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Abstract

Scientific research is shedding light on the interaction of the gut microbiome with the human

host and on its role in human health. Existing machine learning methods have shown great

potential in discriminating healthy from diseased microbiome states. Most of them leverage

shotgun metagenomic sequencing to extract gut microbial species-relative abundances or

strain-level markers. Each of these gut microbial profiling modalities showed diagnostic

potential when tested separately; however, no existing approach combines them in a single

predictive framework. Here, we propose the Multimodal Variational Information Bottleneck

(MVIB), a novel deep learning model capable of learning a joint representation of multiple

heterogeneous data modalities. MVIB achieves competitive classification performance

while being faster than existing methods. Additionally, MVIB offers interpretable results. Our

model adopts an information theoretic interpretation of deep neural networks and computes

a joint stochastic encoding of different input data modalities. We use MVIB to predict

whether human hosts are affected by a certain disease by jointly analysing gut microbial

species-relative abundances and strain-level markers. MVIB is evaluated on human gut

metagenomic samples from 11 publicly available disease cohorts covering 6 different dis-

eases. We achieve high performance (0.80 < ROC AUC < 0.95) on 5 cohorts and at least

medium performance on the remaining ones. We adopt a saliency technique to interpret the

output of MVIB and identify the most relevant microbial species and strain-level markers to

the model’s predictions. We also perform cross-study generalisation experiments, where we

train and test MVIB on different cohorts of the same disease, and overall we achieve compa-

rable results to the baseline approach, i.e. the Random Forest. Further, we evaluate our

model by adding metabolomic data derived from mass spectrometry as a third input modal-

ity. Our method is scalable with respect to input data modalities and has an average training

time of < 1.4 seconds. The source code and the datasets used in this work are publicly

available.
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Author summary

The gut microbiome can be an indicator of various diseases due to its interaction with the

human system. Our main objective is to improve on the current state of the art in micro-

biome classification for diagnostic purposes. A rich body of literature evidences the clini-

cal value of microbiome predictive models. Here, we propose the Multimodal Variational

Information Bottleneck (MVIB), a novel deep learning model for microbiome-based dis-

ease prediction. MVIB learns a joint stochastic encoding of different input data modalities

to predict the output class. We use MVIB to predict whether human hosts are affected by

a certain disease by jointly analysing gut microbial species-relative abundance and strain-

level marker profiles. Both of these gut microbial features showed diagnostic potential

when tested separately in previous studies; however, no research has combined them in a

single predictive tool. We evaluate MVIB on various human gut metagenomic samples

from 11 publicly available disease cohorts. MVIB achieves competitive performance com-

pared to state-of-the-art methods. Additionally, we evaluate our model by adding metabo-

lomic data as a third input modality and we show that MVIB is scalable with respect to

input feature modalities. Further, we adopt a saliency technique to interpret the output of

MVIB and identify the most relevant microbial species and strain-level markers to our

model predictions.

This is a PLOS Computational BiologyMethods paper.

Introduction

The human microbiota consist of various microbial communities that live in and on our bod-

ies. These communities are composed of different species of bacteria, archaea, protists, fungi

and viruses [1]. Together, they constitute complex and diverse ecosystems that interact with

the human host. When we refer to microbiota together with their genomic information, we

use the termmicrobiome. Previous research estimated that the genes in the gut microbiome

alone outnumber the human genes by two orders of magnitude [2]. Recent studies showed

that the human microbiota play key roles in human health state [3]. The presence of micro-

biota benefits the host as they enable important chemical processes, e.g., they maintain homeo-

stasis, develop the immune system and help in harvesting various nutrients that are otherwise

inaccessible [3, 4]. Previous research reported that altered states of microbiota can contribute

to carcinogenesis and affect therapeutic response in cancer patients [5]. [6] reviewed the role

of microbiota in human health and disease and anticipated a potential use of microbiota analy-

sis for disease diagnosis and prediction.

Over the past two decades, several large-scale microbial profiling projects were established,

such as the Human Microbiome Project [7] and the MetaHIT (Metagenomics of the Human

Intestinal Tract) project [8]. These projects aimed at investigating the nature of the microbial

components of the human genetic and metabolic landscape and their link to various diseases.

However, despite various attempts to develop unified best practices, truly standardised

approaches in microbiome research have not yet been established [9–11]. Therefore, we are in

need for various statistical and machine learning models that leverage high throughput meta-

genomic data with supervised and unsupervised learning techniques.

PLOS COMPUTATIONAL BIOLOGY Microbiome-based disease prediction with multimodal variational information bottlenecks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010050 April 11, 2022 2 / 27

https://doi.org/10.1371/journal.pcbi.1010050


Shotgun metagenomic sequencing allows comprehensive sampling of all genes in all micro-

organisms that are present in a given sample. This technology enables researchers to examine

microbial diversity and to detect their abundances in different environments. In comparison

to 16S rRNA gene sequencing technology, shotgun metagenomic sequencing provides higher

resolution profiles at species and strain levels. Existing machine learning methods leverage

shotgun metagenomics to extract gut microbial species abundance or strain-level marker pro-

files to differentiate healthy from diseased human hosts. Both of these gut microbial features

showed diagnostic potential [12, 13] and have been used separately in previous research for

microbiome-based disease prediction.

Current microbiome-based disease prediction approaches either use species-relative abun-

dance or strain-level marker profiles. [14, 15] solve the disease prediction task by applying

deep learning to abundance profiles from human gut microbiome. MetAML [12] solves the

disease prediction task by applying classical machine learning algorithms to either abundance

or marker profiles. MicroPheno [16] sub-samples 16S rRNA sequences via bootstrapping,

then computes k-mer representations of the sub-sampled sequences, after that it uses the pro-

duced k-mer representations for disease prediction. DeepMicro [17] leverages deep represen-

tation learning with autoencoders to compute encodings of either microbiome species

abundance or marker profiles, i.e., it transforms high-dimensional microbiome data into a

low-dimensional representation, then it applies classical machine learning classification mod-

els on the generated representations for disease prediction. [18] solves the prediction of cardio-

vascular disease by using supervised learning on taxonomic features, i.e., microbial taxa.

PopPhy-CNN [19] represents microbial phylogenetic tree and relative abundances of micro-

bial taxa in a single matrix and solves disease prediction via a convolutional neural network

(CNN). The SIAMCAT R package [20] provides a toolbox for statistical inference of associa-

tions between microbial communities and host phenotypes. Its feature matrix consists of

abundances of microbial taxa, genes, or pathways across all samples, in addition to optional

meta-variables, such as demographics, lifestyles, donor clinical records.

Also related to our work is [21], which explores various statistical methodologies for the

analysis of multi-table heterogeneous data for microbiome research. This work combines the

analysis of body mass composition information and 16S rRNA abundances in a single compu-

tational framework, but does not specifically address disease prediction.

A rich body of literature evidences the clinical value of microbiome predictive models, e.g.,

[22]. Hence, our main objective is to improve the current state of the art in microbiome-based

disease classification for diagnostic purposes by combining multimodal data sources. To the

best of our knowledge, none of the existing approaches is capable of solving this task by effi-

ciently combining features from heterogeneous data modalities. Here, we present the Multi-

modal Variational Information Bottleneck (MVIB), a novel multimodal generalisation of the

Deep Variational Information Bottleneck (Deep VIB) [23]. MVIB is a microbiome-disease

classification method. It leverages the theory of the Information Bottleneck (IB) [24] to learn a

meaningful joint encoding from different input data modalities, e.g. species-relative abun-

dance, strain-level marker profiles and metabolomic data. The joint encoding learned by

MVIB is maximally compressive of the heterogeneous input data modalities and at the same

time is maximally expressive of the target class, i.e. diseased or healthy human host. By design,

MVIB is scalable with respect to input data modalities.

We evaluate MVIB on 11 different metagenomic datasets from human gut microbiome. In

this paper, we show how MVIB performs when combining species-relative abundances and

strain-level markers. Additionally, we demonstrate how MVIB works in a trimodal setting by

adding metabolomic data as a third modality. We benchmark MVIB against state-of-the-art

methods, i.e. DeepMicro, PopPhy-CNN and Random Forest. Additionally, we adopt a saliency
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technique derived from computer vision literature [25] to interpret the output of MVIB and

identify most discriminative microbial species and strain-level markers with respect to various

human diseases. Furthermore, we perform various transfer learning [26, 27] experiments, as

well as cross-study generalisation experiments where we train and test MVIB on different

cohorts of the same disease.

