undergo chemoselective ring expansion to azetidine 3 

with no observed cyclopropanation byproducts. This selectivity is notable not only because 

thiophenes are known to react with EDA-derived metal carbenoids under mild conditions,27 

but also because Parent F2 was originally engineered to perform cyclopropanation of 

heteroatom-substituted olefins.24 Fluorine substituents were also tolerated on the arene ring 

at the para, meta, and ortho positions to furnish fluorinated products 4–6. In addition to 

EDA, other diazoacetate compounds could participate in one-carbon ring expansion with 

at least 99:1 er (7–8). When methyl diazoacetate was used as the carbene precursor to 

yield 9, a notable decrease in er (81:19) was observed. One hypothesis for this decrease in 

enantiopurity is that the smaller aliphatic chain allows for greater conformational freedom 

of the iron porphyrin carbene intermediate or the putative diradical intermediate. This 

explanation is consistent with prior work on enzyme-mediated carbene transfer reactions 

using perfluoroalkyl-stabilized diazo compounds as carbene precursors, where the substrate 

chain length has a profound influence on the absolute stereochemical configuration of the 

reaction product.21e The reaction could also be scaled up from 0.5-mmol scale to 10-mmol 

scale to furnish 2 in 1220 TTN, 61% yield, and 99:1 er with an isolated yield of 1.44 g (55% 

isolated yield), demonstrating that gram-scale production of enantioenriched azetidines is 

viable using this platform and that extension of this activity could be a powerful tool for the 

asymmetric synthesis of chiral heterocycles.

The current P411-AzetS lineage performs poorly with other substrate classes. Aziridine 

substrates with substituents on the carbon backbone of the ring were unable to undergo 

ring expansion due to their pronounced capacity for ring opening by hydrolysis relative 

to unsubstituted aziridine rings. This limitation also prevented N-alkyl or N-aryl aziridines 

from serving as viable substrates. Other classes of nitrogen protecting groups (e.g., amides 

and sulfonamides) demonstrated poor activity; one explanation is that the decreased N-

nucleophilicity of these species hinders their ability to form aziridinium ylides. Finally, 
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other carbamate-protecting groups (e.g., -Boc, -Alloc, and -CO2Me) did not form the desired 

products, suggesting that the arene may be necessary for proper substrate binding with this 

lineage of enzymes. With respect to the diazo coupling partner, diazoacetates were uniquely 

effective: when other diazo coupling partners were subjected to the reaction conditions, 

only unreacted diazo starting materials or dimerization products were recovered. Efforts 

to expand the observed, unprecedented reactivity and selectivity to the synthesis of other 

classes of azetidines are ongoing.

A hypothetical mechanism for the one-carbon ring expansion of aziridines is shown 

in Figure 2. The reaction of a hemoprotein with a suitable carbene precursor forms 

an electrophilic iron carbenoid intermediate, which could be trapped by a sufficiently 

nucleophilic aziridine. Ammonium ylides are commonly proposed as intermediates in 

hemoprotein-catalyzed N–H insertion reactions,22 and Schomaker has reported numerous 

examples where carbamate-protected aziridines react with metal-carbenoid electrophiles to 

form aziridinium ylides.11,12c–f At the present time, it is not clear whether this intermediate 

would exist as a “free” or metal-bound ylide, although computational analysis of enzymatic 

N–H insertion reactions suggests that ammonium ylide intermediates react after dissociation 

from the iron center.22f Finally, the aziridinium ylide could undergo the desired [1,2]-

Stevens rearrangement preferentially over cheletropic extrusion of ethylene, liberating the 

desired product and regenerating the hemoprotein. We envisioned that the active site of 

an enzyme could mimic solvent caging effects, which are known to exert selectivity over 

radical recombination in [1,2]-Stevens rearrangements, to achieve asymmetric induction 

during ring expansion.15–16 Such effects may also explain why free hemin is unable to 

catalyze the reaction in the absence of the specific confinement provided by the active sites 

of this enzyme lineage. Additionally, hemoproteins demonstrate high stereoselectivity in 

radical reactions, both in their native activity28 as well as in new-to-nature activity cultivated 

through protein engineering,29 lending further support to this hypothesis.

In summary, we have demonstrated unprecedented hemoprotein-catalyzed [1,2]-Stevens 

rearrangement in the context of a one-carbon ring expansion of aziridines to azetidines. 

This system not only represents a rare example of a highly enantioselective [1,2]-Stevens 

rearrangement of ammonium ylides, but also exhibits unprecedented selectivity for the 

[1,2]-Stevens rearrangement of aziridinium ylides over cheletropic extrusion of ethylene. 

We are optimistic that observed selectivities can be extended to other types of [1,2]-Stevens 

rearrangements, providing the grounds for future work in this area toward the synthesis of 

enantioenriched heterocycles and other chiral amines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Classification of enzyme-mediated carbene transfer reactions for various bond 

disconnections.
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Figure 2: 
Possible catalytic cycle for one-carbon ring expansion of aziridines to furnish chiral 

azetidines, with cheletropic extrusion of ethylene as a possible side reaction. The ammonium 

ylide may also remain iron-bound.
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Scheme 1: 
Substrate Scopea

a Reactions were performed on 0.5-mmol scale unless otherwise specified. Analytical 

yields and TTN were determined by GC-FID. Yields for isolated and purified material 

are designated in parentheses. The er was determined by Chiral GC. For 0.5-mmol scale 

reactions, all numbers reported represent the average of two trials. For the 10-mmol scale 

reaction, the reported numbers represent one run.
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Table 1:

Lineage and Reaction Optimization
a

Entry Variant Mutations Relative to Prior Generation TTN Yield (%) e.r.

1 Parent F2 None 73 3.6 90:10

2 F2.1 G263Y 70 3.5 75:25

3 F2.2 T327V 126 6.3 56:44

4 F2.3 A330T 193 9.6 59:41

5 F2.4 H266P 394 19.7 62:38

6 F2.5 M177Q 699 34.9 94:6

7 F2.6 T436G 945 47.3 93:7

8 F2.7 L233F 997 49.8 94:6

9 F2.8 T149M 1040 52.0 99:1

10 F2.9 R47Q 1190 59.7 99:1

11 P411-AzetS M118K 1200 59.9 99:1

Entry Change from Conditions Above TTN Yield (%) e.r.

12 None 1580 79.1 99:1

13 20 mM [1]; 30 mM [EDA] 2200 55.0 99:1

14 Lysate 1090 54.4 99:1

15 Lysate; 20 mM [1]; 30 mM [EDA] 1570 39.3 99:1

16 4 °C 1610 80.2 99:1

17 Lysate; 4 °C 1380 68.7 99:1

a
Reactions were performed on the designated scale and run for 16 h with 10 mM of 1, 15 mM of EDA, and 5 μM of protein. TTN and yields 

were determined via GC analysis of crude reaction mixtures relative to an internal standard and represent the average of three experiments. The 
enantiomeric ratio (er] of the product was determined by chiral GC.
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