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Abstract

Background

Identifying differentially expressed genes between experimental conditions is still the gold-

standard approach to interpret transcriptomic profiles. Alternative approaches based on

diversity measures have been proposed to complement the interpretation of such datasets

but are only used marginally.

Methods

Here, we reinvestigated diversity measures, which are commonly used in ecology, to char-

acterize mice pregnancy microenvironments based on a public transcriptome dataset.

Mainly, we evaluated the Tsallis entropy function to explore the potential of a collection of

diversity measures for capturing relevant molecular event information.

Results

We demonstrate that the Tsallis entropy function provides additional information compared

to the traditional diversity indices, such as the Shannon and Simpson indices. Depending on

the relative importance given to the most abundant transcripts based on the Tsallis entropy

function parameter, our approach allows appreciating the impact of biological stimulus on

the inter-individual variability of groups of samples. Moreover, we propose a strategy for

reducing the complexity of transcriptome datasets using a maximation of the beta diversity.

Conclusions

We highlight that a diversity-based analysis is suitable for capturing complex molecular

events occurring during physiological events. Therefore, we recommend their use through

the Tsallis entropy function to analyze transcriptomics data in addition to differential expres-

sion analyses.
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Introduction

Transcriptomic analyses are mainly based on the interpretation of differentially expressed

genes (DEG) [1–3]. However, complementary methods have been developed to capture and

interpret the complexity of transcriptome datasets. Gene-set analysis (GSA) is one of them and

is particularly important in the field of systems biology to describe the regulation of groups of

genes involved in a function of interest [4–6]. The abstraction level of analyses can be

increased even more with the use of information theory-based entropies and their derived

diversity indices. Indeed, diversity indices are widely used measurements describing complex

systems such as ecological systems and human microbial communities [7, 8].

Analyzing the diversity of a transcriptomic profile is similar to looking at the quantity of

information it contains. This diversity reaches its maximum when all transcripts have the

same abundance and reaches its minimum when only one transcript is measured. Diversity-

based analyses provide high-level information about transcript abundances within a given bio-

logical sample and its similarities with other samples. However, the use of diversity indices

remains confidential for transcriptome analysis and restrained to few well-known indices (e.g.,

Richness, Shannon, or Simpson).

The originality of the work that we present here is the analysis of heterogeneous multicellu-

lar transcriptome profiles using the Tsallis entropy function [9], which is a generalized entropy

function of order q, equivalent to the Rényi function [10].

Here, we hypothesized that varying the order of the Tsallis entropy function allows for cap-

turing the finest structures in transcriptome datasets and reveals information on the inter-indi-

vidual variability. Therefore, we used the Tsallis entropy function on a transcriptome dataset

initially analyzed using traditional approaches (DEG and GSA) [11]. Our approach enriched

the interpretation of this dataset both at the whole transcriptome and gene signature levels.

We demonstrate that the use of the Tsallis entropy function provides additional insights on

the transcriptome behaviour compared to traditional approaches or approaches based on the

Shannon entropy solely. In turn, we propose this diversity-based analysis to extract the most

informative transcript subsets from whole transcriptome datasets as a manner to improve the

interpretation of transcriptome datasets.

Material and methods

Transcriptomic dataset used in this study

The transcriptomic dataset used in this study was initially published and analyzed in Nehar-

Belaid et al. (Nehar-Belaid et al. 2016). This dataset contains transcript abundances of entire

uteri from non-pregnant mice (NP), and groups of 3–4 mice at days 4, 6, 8, 10, 11, and 12 of

pregnancy. Raw data are available on the Gene Expression Omnibus repository under acces-

sion number GSE68433.