Materials and methods

Datasets

For evaluation and comparative benchmark analysis, we consider publicly available human

gut metagenomic samples from 11 different cohorts that cover 6 different diseases. These dis-

eases are inflammatory bowel disease (IBD), type 2 diabetes in Europe (women) (EW-T2D)

and in China (women and men) (C-T2D), obesity (Obesity, Obesity-Joint), liver cirrhosis (Cir-
rhosis), colorectal cancer (Colorectal, Colorectal-EMBL, Early-Colorectal-EMBL, Colorectal-
Metabolic) and chronic high blood pressure (Hypertension). The names in parentheses indicate

the cohort identifiers that we used in this work. The number of affected and control subjects in

each cohort are listed in Table 1.

We obtained pre-processed human gut metagenomic data for the IBD, EW-T2D, C-T2D,

Obesity, Cirrhosis and Colorectal cohorts from the MetAML repository [12]. We also consid-

ered five additional disease cohorts, i.e. Obesity-Joint [12, 31–33], Colorectal-EMBL [35]

(cohorts F and G), Early-Colorectal-EMBL [35], Colorectal-Metabolic [37] and Hypertension

[36]. For the latter cohorts, we performed the data pre-processing steps highlighted in Fig 1A

and 1B and described later in detail in Section Pre-processing.

Early-Colorectal-EMBL presents 96 affected samples from the Colorectal-EMBL dataset,

where 52 subjects are labelled as “early stage” (colorectal cancer stages 0, I and II) and 44 are

labelled as “late stage” (stages III and IV). The Hypertension cohort presents samples from

Chinese individuals with pre-hypertension (pHTN) or primary hypertension (HTN), as well

as healthy control samples [36]; we consider both pHTN and HTN subjects (156 in total) as

affected. The Colorectal dataset from MetAML repository is a subset of Colorectal-EMBL,

therefore we create ΔColorectal = Colorectal-EMBL − Colorectal to address the samples which

only belong to the larger dataset. Similarly, Obesity is a subset of Obesity-Joint, hence we create

ΔObesity = Obesity-Joint − Obesity.

Table 1. Datasets overview.

Dataset name Samples Controls Affected Data source Modalities

IBD 110 85 25 [12], [8] Abundance, Markers

EW-T2D 96 43 53 [12], [29] Abundance, Markers

C-T2D 344 174 170 [12], [30] Abundance, Markers

Obesity 253 89 164 [12], [31] Abundance, Markers

Obesity-Joint 331 117 214 [12], [31], [32], [33] Abundance, Markers

ΔObesity 78 28 50 [32], [33] Abundance, Markers

Cirrhosis 232 114 118 [12], [34] Abundance, Markers

Colorectal 121 73 48 [12], [35] (cohort F) Abundance, Markers

Colorectal-EMBL 199 103 96 [35] (cohorts F/G) Abundance, Markers

ΔColorectal 78 30 48 [35] (cohorts F/G) Abundance, Markers

Early-Colorectal-EMBL 96 52 44 [35] (cohorts F/G) Abundance, Markers

Hypertension 196 40 156 [36] Abundance, Markers

Colorectal-Metabolic 347 127 220 [37] Abundance, Markers, Metabolites

https://doi.org/10.1371/journal.pcbi.1010050.t001
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Fig 1. Full workflow. (A) The raw data, i.e., shotgun metagenomic sequencing data of the human gut microbiome. (B) For pre-processing, we leverage

MetaPhlAn2 and MetAML to extract species-relative abundances and strain-level markers. We consider two pre-processing schemes to produce two

different dataset collections, default (D) and joint (J). (C) A high-level representation of the probabilistic encoders of the MVIB model. (D) The Product

of Experts computes a single joint posterior i.e. z; the joint posterior z is sampled with the reparametrisation trick [28]. (E) A logistic regression decoder

estimates the probability of whether a subject is affected by a certain disease. (F, G) The gradients of the output class are computed with respect to (w.r.t)

the input vectors and used to compute saliency maps.

https://doi.org/10.1371/journal.pcbi.1010050.g001
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In addition to the datasets discussed so far, which present two data modalities, we per-

formed experiments on a trimodal dataset. To this end, we included metabolite profiles in

addition to species-relative abundance and strain-level marker profiles. We extracted 347 sam-

ples with both metabolomic and metagenomic data from [37], which proposes a large cohort

of participants who underwent colonoscopy to assess taxonomic and functional characteristics

of the gut microbiota and metabolites. The metabolomic data was extracted by means of capil-

lary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). In this dataset, 220 sam-

ples belong to subjects affected by colorectal cancer, polypoid adenomas or intramucosal

carcinomas, in addition to more advanced lesions. The remaining 127 samples belong to

healthy individuals. We refer to this trimodal dataset as Colorectal-Metabolic.
All datasets include ground truth labels (i.e., healthy or affected) which refer to the time the

microbiome samples were collected. Hence, in this work, we do not predict a future health

status.

Pre-processing

We run all metagenomic samples that were not taken from [12] (i.e. Colorectal-EMBL, Early-

Colorectal-EMBL, Obesity-Joint, Hypertension and Colorectal-Metabolic datasets) through a

quality control and MetaPhlAn2-based annotation pipeline. This allowed us to get species-rel-

ative abundance and strain-level marker profiles in the same format as the datasets taken from

the MetAML repository [12].

We downloaded whole-genome shotgun metagenomic sequencing data from the bioproject

repositories of the National Center for Biotechnology Information (NCBI). Raw read data for

each sequencing run were converted into FASTQ format using fastq-dump version 2.8.0

(NCBI SRA Toolkit [38]) and aggregated by sample identifiers. Afterwards, we used Knead-

data version 0.7.4 [39] with default parameters to perform quality control of the sequencing

reads and remove reads of length< 60 base pairs (bp). Finally, we run MetaPhlAn2 (Metage-

nomic Phylogenetic Analysis) [40] for profiling the compositions of microbial communities

from the quality-controlled data. MetAML dataset_selection.py [12] was used to

leave only species-level information in the abundance profiles. Obtained species-relative

abundances and strain-level markers make up the feature vectors of our machine learning

model.

We created two collections of cohort datasets, i.e. default and joint. Each collection

includes all the cohorts. The datasets in the default (D) collection are obtained with the

MetaPhlAn2+MetAML pre-processing described above. In the joint (J) collection, species

abundances and strain-level markers are homogeneous across all datasets. We achieved this

by taking the union of all features from the various datasets. This guarantees that species

abundance and strain-level marker profiles have the same dimensionality across cohorts. We

created the joint collection for transfer learning (Section Transfer learning) and cross-study

generalisation (Section Cross-study generalisation) experiments. We applied feature normali-

sation to the final sets of species abundances in both collections to obtain species-relative

abundances 2 R½0;1�. The dimensionality of the species abundance feature vectors is < 103.

The strain-level marker profiles are represented by a vector of binary variables, where 0

indicates the absence of a certain strain and 1 indicates its presence. The dimensionality of the

strain-level markers feature vectors is < 105.

The multimodal variational information bottleneck

Let Y be a random variable representing a ground truth label associated with a set of multi-

modal input random variables X1, . . ., XM. In order to provide a more compact notation, let us
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represent the collection of the available data modalities as a data point X = {Xi|ith modality pres-
ent}. Let Z be a stochastic encoding of X coming from an intermediate layer of a deep neural

network and defined by a parametric encoder p(z|x; θ) representing the upstream part of such

neural model. For the rest of this manuscript, we adopt the following notation: X, Y, Z are ran-

dom variables; x, y, z are multidimensional instances of random variables; f(�; θ) are functions

parametrised by a vector of parameters θ; S represents a set.

Following the information bottleneck approach [24], our goal consists in learning an

encoding Z which is (a) maximally informative about Y and (b) maximally compressive about

X. Following an information theoretic approach, objective (a) implies maximising the mutual

information I(Z, Y; θ) between the encoding Z and the target Y, where:

IðZ;Y; θÞ ¼
Z

pðz; yjθÞ log
pðz; yjθÞ
pðzjθÞpðyjθÞ

dy dz : ð1Þ

A trivial solution for maximising Eq 1 would be the identity Z = X. This would ensure a

maximally informative representation, but (b) places a constraint on Z. In fact, due to (b), we

want to “forget” as much information as possible about X. This leads to the objective:

max
θ
RIBðθÞ ¼ IðZ;Y; θÞ � bIðZ;X; θÞ ; ð2Þ

where β� 0 is a Lagrange multiplier. The first term on the right hand side of Eq 2 causes Z to

be predictive of Y, while the second term constraints Z to be a minimal sufficient statistics of

X. β controls the trade-off.

As derived in [23] for the Deep Variational Information Bottleneck (Deep VIB), assuming

q(y|z) and r(z) are variational approximations of the true p(y|z) and p(z), respectively, Eq 2 can

be rewritten as:

JVIB ¼
1

N

XN

n¼1

E
ϵ�pðϵÞ
½� log qðynjf ðxn; ϵÞÞ� þ bKL½pðZjxnÞ; rðZÞ� ; ð3Þ

where ϵ � N ð0; IÞ is an auxiliary Gaussian noise variable, KL is the Kullback-Leibler diver-

gence and f is a vector-valued parametric deterministic encoding function (in this work, a neu-

ral network). The introduction of ϵ consists in the reparameterisation trick [28], which allows

to write p(z|x; θ)dx = p(ϵ)dϵ, where z = f(x, ϵ) is now treated as a deterministic variable. This

formulation allows the noise variable to be independent of the model parameters. This way, it

is easy to compute gradients of the objective in Eq 3 and optimise via backpropagation. In this

work, we let the variational approximate posteriors be multivariate Gaussians with a diagonal

covariance structure z � pðzjxÞ ¼ N ðμ;σ2IÞ; a valid reparameterisation is z = μ + σϵ.

