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Abstract
Hand washing preparation can be considered as one of the main strategies for reducing the risk of surgical site contam-

ination and thus the infections risks. Within this context, in this paper we propose an embedded system able to auto-

matically analyze, in real-time, the sequence of images acquired by a depth camera to evaluate the quality of the

handwashing procedure. In particular, the designed system runs on an NVIDIA Jetson NanoTM computing platform. We

adopt a convolutional neural network, followed by a majority voting scheme, to classify the movement of the worker

according to one of the ten gestures defined by the World Health Organization. To test the proposed system, we collect a

dataset built by 74 different video sequences. The results achieved on this dataset confirm the effectiveness of the proposed

approach.
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1 Introduction

Nowadays, about 722,000 patients yearly in the world are

affected by a healthcare associated infection; among them,

10% of the infected patients eventually die [1]. About 40%

of healthcare associated infections are caused by an

improper hand hygiene among healthcare workers (here-

inafter only workers), which clean their hands less than half

of the time they should [2]. Thus, it becomes more and

more important for the public safety the adoption of

strategies to improve hand hygiene, so as to reduce the

healthcare infection rates.

Within this context, it is particularly relevant the sur-

gical hand preparation, aimed at minimizing the risk of

surgical site contamination with microorganisms originat-

ing from the surgeon’s hands.

In 2009, the World Health Organisation (WHO) released

guidelines on Hand Hygiene in Healthcare [3] to be

adopted as a standard procedure for surgical hand washing;

the procedure is composed of a sequence of well-defined

gestures (detailed in Table 1) that the worker has to per-

form in a predefined order and with each gesture having a

minimum time duration.

To evaluate the compliance with hand hygiene proce-

dure, three main techniques can be adopted [3]: (1) direct

observation of practice; (2) self-report of healthcare

workers and (3) indirect calculation, based on the mea-

surement of the products’ usage. According to Haas and

Larson [4], self-report is not really accurate, while indirect

calculation based on the measurement of products does not

provide information of non-compliance. On the contrary,

direct observation is considered the gold standard, since it

provides all the information required for the analysis;

unfortunately, this task is typically carried out by human

observers, thus it is time-consuming and expensive.

To reduce the costs associated with direct observation,

in the last years some automatic or semi-automatic solu-

tions to allow a machine to guarantee direct observation

during the hand-washing [5] have been proposed. For
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Table 1 Gestures of the surgical handwashing procedure

Order Abbrv. Description Depth Frame

1 W
Wet the hands, the movement consists
in getting wet from the hand up to the
elbow.

2 N
Clean the area under all nails through
a nail cleaner.

3 SN
Using a sponge, scrub the area under
and over the nails.

4 SH
Using a sponge, scrub the palms, the
space between the finger and the back
of both hands.

5 S Get soap from a dispenser.

6 P Rub the palms of the hands together.

7 IF
With intertwined fingers, rub the in-
terdigital space.

8 BH
Rub the back of both hands with the
palm of the other.

9 F

Wrap each finger with the other hand
and rub it in its entirety with circular
movements. The gesture is repeated for
both hands.

10 FA

Wrap the wrist with the other hand,
with slow circular movements rub the
arm in its entirety slowly rising to-
wards the elbow. The gesture is re-
peated for both arms.

11 W
Wet the hands, the movement consists
in getting wet from the hand up to the
elbow.

For each gesture, we report the position in the sequence, the abbreviation used in the paper, a brief description and a representation picture. The

11st gesture is the repetition of the first one
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machine-based direct observation, it is required to have a

system that can (1) monitor the compliance with hand

hygiene procedure and also (2) provide a real-time feed-

back to the worker during the hand washing procedure,

allowing workers to improve the gestures and then reduce

the risk of infection for the patient.

Among the most promising methods, video analytic has

surely played a key role. Indeed, one of the most important

milestones in this field has been the introduction of camera

sensors for data acquisition, as well as the development of

algorithms based on artificial intelligence, typically tradi-

tional machine learning, for the automatic analysis of the

acquired images and videos [6] [7] [8]. Nevertheless, the

literature is still quite limited, and a definitive solution to

the problem has not been found yet.

In this paper, we propose a method based on deep

learning for monitoring the surgeon handwashing proce-

dure. The proposed system has been designed to be applied

to both younger staff training and surgeon hand washing

evaluation. Indeed, it is able to analyze the sequence of

images acquired by a depth sensor and to classify the

gestures performed by the worker in real-time. Moreover,

the proposed method can provide a compliance feedback

score, with respect to the single gesture, in terms of com-

pliance with the guidelines. The continuous feedback about

any single gesture allow the worker to realize what the

actual performance are, so as to immediately adapt the

movement in case of low conformance visual feedback.