Transcriptomic profiling and data processing

As detailed in Nehar-Belaid et al. [11], RNA from the entire uteri was extracted using a tissue

lyser (Qiagen) and TRIzol (Invitrogen) protocols. RNA integrity was assessed using a Bioana-

lyzer (Agilent). RNA was amplified using the Illumina TotalPrep RNA kit, then analyzed on

the MouseWG-6 v2.0 microarrays (Illumina). Raw probe expression measurements were

extracted using BeadStudio software (Illumina). Probes with a detection p-value above 0.001

in all transcriptomic profiles were removed from the study. Gene expression data were nor-

malized using the quantile method. Normalized transcript expression was then
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log2-transformed and analyzed for differential expression using modified t-test from limma
package. The final transcript expression matrix comprised 12,375 transcripts across all

profiles.

Potential measure biases due to batch effect or other technical steps were evaluated using

the Principal Variation Component Analysis method from the package sva, and no known

bias was found (S1A Fig). PVCA analysis was reapplied to normalized data showing an

improved profile compared to non-normalized data (S1B Fig).

Extraction of signature-derived down- and up-regulated gene lists

In this paper, in addition to reinvestigating the whole transcriptome datasets during pregnancy

in Nehar-Belaid et al. [11], we focused on genes belonging to identified down- or up-regulated

signatures at days 6 and 12. To that end, as schematized in S2 Fig, we collected the 31 down-

and 33 up-regulated signatures on day 6 (depicted in Fig 2 in Nehar-Belaid et al.). Down-regu-

lated signatures are described as enriched in immune-related genes, whereas the up-regulated

signatures are enriched in cell-cycle- and proliferation-related genes. We compiled the lists of

genes belonging to these signatures to create the union of down- and up-regulated signature

genes, after filtering-out genes belonging to both groups, based on the sign of the limma’s

modified t-test score. The remaining genes were assigned to a control group, named OTHER.

We thus obtained 1,538 genes in the down-regulated gene list day 6 DN genes, 1,425 in the up-

regulated gene list day 6 UP genes, and 9,281 in the control group list day 6 OTHER. We

applied the same approach for the 81 down- and 42 up-regulated day 12 signatures depicted in

Nehar-Belaid et al. and generated the 685-gene day 12 DN, 752-gene day 12 UP and

10,938-gene day 12 OTHER lists.

Diversity analysis

Diversity analyses were performed on R using the entropart package and its function DivEst
with default settings, except for the number of simulations that was set to 100 to provide confi-

dence interval of the estimations [12]. The function DivEst takes as input a metacommunity

object, e.g. a group of transcriptomic profiles belonging to the same kinetic point, derived

from the non-transformed transcript expression values. It estimates the alpha and gamma

diversities of a meta-community as an effective number of transcripts, and beta diversity as an

effective number of profiles.

Gene Set Enrichment Analysis. First, the UP, DN and OTHER lists were tested for func-

tional enrichment by GSEA against the overall transcriptome dataset based on their statistical

difference as compared to controls. S3 Fig shows how the different subsets at day 6 and 12 are

effectively enriched as expected: the DN subset is biased for down-regulated genes, whereas the

UP subset is biased towards up-regulated genes; the OTHER subset shows no significant

enrichment.

Gene signature analysis was performed using Gene Set Enrichment Analysis (GSEA) [13].

GSEA randomizations were performed 1,000 times at the signature level.

Use of the beta diversity to decomplexify transcriptomic datasets. We used the follow-

ing approach, based on the beta diversity, to extract informative part of transcriptomic

datasets:

1. The DivEST function was applied to calculate βq, the beta diversity for the meta-community

including all transcriptomic profiles, with increasing values of parameter q between 0 and 5

by steps of 0.01.
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2. From the list of βq obtained, a qmax parameter was then determined as the q value maximiz-

ing βq for the dataset.

3. For αqmax, the DivEST function provided αqmax, the alpha diversity of each group of profiles.

Each αqmax represented the effective number of transcripts n yielding the observed diversity.

We then used this number to retain the n most abundant transcripts for each group of

profiles.

4. The merged gene list comprised the union of the selected transcripts for each group of pro-

files resulting in a final list of m unique transcripts.

5. A filtered dataset was then created from the original dataset matching this m transcript

list.

6. Comparative Principal Component Analysis was finally performed on the original dataset

and the filtered dataset.