We generalise the formulation of the Deep VIB objective of Eq 3 by considering that X is a

collection of multimodal random input variables s.t. X = {Xi|ith modality present}. In light of

this, the posterior p(Z|x) of Eq 3 consists actually in the joint posterior p(Z|x1, . . ., xM), condi-

tioned by the jointM available data modalities. Following the approach proposed for the Mul-

timodal Variational Autoencoder [41], assuming conditional independence between the

various modalities conditioned on Z and approximating p(Z|xi) with qðZjxiÞ ¼ ~qðZjxiÞpðZÞ,
where ~qðZjxiÞ is the stochastic encoder of the ith data modality and p(Z) is a prior, the joint

posterior can be expressed as a product of single-modality posteriors:

pðZjx1; . . . ; xMÞ /
QM
i¼1
pðZjxiÞ

QM� 1

i¼1
pðZÞ

�

QM
i¼1
½~qðZjxiÞpðZÞ�
QM� 1

i¼1
pðZÞ

¼ pðZÞ
YM

i¼1

~qðZjxiÞ : ð4Þ
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The formulation derived from Eq 4 is addressed as a product of experts (PoE) (see Fig 1D).

When the involved probability distributions are Gaussian, the PoE acquires a simple analytical

solution, as the product of Gaussian experts is itself a Gaussian [42]. We can now formulate

the objective of the Multimodal Variational Information Bottleneck:

JMVIB ¼
1

N

XN

n¼1

E
ϵ�pðϵÞ
½� log qðynjf ðx

1

n; . . . ; xMn ; ϵÞÞ� þ bKL½pðZÞ
YM

i¼1

~qðZjxinÞ; rðZÞ� : ð5Þ

Implementation details

In this work, there are two main data modalities: the species-relative abundance profiles and

the strain-level marker profiles. For each modality, the dedicated stochastic encoder has the

form ~qðzjxÞ ¼ N ðf me ðxÞ; f
s
e ðxÞÞ (see Fig 1C). fe is a multi-layer perceptron (MLP). For abun-

dance profiles, the MLP has 2 layers of the form input dimension—input dimension/2—input
dimension/2, followed by two parallel layers which output 2 vectors of size K for μ and σ. K is

the size of the bottleneck, i.e. the dimension of Z. For a more stable computation, we let f se ðxÞ
model the logarithm of the variance log σ2. For marker profiles, the MLP has 2 layers of the

form input dimension/2—1024—1024, followed by two parallel layers which output 2 vectors

of size K for μ and σ. SiLU [43] activation functions are used. 0.4 drop-out is used at training

time.

As described later, experiments on the Colorectal-Metabolic dataset demand a third addi-

tional stochastic encoder for the metabolite profiles. For this data modality, the same encoder

architecture adopted for the abundance profiles is used.

The decoder consists in a logistic regression model q(y|z) = σ(fd(z)), where σ(�) is the logistic

sigmoid function and fd(z) = wT z + b (see Fig 1E). This implements the binary classification. y
models the diagnosis label for a given disease: sick or healthy.

In Eq 5, r(Z) and p(Z) are treated as K-dimensional spherical Gaussian distributions,

rðzÞ ¼ pðzÞ ¼ N ð0; IÞ. The latent dimension K of the encoding is set to 256. β is set to 10−5.

The networks are trained using the Adam optimiser, with a learning rate of 10−4 and a L2

weight decay with λ = 10−5. The batch size is set to 256. The training is performed for 200

epochs and, in order to avoid overfitting, the best model is selected by saving the weights cor-

responding to the epoch where the area under the curve (AUC) of the receiver operating char-

acteristic (ROC) is maximum on the validation set (see Section Validation framework and

performance evaluation).

All experiments were performed on a CentOS Linux 8 machine with NVIDIA GeForce

RTX 2080 Ti GPUs and CUDA 10.2 installed, with the exception of the transfer learning

experiments (see Section Transfer learning), which were performed with an NVIDIA TITAN

RTX GPU. Algorithms are implemented in Python 3.6 using PyTorch [44] version 1.7; code is

publicly available at https://github.com/nec-research/microbiome-mvib.

Extending the MVIB objective with the triplet margin loss

The MVIB objective function proposed in Eq 5 consists of two terms: a supervised negative

log-likelihood loss and a KL divergence which acts as a regulariser. As presented in Section

Results, it was empirically observed that extending the JMVIB of Eq 5 with an additional triplet

margin loss [45] term can lead to a more accurate predictor on various disease datasets.

The triplet margin loss was first introduced in the field of computer vision [45]. The under-

lying idea consists in explicitly enforcing the latent representation of an input sample (e.g. an
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image, or a vector) to be close to the latent representations of the samples that belong to the

same class, and distant from the latent representations of samples that belong to a different

class. The concept of closeness depends on the nature of the latent space. In a Euclidean space,

the Euclidean distance can be used as distance metric.

Given a certain batch size B of samples on which the loss is meant to be computed, let B+ be

the number of sick samples and B− the number of healthy control samples. Let BT =min{B+,

B−}. From a batch of size B, we randomly sample BT sick samples and BT control samples with-

out repetitions (this implies that the smaller set of samples, either sick or control, will be fully

considered). These 2BT samples constitute the anchors of the triplet margin loss. We represent

the anchors with two sets: Aþ (which contains BT sick anchors) and A� (which contains BT
control anchors). For each anchor sample in Aþ and A� , we sample: (a) a subject of the same

class (addressed in this context as positive) and (b) a sample of the opposite class (addressed as

negative). In our implementation, this is obtained by shuffling the samples in the opposite-

class anchor set. This allows to constitute a set of positive samples Pþ (i.e. of the same class)

and a set of negative samples N þ (i.e. of the opposite class) for the sick anchors Aþ. Analo-

gously, a set of positive samples P� and a set of negative samples N � are obtained for the con-

trol anchors A� .

Samples contained in the P� set are healthy control subjects, while samples contained in

N � belong to sick ones. Analogously, samples contained in the Pþ set belong to sick subjects,

while samples contained in N þ come from heathy control ones. This is because, in the context

of the triplet margin loss, positive and negativemean of the same and of opposite ground truth

class, respectively.

We define the triplet margin loss as:

LTðA;P;N Þ ¼
X

xA 2 A;
xP 2 P;
xN 2 N

maxfkf me ðxAÞ � f
m

e ðxPÞk
2

2
� kf me ðxAÞ � f

m

e ðxNÞk
2

2
þ a; 0g ;

ð6Þ

where α is a tunable margin which we set to 1 and f me ðxÞ is the MLP that computes the mean of

~qðzjxÞ ¼ N ðf me ðxÞ; f
s
e ðxÞÞ (see Section Implementation details). It follows that, for our Aþ and

A� anchors sets, the triplet loss objective can be written as:

JT ¼ LTðAþ;Pþ;N þÞ þ LTðA� ;P� ;N � Þ : ð7Þ

Intuitively, the first term of the right hand side of Eq 7 encourages the encodings of sick

samples to be closer to each other in their K-dimensional Euclidean space and far away from

the encodings of healthy control samples. In the same fashion, the second term of the equation

encourages the encodings of healthy samples to be clustered in the same region of the latent

space and to be distant from the encodings of sick samples.

With the definition of the triplet margin loss objective of Eq 7, we can extend the MVIB

objective presented in Eq 5 and introduce the MVIB-T objective:

JMVIB� T ¼ JMVIB þ lTJT : ð8Þ

λT is a multiplying constant which we set to 1 for all experiments.