This approach is particularly relevant during the training

phase, allowing the trainees to immediately recognize

possible errors, but also to engage surgeon to respect the

procedure timely.

With respect to state-of-the-art, we introduce two main

novelties: (1) we propose a novel method for continuous

surgeon handwashing procedure evaluation based on deep

learning; the gestures are analyzed and classified by means

of a Convolutional Neural Network; furthermore, the

temporal information is taken into account via an over-

lapped sliding window; indeed, the decision is not taken by

evaluating the single frame, but instead by considering a

sequence of frames with a majority voting rule; (2) we built

a dataset composed of 74 different video sequences; the

dataset contains the sequence of gestures officially defined

by the Hand Hygiene in Healthcare guidelines; the dataset

is freely available under request for benchmark purposes1;

according to our knowledge, this is the first dataset on this

topic made publicly available.

The paper is organized as follows: Sect. 2 introduces

related works. In Sect. 3, we detail the proposed system

fd98, together with the experimental setup and the

description of our dataset. In Sect. 5, we define the metrics

used in our experimentation and report the obtained results.

Section 4 describes how the system works. Finally, we

draw some conclusions and future work in Sect. 6.

2 Related work

Among the methods proposed in the last years for direct

observation, we can identify two main approaches,

depending on the type of sensors used for the measure. In

the first category we can identify the systems employing a

visual sensor and a video analytic algorithm that auto-

matically analyze the gestures performed by the worker

during the hand-washing procedure [9]. The second cate-

gory includes those systems adopting other kind of sensors,

typically wearable, such as smart watches [10]. Harmony

[11] is an example of system belonging to the latter cate-

gory. It is a hand wash monitoring system based on dis-

tributed sensors: each worker wears a smart watch, able to

collect information related to linear acceleration, gravity,

and gyroscope signals. Furthermore, a set of Bluetooth

devices is put close to soap dispensers and in areas of

interest, such as wash zones and patient bed zones. The

smart watch communicates with sensors for dynamic

activation and deactivation and analyzes the movement of

the worker so as to identify and evaluate her/his gestures.

The system is invasive and potentially expensive, since it

requires the introduction of a smart watch for each worker

to be monitored. Even if this is effective for generic

healthcare workers, it can not be worn by surgeons, due to

hygiene rules inside the operating rooms. Thus, we do not

consider this as well as other similar approach like [12] as

feasible for our purposes.

An interesting system is RFWash [13]. In the paper,

authors propose use of a radio-frequency (RF) commercial-

off-the-shelf mmWave sensor for evaluating the 9 gestures

the WHO recommended for alcohol-based handrub. The

authors characterize the challenges of recognizing back-to-

back hand gestures using an RF-based gesture recognition

processing pipeline. Indeed, as evident, the lack of pauses

between gestures makes segmentation difficult, which, in

turn, affects the performance of the subsequent classifica-

tion component. For that reason a new sequence learning

approach that performs segmentation and recognition

simultaneously has been proposed. The model is trained

using continuous stream of minimally labelled RF data

corresponding to naturally performed handrub gestures.

The RFWash performance have been carried out using a

dataset of 1,800 gesture samples collected from ten sub-

jects over 3 months. A deep architecture has been defined

including Convolution layers followed by Max Pooling

(2x2), Fully Connected (FC) and Bidirectional LSTM

layers, aiming at extracting spatiotemporal gesture features1 the dataset is available at this link https://mivia.unisa.it/datasets/
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from input RD frames; also, a softmax layer and Connec-

tionist Temporal Classification (CTC) is employed to pre-

dict the gesture sequence. From the performance point of

view, with sequences of a duration of 5s per gesture the

mean gesture error rate (GER) is about 11% while

increasing the duration to 10s per gesture the mean GER

drop to 7.41%.

In [14], a system for the automatic analysis of the hands

after the washing has been proposed: the hands are washed

with soap mixed with UV reflective powder; the operator

has to insert the hands inside a case equipped with ultra-

violet lighting and a digital camera. The presence of

ultraviolet lighting leads the skin to show ultraviolet light

only on the treated surfaces. The images acquired by the

camera are then automatically analyzed by a segmentation

algorithm, and the contour of the hand is determined by

evaluating the green intensity channel. The green channel

pixels belonging to the hand are partitioned in three clus-

ters using c-means clustering algorithm. The optimal

threshold between the intensity of clean and dirty areas is

extracted using these clusters, to evaluate a percentage of

dirty area and the remaining percentage of clean area. Even

if based on a camera and on visual inspection, the system,

like the previous one, is still quite invasive, since it requires

the adding of UV reflective powder in all the soap dis-

pensers; furthermore, the introduction of the UV-lighting

case in the equipment could be a further source of con-

tamination, infringing hygiene hand-washing rules for

operating rooms.