Results and discussion

Rationale and analytical strategy

To test our hypothesis that varying the order of the Tsallis entropy function allows

capturing relevant information in transcriptomes, we used a dataset from a study published by

our laboratory focusing on transcript expression patterns during pregnancy in uteri of

C57BL6 mice [11]. The dataset of Nehar-Belaid et al. contains transcript abundances of entire

uteri from non-pregnant mice (NP), and groups of 3–4 mice at days 4, 6, 8, 10, 11, and 12 of

pregnancy.

In Nehar-Belaid et al., we demonstrated that the gestation process induced strong differ-

ences in terms of transcript abundance between all time-points, as demonstrated by PCA

representation in Fig 1. Samples from the different time-points are largely non-overlapping to

each other, highlighting the specificity of each sample group. In the same study, a gene set-

based approach identified molecular signatures further characterizing the biological processes

occurring during the gestation, with the evolvement of different immune cell lines. This obser-

vation gave credit to the use of gene set-based analyses in situations where high numbers of

genes are significantly modulated (more than 5,000 genes when comparing later time points,

E8-E12, to non-pregnant mice group, NP).

As looking at molecular signatures provides complementary information to individual gene

analysis, we seek to obtain a measure capturing information from an even higher scale than

molecular signatures, namely the whole transcriptome itself. In this paper, we took this

approach one step further by looking at the whole transcriptome level using diversity indexes.

This entropy-based approach was previously used to analyze transcript abundance profiles

of whole organs [14] and was relevant for transcriptome analysis.

In this work, the authors categorized organs based on the diversity of their transcript abun-

dance. They also defined specificity and specialization scores characterizing the different

organs.

Two aspects make our work complementary to the study of Martinez and Reyes-Valdes.

First, the expression variations that we are studying are not originating from different tissues

having specific biological roles but from a unique and complex tissue at different stages of a

biological process. In other terms, we are looking at the effects of biological stimulation within

a single tissue. Second, Martinez and Reyes-Valdes focused on Shannon’s entropy to describe

the overall expression of genes in the tissue. In our study, we are extending the analysis to
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other entropy measures by using the Tsallis entropy, a function of order q. Varying the param-

eter q allows for looking at different entropy measures. Then we transformed these entropies

into alpha diversity measures to ease biological interpretations as the measures now refer to an

effective number of genes. Noteworthy, we focus in this work on the analysis of sample groups

rather than individuals. We also introduce the use of the measure of the beta diversity,

expressed as an effective number of transcriptomic profiles, as evaluating the variability of

transcriptomes between individuals of the same group.
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Fig 1. Principal component analysis. Transcriptome analyses were performed on non-pregnant mice (NP), and at days 4, 6, 8, 10, 11, and 12 post coitum
as reported in Nehar-Belaid et al. 2016. Principal component analysis was performed on the original normalized dataset comprising 12,475 genes.

https://doi.org/10.1371/journal.pone.0266618.g001
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Theoretical framework

We propose to use the Tsallis entropy function, described in Eq 1, and its transformation,

described in Eq 2, to evaluate the alpha diversity of a transcriptomic profile.

q
j Ha �

1 �
PS

i¼1
pqij

q � 1
; Eq 1

where pij is the relative frequency of a transcript i in a given profile j, S is the number of differ-

ent transcripts within this profile, and q is the order of the equation.

Particular values of q in Eq 1 correspond to usual diversity measures. When q is equal to 0, then
q
j Ha corresponds to the richness of the transcriptome. When q is equal to 1 or 2 then

q
j Ha respectively

corresponds to the Shannon’s or Simpson’s entropy. When q tends to infinity, then
q
j Ha corresponds

to the Berger-Parker index, the relative expression of the most abundant transcript in the profile.

Due to the fact that
q
j Ha is unitless, entropy measures can be difficult to interpret. Thus, Jost

and colleagues [15] proposed to transform these measures into an effective number of species

(transcripts in our case) by using the exponential of the entropy as described in Eq 2.

q
j Da ¼ e

q
j Ha
q Eq 2

Complementary to the alpha diversity, the beta diversity can be used to quantify the diver-

sity between profiles of the same group. A beta diversity of 1 indicates that there is no composi-

tion difference between profiles in terms of transcript abundance. A beta diversity of 2

indicates that the overall composition difference of the sample groups is equal to that of two

samples with no common transcripts.