Full multimodal objective

For the training of MVIB, we adopt the same training paradigm proposed for the Multimodal

Variational Autoencoder [41]. The MVIB objective presented in Eq 5 assumes that allM data

modalities are present. This has the unfortunate consequence of not training the single-
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modality encoders ~qðzjxiÞ individually. This implies that the model cannot be used if certain

data modalities are not available at test time. In order to circumvent this limitation and allow

the MVIB to work at test time with missing data modalities, we need to compute the MVIB

objective for the combined data modalities, as well as for the individual modalities.

Eq 5 can be reformulated as a full multimodal objective, which allows the model to be opti-

mal in all multimodal and single-modality settings:

JMVIBðxAÞ þ JMVIBðxMÞ þ JMVIBðxA; xMÞ ; ð9Þ

where xA represents the species-relative abundance profiles and xM the strain-level marker

profiles. This extension holds also for the MVIB-T objective of Eq 8. For all experiments per-

formed in this work, the objective functions are computed in their full multimodal form, as

described in this section.

Validation framework and performance evaluation

With the goal of providing a non-biased estimate of the model’s classification performance, we

implemented a performance evaluation scheme inspired by DeepMicro [17]. We split each

dataset into training and test sets with a 8:2 ratio. In particular, for the IBD, EW-T2D, C-T2D,

Obesity, Cirrhosis and Colorectal datasets, we implemented the random training-test split

using the same random partition seeds used by DeepMicro; this ensures that our test samples

are the same ones considered by DeepMicro and allows a fair benchmark of the models’ per-

formances. The same procedure was adopted for Obesity-Joint, Colorectal-EMBL, Early-Colo-

rectal-EMBL, Hypertension and Colorectal-Metabolic too.

Considering only the training set, we performed a stratified 5-fold cross-validation and

used the validation sets to compute a validation ROC AUC score for selecting the epoch with

the best model parameters. The five best models obtained via the 5-fold cross-validation were

then tested on the left-out test set and their predictions were ensembled via a majority vote.

This procedure was repeated five times, each time with a different random partition seed, in

order to ensure that the five experiments were conducted with independent random training-

test splits. The resulting test performance metrics coming from the five independent experi-

ments were then averaged and their mean was used for comparing model performance.

Transfer learning

Motivated by the hypothesis that altered microbiome states caused by two different diseases

might in fact share some common patterns, we performed experiments following a transfer

learning paradigm [26, 27]. Iteratively, we first select a target disease from the set of considered

datasets. This allows to define a target domain DT ¼ fXT; pðXTÞg, where XT is the target fea-

ture space and p(XT) is the marginal distribution of the set of samples of the target dataset

XT ¼ fxiji 2 XT; i ¼ 1; . . . ;Ng. A target task T T ¼ fYT; f g is also defined, where YT is the

label space of the target dataset and f the decision function which is expected to be learned.

The target task shall therefore be interpreted as the prediction of the disease which we mostly

care about.

Merging the non-target datasets, we constitute a source domain and task ðDS; T SÞ. For the

source task, all sick subjects are treated equally and they are assigned a positive ground truth

label, independently on what pathology they actually have. We first train MVIB on the source

domain and task ðDS; T SÞ and fine-tune it on the target domain and task ðDT; T TÞ.

For the transfer learning experiments, we adopted the joint datasets collection, as the micro-

bial species and strain markers share the same positional indexes across the various datasets

and present the same dimensionality.
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As Colorectal-EMBL is an extension of the Colorectal dataset, and Obesity-Joint is an

extension of Obesity, applying the procedure described above would allow the model to

observe the samples shared by more than one dataset during both the source and the target

task. This would lead to biased results. Therefore, in the transfer learning experiments, ΔObe-

sity and ΔColorectal are considered during the source task instead of Obesity-Joint and Colo-

rectal-EMBL, respectively.

Cross-study generalisation

In order to further evaluate the generalisation capabilities of MVIB across different studies,

and motivated by the fact of having various datasets for the same disease, we performed cross-

study generalisation experiments. First, we identified the following ordered pairs of datasets:

(EW-T2D, C-T2D), (C-T2D, EW-T2D), (ΔObesity, Obesity), (ΔColorectal, Colorectal), (Obe-

sity, ΔObesity), (Colorectal, ΔColorectal). Then, for each pair, we trained MVIB on the first

source dataset, and tested it on the second target one. No fine-tuning was performed on the

test dataset.

Explaining predictions with saliency

Following the same approach proposed by [25], given a multimodal pair of feature vectors

ðxA
0
; xM

0
Þ, where xA represents the species-relative abundance profile and xM the strain-level

marker profile, we would like to rank the strain-level markers of xM and the microbial species

of xA based on their influence on the MVIB prediction. More formally, we compute the deri-

vate of the MVIB class prediction with respect to both input vectors xA and xM:

wA ¼
@qðyjf ðxA; xM; ϵÞÞ

@xA

�
�
�
�
xA

0

; wM ¼
@qðyjf ðxA; xM; ϵÞÞ

@xM

�
�
�
�
xM

0

; ð10Þ

where q(�) is the parametric probabilistic decoder of MVIB and f(�) represents its whole multi-

modal encoding block, following the same notation of Eq 5.

The magnitude of the derivatives presented in Eq 10 indicates which strain-level markers

and species-relative abundances need to be changed the least to affect the class score the most.

For each disease dataset, we compute the saliency maps for all samples correctly classified as

positive (i.e. sick) and compute their average. This allows to discover a ranking of the most

influential strain-level markers and microbial species for each disease dataset (see Fig 1F and

1G). The computation of saliency maps is extremely quick and it only requires a single back-

propagation pass.

Trimodal MVIB: Combining metabolomics and metagenomics

In order to further investigate the multimodal learning capabilities of MVIB, we performed tri-

modal experiments on the Colorectal-Metabolic dataset [37]. This dataset includes three data

modalities for all samples: species-relative abundance, strain-level marker and metabolite pro-

files. For training the model in the trimodal setting, the same full multimodal training para-

digm presented in Section Full multimodal objective was adopted. This allows to compute the

MVIB objective for all possible data modalities combinations, as well as for the individual

modalities.

In this trimodal setting, the objective function is computed in the following fashion:
X

m2M

JMVIBðx
mÞ þ

X

fm;ng2MM

JMVIBðx
m; xnÞ þ JMVIBðfx

mjm 2MgÞ ; ð11Þ
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where M ¼ fA;M;Metabolicg is the set of the three considered data modalities and MM ¼

ffm; ngjm; n 2Mg is the set of all possible (unordered) modality pairs. S1 Fig depicts the tri-

modal architecture of MVIB used for the experiments on the Colorectal-Metabolic dataset.

For the trimodal experiments, the learning rate has been set to 10−5 and the bottleneck

dimension K to 128, as we observed that this slightly improves learning.

Results

MVIB achieves competitive results on the multimodal microbiome-based

disease prediction task

We assess the performance of MVIB in comparison to existing state-of-the-art methods for

microbiome-based disease prediction, i.e. Random Forest, DeepMicro [17] and PopPhy-CNN

[19]. In Table 2, we report the AUC ROC values for our benchmark analysis on various disease

cohorts. The results of MVIB are shown for both dataset collections default and joint (which

we describe previously in Section Pre-processing). MVIB results are derived from the two

input feature modalities, species abundances and strain-level markers (A+M). A complete

summary of MVIB results for all bimodal dataset collections is available in S1 Table.

Table 2. Classification performance of MVIB and competing methods.