In [8] a camera sensor put on top of the washing

machine is introduced and a video analysis algorithm is

proposed to automatically evaluate the quality of the

washing procedure. This is among the first methods in

which the sequence of gestures performed by the surgeon

has been automatically analyzed, thanks to the introduction

of a machine learning approach. Indeed, the segmentation

step combines information related to both color and

motion; then, a tracking procedure based on a single multi-

modal particle filter and a k-means-based clustering tech-

nique is adopted to track both hands and arms. Finally, a

SVM ensemble classifier has been employed for recog-

nizing the specific gesture. The use of a traditional camera

introduces several issues related to variation in illumination

conditions, as well as to the presence of the water. The

experimentation has been carried out on 6 different hand

poses with detection rates performance ranging from about

86% up to about 97%.

In [6], Xia et al. improved the performance achieved by

[8] extending the number of poses to recognise from 6 to

12 (using poses for left and right hands see 1) adopting a

SoftKinetic DS325 camera and applying Linear Discrimi-

nant Analysis (LDA) classifier. The performance on single

frame pose estimation has been evaluated using a Leave-

One-Person-Out (LOPO) subject-independent cross-vali-

dation protocol, considering both RGB and depth images.

To address the high dimensionality of the HOG (Histogram

of Gradient) features (2916 dimensions), in each round of

the cross-validation the original HOG features are pro-

jected in lower dimensional subspace using the Principal

Component Analysis (PCA). According to their analysis

the LDA classification cost about 0.0139 ms on an Intel i7

with a 3.70 GHz clock. The recognition rate on single

frame have been of 94.80% on RGB channel and 92.35%

for depth channel. Finally a further experiment has been

executed considering a video-pose estimation with a slide

windows of different sizes and using a majority voting on

single frame classification. With a windows size of 20

frames the achieved recognition rates are 99.37% and

98.31% for the two channels respectively. Authors declared

that the recognition rate is 100% when the size of the

windows is equal to whole video of the single poses

(Fig. 1).

Many of the proposed solutions requires computing

powers such one provided by modern PC and those based

on RGB cameras, due to the different environmental con-

dition present tuning and setup problems when installed in

different surgery blocks that prevent their application in

real context. In [7] the authors use a depth sensor, namely a

Kinect sensor, instead than a traditional camera. The sys-

tem they propose, calledWashInDepth, is able to record the

washing procedure and determine if the subject has cor-

rectly complied with the prescribed guidelines. A back-

ground subtraction is applied and a set of hand-crafted

features is extracted and then used to fed a decision tree

classifier. The experimentation has been carried out with

the involvement of 15 participants for two different sce-

narios. in the person independent scenario (where data

from 10 participants were used for training and 5 for

testing) the best performance achieved has been of about

55%. In the person depended scenario (Wherein, both the

training and test data is from the same person) the best

achieved performance has been of about 97%. Both per-

formance have been achieved with a 15 � 15 block size

and smoothing windows of length equal to 50. Another

important aspect of the WashInDepth solution is the pos-

sibility to run an a computer stick.

This kind of approaches, exploiting camera and video

analytics solutions, represent a very important milestone in

the scientific literature in this field. Anyway, although the

topic is very relevant, as demonstrated by the main rec-

ommendation from the WHO for fighting the recent coro-

navirus pandemic, we can not find a wide literature; this is

probably due mainly to the lack of dataset publicly avail-

able to be used for training, but also for benchmarking

purposes. Indeed, in the era of deep learning, a huge

amount of data becomes essential [15].
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To face with this issue, we can surely inherit the wide

literature available in gesture recognition [16–19]: indeed,

each movement to be performed from the worker can be

seen as a specific class of gesture to be recognized and

analyzed. Within this context, the deep learning plays a

crucial role, since most of the algorithms proposed in the

last few years are based on this new frontier of artificial

intelligence. Although there is not a standard taxonomy for

partitioning the methods for gesture recognition, we can

identify two interesting contributions, proposed respec-

tively in [20] and [21]. Their taxonomy is mainly based on

the type of sensor used for analysing the movement: vision-

based [22], glove-based [23] and depth-based.