The beta diversity of a set of profiles is given by the Eq 3, which correspond to the ratio of

the gamma diversity of the set of profiles to its alpha diversity [16].

qDb¼
qDg=

qDa Eq 3

In this study, we investigated the alpha and beta diversity distributions of transcriptomic pro-

files through the kinetic of gestation in a C57BL6 model based on different orders of diversity.

Exploration of the transcriptome alpha diversity

We analyzed alpha diversity measures, as a function of the q parameter as defined in Eq 2 in a

transcriptomic dataset of uterine microenvironment during pregnancy at the different time-

points of the kinetic (days 4, 6, 8, 10, 11 and 12 post coitum) and for a control group of non-

pregnant mice (NP).

Increasing the order of the Tsallis entropy function gives more weight to highly expressed

genes, gradually ignoring low-expressed genes in the calculation of the alpha diversity. When

q = 0, the alpha diversity is equal to the number of genes within a given set of profiles (and cor-

responds to the richness), which is the same in all profiles in the dataset (12,375).

Fig 2 shows the evolution of the alpha diversity for each time-point using different values of

q (q2{0.5,1,2,3,4,5}). When q equals 0.5 or 1 (Shannon’s index), the alpha diversity is quite sim-

ilar between NP, day 4, and day 6. The alpha diversity then drops significantly at day 8, and

rebounds at day 10 until day 12 (Fig 2A and 2B). For q equals 2, 3, and 4, this pattern is differ-

ent for the earlier time-points, as the group day 4 unhooks the conditions NP and day 6 (Fig

2C–2F). Finally, when q is equal to 5, the distributions of alpha diversity values overlap at day

4 and day 8 (Fig 2F). Overall, the behaviour of the alpha diversity after day 8 remains constant,

with a rebound at day 10 and day 11 and a decrease at day 12 observable when q>0.5.
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Tohmeresz states that a diversity can be considered as higher than another when this alpha

diversity is higher than the other for all possible values of q [17]. In our experiment, the condi-

tions NP and day 6 cannot be ordered as the relative diversity rank changes after q = 3. On the

contrary, the rebound after day 8 is consistent for the different values of q. Therefore, we can

state that the alpha diversity is increasing after day 8 in our model. Interestingly, the alpha

diversity at day 12 is systematically below that of day 11 when q>0.5.

Altogether, these results highlight the importance of looking at different values of the

parameter q when interpreting alpha diversity by providing more detailed information about

the structure of highly expressed genes. A biological interpretation of these results is that there

is a consistent behaviour of the uterine transcriptome during pregnancy. On day 8, we

observed a contraction of the alpha diversity, which means that fewer highly expressed genes

are taking more importance. Then, the alpha diversity increases until day 11, highlighting that

new genes are highly expressed.

Exploration of the transcriptome beta diversity

We assessed the beta diversity within our dataset as a function of the q value (q ranging from 0

to 5) of the Tsallis entropy function using the same transcriptomic dataset (Fig 3).

For each time-point, we calculated the beta diversity capturing the variability of the compo-

sition of the profiles. Indeed, one can see the beta diversity as the interindividual variability

within each group. The beta diversity measure provides a single value starting from 1, when

profiles share the same composition, to a maximum equal to the number of profiles when pro-

files are drastically not sharing the same composition.

We observed that the beta diversity of the NP condition increased until q = 1.5 followed by

a clear decrease. The beta diversity curves for the set of profiles at days 4, 6, and 8 tend to stabi-

lize their beta diversity for q> 1.5. Conversely, beta diversity values at days 10, 11, and 12

increase with q. The decrease of NP beta diversity when q is high can be explained by the

nature of the biological samples analyzed. A biological interpretation of these results is that the

uterus is not as specialized as other organs [14], meaning that it expressed a broad variety of

transcripts. The most abundant transcripts captured when q = 5 tend to be the same. In addi-

tion, these genes are expressed more evenly across individuals, compared to what is found for

an intermediate diversity index (e.g., q = 2).