Dataset Random Forest DeepMicroVAE ‡ [17] PopPhy-CNN [19] MVIB (A+M)

A M A+M A M A+M A D J

IBD 0.899

(0.037)

0.932

(0.025)

0.936

(0.017)

0.779

(0.032)

0.899

(0.039)

0.833

(0.034)

0.799

(0.052)

0.922

(0.020)

0.936

(0.014)

EW-T2D 0.825

(0.020)

0.812

(0.017)

0.789

(0.024)

0.640

(0.051)

0.853

(0.041)

0.741

(0.080)

0.591

(0.037)

0.859

(0.023)

0.853

(0.025)

C-T2D 0.717

(0.018)

0.736

(0.023)

0.734

(0.017)

0.715

(0.031)

0.719

(0.019)

0.714

(0.030)

0.641

(0.019)

0.750

(0.009)

0.758

(0.012)

Obesity 0.662

(0.022)

0.634

(0.019)

0.619

(0.017)

0.600

(0.030)

0.599

(0.014)

0.576

(0.040)

0.630

(0.018)

0.662

(0.024)

0.666

(0.027)

Cirrhosis 0.897

(0.013)

0.896

(0.007)

0.905

(0.009)

0.781

(0.021)

0.891

(0.016)

0.867

(0.018)

0.893

(0.008)

0.925

(0.005)

0.924

(0.005)

Colorectal 0.803

(0.048)

0.771

(0.053)

0.764

(0.053)

0.739

(0.070)

0.737

(0.068)

0.548

(0.040)

0.803

(0.023)

0.780

(0.071)

0.777

(0.069)

Obesity-Joint 0.806

(0.026)

0.795

(0.024)

0.799

(0.025)

0.662

(0.015)

0.637

(0.021)

0.600

(0.017)

0.697

(0.026)

0.815

(0.019)

0.818

(0.018)

Colorectal-EMBL 0.890

(0.015)

0.866

(0.024)

0.860

(0.016)

0.662

(0.027)

0.725

(0.049)

0.693

(0.034)

† 0.811

(0.010)

0.814

(0.013)

Early-Colorectal-EMBL 0.577

(0.046)

0.533

(0.039)

0.582

(0.024)

0.562

(0.070)

0.557

(0.048)

0.5616

(0.048)

† 0.535

(0.050)

0.543

(0.048)

Hypertension 0.662

(0.035)

0.677

(0.023)

0.631

(0.031)

0.523

(0.030)

0.561

(0.028)

0.658

(0.054)

† 0.603

(0.045)

0.591

(0.041)

The performance of all methods is measured by ROC AUC computed on the test sets. Values in brackets refer to the standard error over five repeated experiments. The

first set of columns presents the results of the Random Forest classifier after leveraging cross-validated grid-search for hyperparameter optimisation. We adopted

Random Forest implementation from the Scikit-learn Python library [46] version 0.23.2. The second set of columns presents the results of DeepMicro with variational

autoencoder (VAE). The third set of columns presents the results of PopPhy-CNN. The last set of columns presents MVIB results. A, M, A+M refer to the results that

are obtained from processing abundances, markers or both, respectively. D and J refer to the two different pre-processing schemes, i.e. default (D) and joint (J). The

MVIB implementation follows the model description in Section Implementation details where we set the bottleneck dimension to 256 and we use the JMVIB−T objective

(Eq 8).
†: for the last three datasets, we could not produce PopPhy-CNN results, as the original implementation generates an infinite loop while pruning the phylogenetic tree.
‡: For DeepMicro, we selected the best test ROC AUC values from three different downstream classifiers, i.e. Support Vector Machine (SVM), MLP and Random Forest.

https://doi.org/10.1371/journal.pcbi.1010050.t002
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For Random Forest and DeepMicro, we report the results on various feature combinations,

i.e. only species abundance (A), only strain-level markers (M) and the concatenation of abun-

dances and markers (A+M). Benchmark methods do not explicitly model multiple input data

modalities, hence we adopted a simple feature concatenation in the (A+M) setting. The results

of Random Forest shown in Table 2 are derived after fine-tuning the model through cross-vali-

dated grid-search over the hyperparameter space summarised in S1 File. For PopPhy-CNN,

we only report the results using the species abundances (A) modality, since the current imple-

mentation of the method does not scale to include strain-level markers.

The DeepMicro method consists of a two-steps mechanism: (1) train an autoencoder to

generate input embeddings, (2) train a downstream classifier on the embeddings computed in

the first step. Various autoencoder architectures and downstream classifiers are introduced in

[17] and there is no clear criteria on which combination has an optimal performance. For our

benchmark analysis, we trained DeepMicro with the Variational Autoencoder (VAE) [28]. We

believe this choice offers fair comparisons, since MVIB is also based on variational inference.

Choosing VAE for DeepMicro allows us to highlight the key improvements of our end-to-end

multimodal architecture when compared to the demanding two-steps mechanism offered by

DeepMicro. For the classification step of DeepMicro, we trained multiple downstream classifi-

ers, i.e. SVM, MLP and Random Forest, then we report the best test ROC AUC values.

We modified the source code of PopPhy-CNN to make the model validation and testing

consistent with our validation framework. The original PopPhy-CNN implementation offers a

slightly different validation procedure, hence we made the necessary changes to ensure that all

of the evaluation results (see Table 2) are computed in the same manner.

From the results of Table 2, we see that MVIB outperforms Random Forest on all datasets

except Colorectal-EMBL, Early-Colorectal-EMBL and Hypertension. MVIB consistently out-

performs DeepMicro on all datasets in both settings, i.e. single-modality (A or B) and multi-

modality (A+M). In comparison to PopPhy-CNN, MVIB achieves better results on all

datasets, except for Colorectal, where PopPhy-CNN achieves 2% higher ROC AUC. For the

Colorectal-EMBL, Early-Colorectal-EMBL and Hypertension datasets, we could not produce

PopPhy-CNN results, as the original implementation seems to generate an infinite loop when

the phylogenetic tree is pruned.

Early-Colorectal and Hypertension present the hardest diseases to predict for all classifiers

including MVIB. MVIB achieves approximately 55% and 60% ROC AUC on each of the afore-

mentioned datasets, respectively. However, these values are still above random baseline. In

summary, the discrimination capabilities of various classifiers including MVIB vary among

different datasets which may indicate less measurable microbial changes in subjects with cer-

tain diseases.

Multimodal ablation study

To further evaluate the multimodal learning capabilities of MVIB, we perform an ablation

study to compare classification performance of single-modality and bimodal settings. To this

end, we train MVIB by optimising the full multimodal objective (see Section Full multimodal

objective), which ensures that all encoders are trained individually as well as jointly. At test

time, for the single-modality setting, we tested the model by considering either species abun-

dances (MVIB-A) or strain-level markers (MVIB-M) as inputs. While for the bimodal setting,

we passed both data modalities simultaneously as inputs to our model (MVIB-A+M). Fig 2

summarises our results.

Fig 2 shows that MVIB-M results are consistently better than those obtained from

MVIB-A. In the bimodal setting, MVIB-A+M, the performance remains comparable to
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MVIB-M results (i.e. the best performance). One can notice that on the datasets of IBD, Cir-

rhosis, Colorectal and Hypertension, the results of MVIB-A+M are (slightly) better than the

results reported by MVIB-A or MVIB-M.

MVIB can efficiently combine heterogeneous input data modalities. Although ROC AUC

results from MVIB-A are consistently lower than the ROC AUC values from MVIB-M, the

combination of the two modalities does not lead to a performance drop that may occur in

other methods due to an increased feature space, i.e. the curse of dimensionality. In summary,

MVIB can guarantee classification performance which is at least as good as the best single-

modality performance.

The triplet margin loss can improve classification

The first term of the original MVIB objective JMVIB (Eq 5) is a negative log-likelihood, which

acquires the shape of a binary cross-entropy in the binary classification setting. We explored

an extension of this objective, namely JMVIB−T, by adding a triplet margin loss term (Eq 8).

The triplet margin loss aims to encourage the latent distribution of samples which belong to

the same class to cluster in a dedicated region of the latent Euclidean space. At the same time,

the triplet margin loss encourages the distributions of samples of different classes to depart

from each other in the latent space. This aims at increasing the separability of different classes

and facilitating the classification task.

S2 Table presents a comparison of the effects of the triplet margin loss on the MVIB classifi-

cation performance. For the IBD, EW-T2D, C-T2D and Early-Colorectal-EMBL datasets, the

highest ROC AUC is achieved by optimising the JMVIB−T objective, which includes the triplet

margin loss. The JMVIB objective leads to best results on the remaining datasets.

Fig 3A depicts the 95% confidence interval of the subjects’ stochastic encodings

z � pðzjxÞ ¼ N ðμ;σ2IÞ deriving from the optimisation of the JMVIB (Eq 5). Such Gaussian

distributions are the output of the PoE (Eq 4) and consist in fact in the joint posterior distribu-

tion of the latent encoding, conditioned on all input data modalities. In comparison with the

curves of Fig 3C, obtained with the JMVIB−T objective (Eq 8), we observe that the triplet margin

loss leads to Gaussian distributions which present a higher variance. Conversely, stochastic

encodings deriving from JMVIB (Eq 5) present smaller variance (see Fig 3A).

Methods such as simple autoencoders, or the PCA, which are commonly used for

dimensionality reduction, provide deterministic encodings, i.e. compressed representations of

the input without a rigorous estimate of the uncertainty. Our method allows to compute

Fig 2. Ablation study results. Comparisons between single-modality and bimodal MVIB. The shown values are ROC AUC on test sets, error bars

represents standard error computed by repeating each experiment five times on different random train/test splits. We leveraged the JMVIB objective (Eq

5) for optimisation. MVIB-A indicates the model performance only on species-relative abundances at test time. MVIB-M indicates the model

performance only on strain-level markers at test time. MVIB-A+M indicates the model performance on both species-relative abundances and strain-

level markers at test time.

https://doi.org/10.1371/journal.pcbi.1010050.g002
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stochastic encodings, i.e. to represent the input not only as a point in a latent space, but as a

probability distribution. Computing probability distributions allows to estimate the confidence

of the stochastic encodings.