The relative positions of beta diversity curves drop gradually, from NP until day 8, and then

rise from day 10 until day 12. These results suggest that early pregnancy groups tend to

homogenize their gene expression. This also results in the modulation of a group of shared

genes, therefore decreasing the beta diversity. An interpretation of these observations is that

the activation of a group of genes is preparing the potential fetus implantation.

After day 8, the beta diversity rises, a behaviour that can be explained by the increasing

importance of genes needed for the foetus development. The production of a vast panel of cell

types leads to an increase of the alpha diversity but also of the beta diversity, in relation to

slight fluctuations of fetus development between individuals. Interestingly, this statement

holds true for all q values, which means that this behaviour is not dependent on the gene

expression levels.

Fig 2. Alpha diversity analysis as a function of q. Transcriptome analyses were performed on non-pregnant mice (NP), and at

day 4 (D4), day 6 (D6), day 8 (D8), day 10 (D10), day 11 (D11), and day 12 (D12) as reported in (Nehar-Belaid et al. 2016). For

each set of profiles, alpha diversity is calculated for different values of the Tsallis function q parameter: (A) q = 0.5, (B) q = 1

(Shannon), (C) q = 2 (Simpson), (D) q = 3, (E) q = 4 and (F) q = 5. Bars represent the 95% bootstrap confidence interval

calculated from 100 iterations where profiles are simulated from a multinomial distribution following the observed transcript

frequencies.

https://doi.org/10.1371/journal.pone.0266618.g002
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As a conclusion from these results, we found that the alpha and beta diversity analyses are

complementary in the interpretation of this transcriptomic dataset. Indeed, the alpha diversity

depicts how the uterus, dedicated to a specific and critical biological function, is impacted by

stimulation. Our results suggest that it is moving from a relaxed state (NP) to a biologically

constrained state (day 8) and increasing again due to fetal development. The beta diversity

confirms this observation, revealed as early as day 4. Moreover, our analysis shows that fetal

development increases the beta diversity, particularly when looking at higher expressed genes

(q�1.5).

Exploration of diversity indices within differentially expressed gene

signatures

Considering these results obtained on the whole transcriptome datasets, we applied the same

methodology restricted to the list of genes derived from up- or down- regulated signatures

between day 6 or day 12 samples relative to the non-pregnant condition.

For each of these two sub-datasets, three different gene subsets were created: (i) the up-reg-

ulated genes (UP) as compared to NP; (ii) the down-regulated genes as compared to NP (DN);

NP
4
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q

Es
�m

at
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di
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rs
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Fig 3. Beta diversity analysis as a function of q. Transcriptome analyses were performed on non-pregnant mice

(NP), and at day 4 (D4), day 6 (D6), day 8 (D8), day 10 (D10), day 11 (D11), and day 12 (D12) as reported in Nehar-

Belaid et al. 2016. For each set of profiles, beta diversity is calculated with DivEst function for q values between 0 and 5

with a step of 0.5. A beta diversity value of 1 corresponds to profiles having the same diversity for the given time-point.

https://doi.org/10.1371/journal.pone.0266618.g003
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and (iii) non differentially expressed genes (OTHER). The gene subsets were derived from the

results obtained by Nehar-Belaid et al. [11]. The 31 down-regulated molecular signatures were

used to define the collection of down-regulated genes (DN) while the 33 up-regulated molecu-

lar signature were used for the up-regulated genes list (UP). Other contains the remaining

genes (see S2 Fig and Material and Method section). Then, we compared the Shannon and

Simpson alpha diversity indices obtained for day 6 versus NP, and for day 12 versus NP.

As shown in S4 Fig, the DN and UP subsets showed a similar behaviour for the day 6 vs. NP

comparison. This observation is consistent with the overall analysis depicting a decrease of

diversity in day 6 sample group compared to NP sample group. Even if the absolute and rela-

tive changes are modest, they remain meaningful. Noteworthy, the OTHER subset shows a

slight increase at day 6 relative to NP, considering that it summarizes the behaviour of 10-fold

more genes than UP and DN subsets. Again, the observed decrease of alpha diversity at day 6

can be explained by the constraints applied on the uterus when fertilization and implantation

of the fetus occur (see section Exploration of the alpha transcriptome diversity indices).

In contrast, the day 12/NP DN and OTHER subsets see their alpha diversity increasing at

day 12 compared to NP, in line with the previously observed overall behaviour, when the UP
subset decreases at day 12 (S5 Fig). This latter observation is remarkable since the UP subset

behaviour was hidden by that of DN and OTHER subsets in the global analysis.

Altogether, these analyses suggest that at day 6, both biological processes that comprise up-

(cell-cycle & proliferation) and down- (immunological processes) regulated genes follow the

same trend for diversity decrease related to genes associated with these biological processes

being activated. On day 12, the overall diversity increase can be explained by an increase in cell

population diversity due to the fetal development and the migration of immunological cells,

including regulatory T-cells, immature dendritic cells, myeloid-derived suppressor cells

(MDSCs), NK or NKT cells [18–22]. On the contrary, the UP subset behaviour remains stable

between days 6 and 12, which can be explained by the cell cycle and proliferation mechanisms

staying at work at the level of the organism.

We then looked at the comparative beta diversity analysis. The beta diversity remains very

low for all subsets in the day 6/NP comparison (Fig 4A). This means that individual transcrip-

tomic profiles are not diverging much from each other and are similar in terms of transcript

composition. Interestingly, for the day 12/NP comparison (Fig 4B), the beta diversity of DN
subset shows a strong increase at day 12, when that of UP samples shows a modest increase

rapidly reaching a plateau. This can be explained when considering our previous observation

related to the strong increase of alpha diversity at day 12 for DN subset: along with fetal devel-

opment, various immune cell populations are recruited to ensure a proper uterine tolerogenic

environment in an asynchronous manner explaining why individual samples tend to diverge

from each other.

Altogether, we conclude here that beta diversity analysis of transcriptome datasets is inter-

esting as it provides novel insights on the behaviour of samples or groups of samples consider-

ing different levels of transcript abundance. The estimation of alpha and beta diversities for

different values of q shown patterns that differ when giving more or less influence on the most

abundant transcripts. This implies changes in terms of transcripts composition and number,

and inter-individual variability. These changes can be explained biologically and therefore

enrich the analysis of such datasets.

On the use of beta diversity to decomplexify transcriptome datasets

Based on these last results, we assessed whether the estimation of the beta diversity could be

used as a statistical, rather than heuristic, means to reduce the datasets to a minimum number
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of transcripts, while conserving a maximum of information. Therefore, we looked at finding

the maximum of the beta diversity within the dataset while ranging different values of q.

Indeed, beta diversity describes how much profiles in a set of profiles are different in terms

of transcript abundance. Hence, this approach can be used to filter out transcripts that partici-

pate less to the diversity of dataset and considered as less informative. Therefore, we searched

for the value of q that maximizes the beta diversity for the whole dataset and used this qmax to

calculate the effective number of transcripts that should be retained in each set of profiles.

To do so, we first performed a beta diversity analysis to determine the qmax value reaching

the maximum beta diversity across the entire dataset. The beta diversity reached a maximum

of 1.08 when q = 1.88, thus setting qmax to 1.88. Of note, this value lies between the Shannon

(q = 1) and Simpson (q = 2) diversity indices. Then, as detailed in the Material & Methods sec-

tion, the alpha diversity qmax of each set of profiles at qmax is estimated providing the m tran-

scripts to retain for each set of profiles. Transcripts are ordered based on their expression level

and the first m most-expressed transcripts are selected. Finally, the retained genes from the dif-

ferent set of profiles were merged into a single list of 2,161 transcripts.