Intuitively, it is preferable to obtain stochastic encodings which present a small variance, as

this allows for a better separability and classification. Fig 3 allows to visually interpret the effect

of including the triplet margin loss (Eq 8) in the objective function and to visualise the results

of the different losses on the samples’ stochastic encodings. We conclude that, although adding

the triplet margin loss can lead to better classification results on some datasets (see S2 Table),

the stochastic encodings derived from the optimisation of the JMVIB−T objective (Eq 8) present

higher variance with respect to those obtained from the optimisation of the JMVIB objective

(Eq 5).

In addition to the plots of Fig 3, which only refer to the IBD dataset, S2 File contains the

plots of the MVIB stochastic encodings for all the datasets considered in this work. The

Fig 3. Effect of the triplet margin loss on the stochastic encodings of the microbiome samples. The depicted curves are the 95% confidence intervals

of the samples’ stochastic encodings z � pðzjxÞ ¼ N ðμ;σ2IÞ; the points are their means μ. The displayed encodings consist in a set of 22 test samples

obtained from a random training-test split of the IBD dataset (i.e. the 20% of the dataset not used for training). The K dimension of the latent space has

been set to 2 in order to allow a 2D visualisation. (A, B) optimisation of the JMVIB objective (Eq 5). (C, D) optimisation of the JMVIB−T objective (Eq 8).

https://doi.org/10.1371/journal.pcbi.1010050.g003
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stochastic encodings depicted in S2 File are obtained from the joint datasets collection. They

are available for models trained by optimising the JMVIB−T objective, as well as models trained

by optimising the JMVIB objective, in order to allow comparison.

S3 File presents for each dataset a comparison between the PCA 2D projections and the

mean of the MVIB 2D stochastic encodings. For both the PCA and the MVIB plots presented

in S3 File, the default datasets collection has been adopted. It is possible to observe that the

PCA projections completely fail at clustering the two samples classes (healthy and sick) in ded-

icated areas of the 2D plane. Conversely, MVIB encodes sick and healthy samples in two

clearly separated areas of the 2D plane, creating two distinct clusters.

Transfer learning across different diseases can improve disease prediction

Driven by the hypothesis that different diseases might lead to some common altered patterns

in the subjects’ microbiome, we performed various transfer learning experiments. As

described in Section Transfer learning, we first pre-trained MVIB on all non-target diseases,

then we fine-tuned the model on target diseases. For these experiments, we only consider

the joint datasets collection, as it presents feature vectors with the same dimensions across

all disease cohorts for both the species-relative abundance and strain-level marker profiles.

S3 Table presents the MVIB classification performance achieved by performing a pre-train-

ing on the source task followed by a fine-tuning on the target diseases. The ROC AUC

slightly decreases on the Cirrhosis and Colorectal target datasets. A consistent performance

drop is observed on the IBD and EW-T2D target datasets. Improvements on randomly initi-

alised models can be observed on the remaining datasets, i.e. C-T2D, Obesity and

Hypertension.

We did not consider Colorectal-EMBL or Obesity-Joint datasets here, since the former is

just an extension to Colorectal dataset, and the latter is an extension to Obesity dataset. Thus,

we ensured that the samples that are present in more than a single dataset will not observed

twice, i.e. during both source and target tasks. Moreover, ΔObesity and ΔColorectal are only

used during the source task (i.e. pre-training).

Cross-study generalisation results and benchmark

Generalisation is a fundamental requirement for machine learning models. It consists in the

capacity to make correct predictions on samples which were not observed at training time. In

order to further investigate how well MVIB can generalise, we performed cross-study experi-

ments as described in Section Cross-study generalisation. First, six ordered pairs of datasets

were identified: (EW-T2D, C-T2D), (C-T2D, EW-T2D), (ΔObesity, Obesity), (ΔColorectal,

Colorectal), (Obesity, ΔObesity), (Colorectal, ΔColorectal). The first dataset of each pair was

exclusively used for training, while the second one for testing without fine-tuning. In order to

guarantee that abundance and marker features share the same positional indexes across the

source and target datasets, the joint dataset collection was employed for all cross-study experi-

ments (see Section Pre-processing).

In order to compare the generalisation capabilities of MVIB with a state-of-the-art machine

learning model used in microbiome research, we performed benchmark experiments with

Random Forest. The Random Forest was trained on the concatenation of the abundance and

marker profiles (multimodal setting). For the Random Forest, a cross-validated grid-search

over a defined hyperparameter space was adopted for fine tuning (see S1 File). MVIB did not

undergo hyperparameter tuning, but employed the default implementation described in Sec-

tion Implementation details, with the exception of a lower learning rate, which was set to 10−5,

as we observed this improves convergence.
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Fig 4 shows the cross-study results. MVIB performed better than the Random Forest on the

(EW-T2D, C-T2D) and (ΔColorectal, Colorectal) experiments. Conversely, the Random For-

est achieved better generalisation on (C-T2D, EW-T2D), (ΔObesity, Obesity) and (Obesity,

ΔObesity). The two methods obtained the same results on (Colorectal, ΔColorectal).

Based on the empirical results which we obtained, it is possible to conclude that MVIB

offers competitive cross-study generalisation when benchmarked with a fine-tuned Random

Forest.

Discovering the most salient microbial species and strain-level markers

In order to achieve interpretability, we implemented a method which allows to compute

saliency, i.e. detecting the areas of the input vectors which are most discriminative with respect

to the predicted class (see Section Explaining predictions with saliency). For each disease data-

set in the default dataset collection, we obtained saliency maps of both abundance and marker

profiles. Such saliency maps were obtained by computing the derivative of the model’s positive

predictions with respect to the inputs (Eq 10). Since we were mostly interested in the magni-

tude of such gradients, rather than the sign, the absolute value was considered.

The aim of this analysis is the discovery of the most salient microbial species and strain-

level markers for each considered dataset, i.e. the features which mostly affect the outcome of

positive disease predictions. In order to discover true biological insights about the relation-

ships between the microbiome and the analysed diseases, we considered saliency maps derived

from true positive predictions. After having trained MVIB, each dataset was passed through

the model to compute predictions for all samples. Saliency maps were then computed (Eq 10).

Saliency vectors coming from true positive predictions where then extracted from the dataset

batch. As described in Section Validation framework and performance evaluation, experi-

ments were repeated five times with different independent training-test splits. Furthermore,

for each of the five training-test splits, the five different best models derived from a 5-fold

cross-validation were ensembled. This leads to 25 different models, and therefore 25 saliency

maps, which were then averaged.

Fig 5 depicts the microbial species sorted by mean saliency for the Colorectal-EMBL data-

set. Fig 5A only depicts the top 25 species, while Fig 5B depicts the full distribution.

For the microbial species, the abundance significance in healthy and affected individuals

was calculated by means of a Wilcoxon test. For each microbial species, two samples were con-

structed from the abundance values: (1) healthy individuals, (2) affected individuals.

Fig 4. MVIB cross-study generalisation and benchmark. Values are test ROC AUC computed by first training the models on a source dataset and

then testing it on a target dataset. RF: Random Forest. All datasets used for cross-study experiments belong to the joint collection. For MVIB, the JMVIB
−T objective has been adopted for the optimisation (Eq 8). The datasets reported on the x-axis shall be interpreted as: train!test. For the Random

Forest, the error bars represent the standard error over five repeated experiments and account for the stochasticity of the Scikit-learn implementation.

The standard error is missing for the MVIB results, as our PyTorch implementation has been made deterministic.

https://doi.org/10.1371/journal.pcbi.1010050.g004
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Fig 5. Microbial species sorted by saliency for the Colorectal-EMBL dataset. Saliency maps computed for the Colorectal-EMBL dataset using Eq 10.

(A) Top 25 microbial species sorted by mean saliency. Species abundance significance in healthy (red) and affected (blue) individuals was calculated

using a Wilcoxon test for each microbial species for two unpaired samples: healthy and affected individuals. Error bars represent the standard error over

the five repeated experiments and the five ensembled MVIB models for each experiment. (B) Full distribution of the mean saliency across the microbial

species of the Colorectal-EMBL dataset.

https://doi.org/10.1371/journal.pcbi.1010050.g005
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False discovery rate (FDR) correction was applied to adjust for multiple hypotheses testing.