To test the relevance of this approach, we compared the projections obtained by two princi-

pal component analyses (PCA) applied both on the original transcriptomics dataset and on the

dataset restricted to the 2,161 selected transcripts. As shown in Fig 5, the positioning of sample

groups on the first two components is very consistent between the two analyses. This indicates

that the information discriminating sample groups is very well captured using this selected

gene list, while being six times smaller than the original dataset.
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Fig 4. Beta diversity analysis. For each UP (red), DN (green), and Other (black) subsets (see S2 Fig and Material and Methods section), the beta diversity was

calculated across profiles belonging to NP (dashed line), and D6 (A) or D12 (B) samples (plain line), respectively, with the DivEst function as a function of q
comprised between 0 and 5 with a step of 0.5. A value of 1 means that profiles at this time-point are similar in terms of diversity, thus equivalent to their

average.

https://doi.org/10.1371/journal.pone.0266618.g004
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Our results are similar to those obtained by Ogata et al. in a very different setup [23]. In

their study, the authors evaluated the relationship between environmental changes and the

amount of transcriptome change in silkworm fat-body tissues cultivated with phenobarbital.

The authors showed that the transcriptome diversity, evaluated by the Shannon entropy,

decreases under drug treatment and that the 500 genes with the highest relative frequency well

summarized the overall transcriptome behaviour. However, their approach for determining

this number of essential genes was heuristic, while the advantage of the approach that we pro-

pose relies on a systematic maximization of a mathematically defined diversity index.

Conclusions

Recently, with the advent of single-cell RNA analysis, diversity, including Tsallis entropy func-

tion, and similarity indices were implemented for characterizing the heterogeneity of tumour

cells, implying potential consequences on treatment efficacy [24, 25].

Information theory-based method has also been evaluated to decipher high-level structures

of transcript abundance profiles of whole organs [14]. In this study, the authors used the Shan-

non entropy to characterize the diversity of transcriptomes coming from 28 different human

tissues. The Shannon entropy was also implemented to study gene variation detection in mul-

tiple samples and shown its complementarity with more traditional approaches [26]. In the

last two cases, diversity was measured using the Shannon entropy, a well-known equation in

scientific fields like physic or informatics to provide a measure of the quantity of information

in a system.

A B

Fig 5. Impact of transcript filtration based on the beta diversity measure. Transcriptome analyses were performed on non-pregnant mice (NP), and at

days 4, 6, 8, 10, 11, and 12 post coitum as reported in Nehar-Belaid et al. 2016. Principal component analysis was performed on the original dataset

comprising 12,475 transcripts (A), and on the decomplexified dataset comprising the 2,161 transcripts obtained based on beta diversity maximization

method described (B).

https://doi.org/10.1371/journal.pone.0266618.g005
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In this work, we generalized the application of information theory diversity indices initially

described by Martinez and Reyes-Valdes [14] to investigate the alpha and beta diversities of

murine pregnancy transcriptome datasets that we previously produced and analyzed [11] in

function of a parameter q.

This previous work, done at the level of genes or gene signatures, explored the transcrip-

tional changes during fetal development at different time-points post coitum (days 4, 6, 8, 10,

11, and 12) as compared to non-pregnant mice (NP). This study assessed how the immunoreg-

ulatory balance between regulatory and effector T cells is shaped and revealed striking similari-

ties taking place at the very first days after tumour or embryo implantation, suggesting that the

mechanisms that protect mammalian fetuses from immune attack are diverted during tumor

development. Indeed, in both situations, up-regulated signatures are mostly linked to DNA

and RNA synthesis, ribosome, proteasome, and cell cycle when down-regulated signatures are

related to immune system processes [11].

Our generalization relies on the use of the Tsallis entropy function functions that allow esti-

mating diversity indices with relative consideration of low- vs. high-expression genes [10]. We

described the behaviour of the overall transcriptome data showing an initial contraction of the

alpha diversity at day 8 followed by an increase as compared to non-pregnant mice. This phe-

nomenon can be explained by the contraction of gene expression toward a common set of

genes related to pregnancy in the early phase; in the later phase, high-expression genes tend to

be less synchronously expressed across samples.