Species abundance supported by adjusted p-values < 0.1 was reported as significant. In Fig 5,

species which are significantly more abundant in healthy individuals are marked in red. Spe-

cies which are significantly more abundant in positive individual are marked in blue.

S4 File contains the plots with the top 25 microbial species and strain markers sorted by

mean saliency for all datasets considered in this work, analogous to what Fig 5A depicts for the

Colorectal-EMBL dataset.

As depicted in Fig 5 and S4 File, many species which are significantly more abundant in

either healthy (red) or affected individuals (blue) appear among the most salient ones. How-

ever, in multiple instances, non-significant species (grey) are also listed among the most salient

ones. We believe this has the following explanation. On one hand, the Wilcoxon test used to

compute the significance of species abundance considers one single species at a time. Hence,

the Wilcoxon test is not capable to capture complex multi-dimensional patterns in the abun-

dance distribution. On the other hand, MVIB can learn complex non-linear dependencies

between the input and a given label. As non-significant microbial species appear to be salient

for the model, this seems to point out the existence of inter-dependencies among microbial

species, which MVIB could capture. Additionally, in the Wilcoxon test, p-values < 0.1 were

reported as significant. The selection of this threshold for the p-values intrinsically affects what

species are labelled as significantly more abundant.

S5 File contains the histogram plots of the full saliency distributions over species (analogous

to what Fig 5B depicts for the Colorectal-EMBL dataset), as well as the violin plots of the

saliency distributions grouped by significance. The species in the histograms are sorted by

mean saliency. As it is possible to observe in the histograms plots, saliency maps are not sparse.

This is possibly due to how they are computed: as described above, the final saliency maps are

obtained by averaging the saliency computed from 25 models. Additionally, as displayed in the

plots, values are very low. Saliency maps are in fact the gradients of the model output with

respect to the input. In deep learning, gradients are in general very low to allow computational

stability, but also for theoretical reasons (e.g. regularization). Although we cannot escape these

drawbacks which accompany gradients, we still observe that the average saliency maps let spe-

cies emerge, which are under-/over-represented in the affected and healthy individuals. We

can conclude that, although models e.g. RF or penalised linear regression could allow for sim-

pler and more intuitive feature selection, deep-learning-based methods like MVIB can also

allow for explainable predictions.

Metabolomics can improve colorectal cancer prediction when combined

with metagenomics

With the aim of further investigating the multimodal learning capabilities of MVIB, we per-

formed experiments on the Colorectal-Metabolic dataset extracted from [37]. For each sample,

this dataset presents three modalities: species-relative abundance, strain-level marker and

metabolite profiles.

First, we trained MVIB following the full multimodal training paradigm presented in Sec-

tion Trimodal MVIB: Combining metabolomics and metagenomics. This ensures that all

encoders are individually and jointly trained and that MVIB can perform single-modality and

multimodal predictions at test time. We then tested the model in various multimodal and sin-

gle-modality fashions: abundance profiles only (A), marker profiles only (M), abundance +

marker profiles (A+M), abundance + marker + metabolite profiles (A+M+Metabolic).

We compared MVIB with a fine-tuned Random Forest. For fine-tuning the Random Forest,

a cross-validated grid-search over a defined hyperparameter space was used (see S1 File). In
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the A+M and A+M+Metabolic multimodal settings, the various input modalities have been

concatenated and then fed into the Random Forest.

Fig 6 shows the obtained experimental results. It is possible to observe that the multimodal

settings A+M and A+M+Metabolic allow MVIB to reach higher test ROC AUC with respect to

Random Forest. Furthermore, adding metabolomic data (A+M+Metabolic) allows to achieve

the best classification results. Results obtained in the single-modality M setting are comparable

to those obtained in the trimodal setting.

The Random Forest performs better than MVIB only in the abundance-only single-modal-

ity setting (A). Most notably, the Random Forest performance tends to degrade when further

data modalities are added. This shows the superiority of MVIB in combining multiple hetero-

geneous data modalities.

Empirical analysis of the training time

In this section, we report the analysis of the training time of various machine learning models

trained on the trimodal Colorectal-Metabolic dataset from [37]. We choose this dataset since it

has three data modalities, and the highest number of samples compared with the other datasets

considered in this work.

For benchmarking, we compared the training time of MVIB with the training time of Ran-

dom Forest (RF-DEF in Fig 7), Support Vector Machine (SVM-DEF in Fig 7) and Random

Forest with hyperparameter optimisation (RF-HPO in Fig 7). For both RF-DEF and

SVM-DEF, we considered the default implementation from Scikit-learn [46] library version

0.23.2, which runs on CPU. We labelled the two methods with -DEF suffix in order to

highlight that the default Scikit-learn implementation was used without any hyperparameter

optimisation.

For RF-HPO, we implement a cross-validated grid-search over a defined hyperparameter

space (see S1 File). We used 16 CPU cores to parallelise the grid-search. The hyperparameter

optimisation adopted for RF-HPO is the same one which we used to obtain the results in

Table 2.

For MVIB, we set the learning rate to 10−4 and the latent dimension K to 256. We trained

MVIB with a batch size of 256 for up to 50 epochs, as convergence (i.e. best validation ROC

AUC) is normally observed within the first 20 epochs. We considered the training complete at

the epoch in which the model achieves the highest ROC AUC on the validation set. No ensem-

bling was performed, i.e. a single model was trained in this set of experiments. MVIB experi-

ments were executed on a single NVIDIA GeForce RTX 2080 Ti GPU.

Fig 6. Comparison of different multimodal and single-modality models for colorectal cancer prediction. Values are test ROC AUC, error bars are

standard error obtained by repeating the experiment five times on different random train/test splits. RF: Random Forest. A: species-relative abundance

profiles. M: strain-level marker profiles. Metabolic: metabolite profiles. For MVIB, the JMVIB objective has been adopted for the optimisation (Eq 5).

Experiments are executed on the Colorectal-Metabolic dataset extracted from [37].

https://doi.org/10.1371/journal.pcbi.1010050.g006
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We performed experiments in various multimodal and single-modality fashions: abun-

dance profiles only (A), marker profiles only (M), abundance + marker profiles (A+M), abun-

dance + marker + metabolite profiles (A+M+Metabolic). For RF-DEF, SVM-DEF and

RF-HPO, in the multimodal settings, the input feature vectors of the various modalities were

concatenated. Fig 7 depicts the empirical results of the training time analysis.

Although the SVM-DEF is the fastest model to complete training in the abundance-only

setting (A), its training time dramatically increases in the markers-only setting (M), as well as

in the the two multimodal settings (A+M and A+M+Metabolic), reaching an average training

time of more than 7 seconds. The feature space dimensions in the various settings are reported

in Fig 7. The RF-DEF exhibits the same trend: it achieves the fastest training in the A setting,

but requires a slightly longer time in all other settings. Compared with the SVM-DEF, the

RF-DEF is always much faster and never requires more than 1 second to complete training.

The training of RF-HPO requires consistently more time due to the cross-validated grid-

search: around 30 seconds in the A setting, and more than 70 seconds for all other settings.

For MVIB we observe a different behaviour. The training time does not appear to correlate

with the feature space dimension. In fact the shortest training time is achieved in the M setting,

which presents a much higher feature space dimension with respect to A. In all other settings,

MVIB converges in around 1 second.

In the A setting, despite the smaller feature space dimension, MVIB requires a longer train-

ing time with respect to the M setting. This is because the training duration of MVIB is mainly

determined by the number of epochs needed to reach the highest validation ROC AUC. The

number of required epochs is mainly a function of the learning rate and the batch size. The sin-

gle forward pass and backpropagation steps are extremely quick and highly parallelised, hence

the feature space dimension plays a less relevant role in the training time of MVIB w.r.t.

RF-DEF, SVM-DEF and RF-HPO.

It is additionally worth mentioning that RF-DEF is consistently worse than MVIB when it

comes to classification results (see S4 Table and Table 2, respectively). RF-HPO provides com-

petitive classification performance with respect to MVIB (see Random Forest results in

Table 2), but its training time is consistently higher (see Fig 7). Hence, we can conclude that

the Random Forest only competes with MVIB when it undergoes an extensive hyperparameter

Fig 7. Training time comparison across different machine learning models and various feature space dimensions. The values reported in this graph

consist in the training time measured in seconds. The Colorectal-Metabolic dataset extracted from [37] has been used for training all models. The

depicted training times are obtained by averaging the run times of five experiments with different random train/test splits. A: species-relative

abundance profiles. M: strain-level marker profiles. Metabolic: metabolite profiles. RF-DEF: Random Forest with default Scikit-learn implementation.