We then focused our analysis on the genes belonging to immune system-related downregu-

lated or cell cycle-related up-regulated gene signatures at days 6 and 12 of pregnancy as dem-

onstrated in our initial study [11]. Interestingly, on day 12, we reveal a different behaviour of

the up-regulated genes, the diversity of which decreases as opposed to the overall transcrip-

tome change related to fetus development, when both up- and down- regulated gene diversity

values decrease at day 6. We thus demonstrate the advantage of combining a global diversity

index approach with gene signature selection to reveal transcript subset differential behaviour

related to a biological process.

Finally, we propose an approach relying on the maximization of beta diversity to extract the

most informative transcript subsets from whole transcriptome datasets to improve transcrip-

tome analysis. Although ignoring up to 85% of the original information can be subject to

debate, this approach certainly offers a means of reducing the necessary number of transcripts

to consider, thus reducing computing time and power for machine-learning approaches, for

example. It should also be effective to reduce the complexity of datasets before unsupervised

analysis like independent component analysis (ICA) or to serve as a feature selection step in

machine learning approaches, reducing the noise produced by consistently low-expressed

genes.

Supporting information

S1 Fig. Data quality by PVCA before and after normalization. Dataset is tested for the pres-

ence of technical biases using principal variation component analysis (PVCA). Seven possible

sources of batch effect were evaluated, in addition to the ‘kinetic’ biological parameter. Resid-

ual is the part of the variance not explained by the different parameters tested (A). After nor-

malization, 96.13% of the variance is explained by the kinetic, demonstrating the low impact of

technical sources on the dataset (B).

(PDF)

S2 Fig. E6 data subset creation. A: Genes are extracted from day 6 regulated molecular signa-

tures from Nehar-Belaid et al. 2016. B: Genes belonging to both 33 UP and 31 DN gene lists
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are dispatched based on their eBayes score calculated by comparing gene expression at day 6

to Controls (NP). C: The OTHER subset is created by removing UP and DN subset from the

full dataset. Similarly, genes from the 81 down- and 42 up-regulated signatures at day 12 were

extracted to build the DN (685 genes), UP (752 genes) and OTHER (10,938 genes) gene lists.

(PDF)

S3 Fig. Enrichment analysis of day 6 and 12 compared to NP DN, UP and OTHER subsets.

GSEA analysis provided statistical analysis of gene expression biases in the DN (A, D), UP (B,

E) and OTHER (C, F) subsets constructed as described in S2 Fig and Material and Methods

section. A, E: DN subset shows significant enrichment for down-regulated genes (q-

value<10−7). B, E: UP subset shows significant enrichment for up-regulated genes (q-

value<10−7). C, F: OTHER subset shows no enrichment (q-value>0.05).

(PDF)

S4 Fig. Alpha diversity analysis of day 6/NP DN, UP and OTHER subsets. For each subset,

Shannon (A, C and E) and Simpson (B, D and F) alpha diversity were calculated as the average

of alpha diversities of individual profiles for the 6/NP DN (A and B), UP (C and D) and

OTHER (E and F) subsets. Bars represent the 95% bootstrap confidence interval calculated

from 100 iterations where profiles are simulated from a multinomial distribution following the

observed transcript frequencies.

(PDF)

S5 Fig. Alpha diversity analysis of day 12/NP DN, UP and OTHER subsets. For each subset,

Shannon (A, C and E) and Simpson (B, D and F) alpha diversity were calculated as the average

of alpha diversities of individual profiles for the 12/NP DN (A and B), UP (C and D) and

OTHER (E and F) subsets. Bars represent the 95% bootstrap confidence interval calculated

from 100 iterations where profiles are simulated from a multinomial distribution following the

observed transcript frequencies.

(PDF)

S1 Graphical abstract.

(PDF)
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Investigation: Nicolas Dérian, Hang-Phuong Pham, Djamel Nehar-Belaid, Nicolas Tchitchek,

David Klatzmann, Vicaut Eric, Adrien Six.
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