SVM-DEF: Support Vector Machine with default Scikit-learn implementation. RF-HPO: Random Forest with hyperparameter optimisation (see S1

File). For MVIB, the JMVIB objective has been adopted for the optimisation (Eq 5). On the x-axis, next to the modality name, the feature space

dimension is reported in square brackets.

https://doi.org/10.1371/journal.pcbi.1010050.g007
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optimisation. Our implementation of MVIB requires very short training time and provides

high classification performance without fine-tuning.

Discussion

Microbiome-based disease prediction is a challenging task due to several reasons. First, micro-

bial communities present high complexity in their composition. Second, microbial features

(e.g. species abundance, strain-level markers and metabolites) are heterogeneous data modali-

ties and sometimes they are generated using different technologies (e.g. shotgun metagenomic

sequencing and mass spectrometry, respectively). Third, human gut microbiome is in a state

of constant change, not only when a host is affected by a certain disease, but also as a function

of lifestyle, e.g. diet [2], stress [47] and sleep [48]. Therefore, it is not surprising that a “healthy”

microbiome can not be determined by simple rules of thumb, e.g., high or low count of indi-

vidual taxa [49, 50].

In this work, we have introduced MVIB, a novel multimodal deep learning approach for

microbiome-based disease prediction. MVIB computes a joint stochastic encoding of species-

relative abundance and strain-level marker profiles. Both of these microbial features were

obtained from shotgun metagenomic sequencing. MVIB stochastic encodings are maximally

compressive of the various input data modalities and are simultaneously maximally informa-

tive about the output labels. We demonstrate that MVIB scales well in the trimodal setting

where the learned encoding combines information from the species-relative abundances, the

strain-level markers and the metabolites (from mass spectrometry). When the various input

data modalities are considered jointly, MVIB computes a more complete representation of the

host microbiome.

Our results show that MVIB competes with state-of-the-art methods for microbiome-based

disease prediction, e.g. Random Forest, DeepMicro and PopPhy-CNN. MVIB achieves the

highest ROC AUC on eight out of the eleven cohorts, although the improvement in perfor-

mance can be marginal in certain cases. We also noticed that the discrimination capabilities of

various classifiers including MVIB vary among different datasets, which may indicate less

measurable microbial changes in subjects with certain diseases. Compared to DeepMicro,

MVIB has the advantage of being an end-to-end approach, i.e. it learns a mapping from inputs

to outputs and it does not require hyperparameter tuning. Conversely, DeepMicro requires a

two-steps training approach, and it demands a complex fine-tuning process due to a lack of

well-defined criteria about which autoencoder architecture and downstream classifier shall be

used with a given dataset. Similarly, Random Forest requires a time-consuming hyperpara-

meter optimisation step to achieve a good performance. Therefore, the training time of MVIB

is*70 times faster than Random Forest training time (including the hyperparameter

optimisation).

Furthermore, we adopted a saliency technique derived from computer vision literature to

interpret the output of MVIB and we identified the most relevant microbial species and strain-

level markers to MVIB predictions. We performed cross-study generalisation experiments,

where we trained and tested MVIB on different cohorts of the same disease. Our results show

that MVIB is able to generalise in some cases like colorectal cancer, however, the results were

not always satisfactory. Poor generalisation performance may be due to other environmental

factors that are specific to each cohort which we do not consider in our model. For example,

nutritional differences between Europe and China could play an important role in shaping the

gut microbiome in the two different type 2 diabetes cohorts, i.e. EW-T2D and C-T2D.

Finally, one possible area for future work is to extend MVIB from microbiome-based dis-

ease prediction to microbiome-based disease prevention, i.e. to predict the presence of a
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certain disease in its early stages, e.g. by identifying specific microbiome patterns that indicate

the potential for developing that disease. We will also consider extending the current imple-

mentation to accommodate temporal longitudinal multimodal microbiome data; the current

architecture can support such an extension using for example Long Short-Term Memory net-

works (LSTMs) [51] as encoders to capture temporal dynamics.

Supporting information

S1 Fig. Trimodal MVIB architecture. This figure depicts the trimodal architecture of MVIB

used for combining species-relative abundance, strain-level marker and metabolite profiles for

colorectal cancer prediction.

(TIF)

S1 Table. Complete experimental results for the multimodal microbiome-based disease

prediction task with MVIB. Results obtained optimising the JMVIB−T objective (Eq 8). Experi-

ments are executed five times with random independent training-test splits. Values in brackets

refer to the standard error over the repeated experiments. All values in the table refer to met-

rics computed on the test sets. ROC AUC: area under the receiver operating characteristic

curve. AC: classification accuracy. F1: F1 score. P: precision. R: recall. D and J refer to the two

pre-processing techniques adopted and the two collections of datasets obtained: default (D)

and joint (J).

(PDF)

S2 Table. Comparison of different objective functions and pre-processing techniques. All

values are ROC AUC computed on the test sets. Values in brackets refer to the standard error

over five repeated experiments. The first group of columns presents the results obtained opti-

mising the JMVIB−T objective (Eq 8), which includes the triplet margin loss. The second group

of columns presents the results obtained optimising the original objective function JMVIB (Eq

5). D and J refer to the two pre-processing techniques adopted and the two collections of data-

sets obtained: default (D) and joint (J).

(PDF)

S3 Table. Comparison of pre-trained models against randomly initialised models. The first

column presents the results obtained with randomly initialised models. The second column

displays classification results obtained by first pre-training the models on all source datasets,

and then fine-tuning them on the target disease (see Section Transfer learning). The JMVIB−T
objective was adopted for both columns (Eq 8). J refers to the adopted pre-processing tech-

nique: joint. Reported values are ROC AUC computed on the test sets. In brackets, the stan-

dard error over five repeated experiments is reported.

(PDF)

S4 Table. Experimental results for the Random Forest with default Scikit-learn implemen-

tation. Experiments are executed five times with random independent training-test splits. Val-

ues in brackets refer to the standard error over the repeated experiments. Reported values are

test ROC AUC.

(PDF)

S1 File. Random Forest hyperparameter space for cross-validated grid-search. The file con-

tains the hyperparameter space considered for Random Forest in cross-validated grid-search.

(TXT)
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S2 File. Effect of the triplet margin loss on the stochastic encodings of the microbiome

samples. For all datasets considered in this work, this file presents plots of the 2D MVIB sto-

chastic encodings analogous to Fig 3. The depicted curves are the 95% confidence intervals of

the samples’ stochastic encodings z � pðzjxÞ ¼ N ðμ;σ2IÞ; the points are their means μ. The

displayed encodings consist only in the test samples obtained from random training-test splits

(i.e. the 20% of the dataset not used for training). The K dimension of the latent space has been

set to 2 in order to allow a 2D visualisation. Plots derived from both the optimisation of the

JMVIB−T objective (Eq 8) and the optimisation of the JMVIB objective (Eq 5) are included. Five

copies of all plots are available, as they are obtained by training the model with five different

independent training-test random splits.

(ZIP)

S3 File. PCA 2D projections and MVIB 2D stochastic encoding. This file presents, for each

dataset, the plots of the PCA 2D projections, as well as the plots of the mean of the MVIB 2D

stochastic encodings. For the MVIB stochastic encodings z � pðzjxÞ ¼ N ðμ;σ2IÞ, the

depicted points represent the mean μ. The K dimension of the latent space has been set to 2

in order to allow a 2D visualisation of the encodings. For training MVIB, the JMVIB−T objec-

tive (Eq 8) has been optimised. For MVIB, five copies of the means plots are available, as they

are obtained by training the model with five different independent training-test random

splits. Both the PCA and the MVIB plots have been created starting from the default datasets

collection.

(ZIP)

S4 File. Top microbial species and strain markers sorted by saliency for all datasets. These

files present the plots of the top 25 microbial species and strain markers for all datasets consid-

ered in this work, analogous to what Fig 5A depicts for the species from the Colorectal-EMBL

dataset. Additionally, the scripts used to create the plots are included.

(ZIP)

S5 File. Saliency distributions over microbial species for all datasets. For each dataset, two

different kinds of plots are available. (A) the histogram of the average saliency distribution

over microbial species. Species are sorted from left to right by decreasing saliency. Species

abundance significance in healthy (red) and affected (blue) individuals was calculated using a

Wilcoxon test for each microbial species for two unpaired samples: healthy and affected indi-

viduals. (B) violin plots of the saliency distributions for microbial species grouped by signifi-

cance: significantly more abundant in affected (blue), significantly more abundant in healthy

(red), no significance (grey).

(ZIP)
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