According to the above mentioned surveys, the first two

approaches are not promising and natural enough, while the

most promising methods available in the literature are

based on depth cameras, which allows to exploit the third

dimension related to the depth. This conclusion is still valid

in our specific problem; indeed, the gloves can not be used

for hygiene reasons and the vision based system suffers for

environmental conditions; vice-versa, depth sensor, able to

also evaluate the three dimensional space, seems to be the

most suited sensor.

Independently on the sensor adopted for acquiring the

set of images, the best results in gesture recognition are

typically obtained by using convolutional neural networks

(CNNs), which achieve outstanding results outperforming

‘‘non-deep’’ state-of-the-art methods [21]. Although a lot

of different CNNs has been proposed in the last years

[24, 25], the new trend seems to be mainly related to the

introduction of recurrent neural network (RNNs), such as

LSTM, GRU or TCN [26, 27], able to automatically

encode the temporal information, which is evidently a very

important and not negligible feature when dealing with

gestures evolving during the time.

Anyway, the main drawback lies in the amount of data

required for training when dealing with RNNs, which is

typically higher with respect to the CNNs counterpart. This

is an important consideration, since in our specific problem

the amount of data is quite limited.

3 Methods and materials

3.1 Dataset

The sequence of specific gestures to be performed during

the hand washing procedure depends on several factors,

including the context (e.g., patient care, visit, surgical

operation), the type of soap, the use of specific tools like

nail cleaners or sponges and so on. In this paper, we focus

on the surgical hand washing procedure, as described in

[28]. The procedure includes eleven different gestures,

which need to be performed in a given order; the details of

each gesture are reported in Table 1, together with an

abbreviation of the gesture itself, which will be used

hereinafter in the paper. Gestures 1 and 11 are exactly the

same.

The dataset we propose was collected with the support

of professors from the Department of Medicine, Surgery

and Dentistry - ‘‘Schola Medica Salernitana’’ of the

University of Salerno, Italy.

The procedure was simulated by 53 different volun-

taries, equally distributed between males (27) and females

(26). The participants also had different height, so implying

that the procedure was performed at different distances

with respect to the camera. All the participants signed an

informed consent. Each voluntary was properly trained by

a medical doctor before performing the procedure; fur-

thermore, during the procedure itself, a video with the

specific gesture to be performed was shown to the worker

(see Sect. 4 for more details). Also, each sequence was

validated by a doctor before its insertion into the dataset.

The camera is mounted at a height above the washbasin

of Dplane ¼ 0:9m, in a zenithal position; the top view allows

for the movements of the hands and of the arms without

any occlusions; furthermore, the chosen height also entirely

Fig. 1 the 12 poses used in [6]
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captures the area where the worker has to move for

washing his/her hands.

The camera used for the acquisition of the dataset is an

Intel� RealSenseTM Depth Camera D435. The camera is

controlled by a NVIDIA� Jetson NanoTM computing

platform equipped with Quad-core ARM� CortexTM-A57

CPU, a NVIDIA MaxwellTM with 128 core NVIDIA

CUDA� GPU and 4GB LPDDR4 64-bit of RAM running

Ubuntu operating system. The system was used for build-

ing the dataset and for interpreting the worker gestures

providing real-time feedback using the designed GUI. The

dataset consists of 74 depth video sequences; each video

contains the sequence of the ten gestures, obtained by a

continuous capture of the whole hand washing procedure

performed by a worker. The depth images are represented

in 16 bits, where each pixel represents the distance from

the camera (in millimeters). Each image is captured at a

resolution of 640� 480, and the acquisition is performed at

15 frames per second. Sample depth images for each ges-

ture are shown in the rightmost column of Table 1.

The dataset was partitioned into training and test set.

The training set is composed of 50 sequences recorded by

41 different subjects; the test set includes the remaining 24

sequences, performed by 12 different subjects. In the

whole, the dataset consists of more than 131, 000 frames,

as reported in Table 2. The table also reports for each

gesture the number of frames and the average duration. We

can note that the average duration of the gestures ranges

from short gestures (4 seconds), such as W and S, to long

gestures (more than 20 seconds), such as N and SH.

3.2 Proposed method

In this paper, we formulate the problem of assessing the

conformance of the hand washing procedure in terms of a

gesture recognition problem. In more details, we train a

classifier to associate the frame to one of the ten classes,

each class being associated to a gesture.

Each image is cropped to 340� 340, so as to only deal

with the central region of the image, containing the hands

of the worker. Furthermore, a bicubic interpolation is

applied for rescaling the image to 170� 170. To only

isolate regions of interest and to remove the background

from the analysis, we apply a threshold on each image;

with more details, we consider as background all the pixels

in the image at a distance higher than Dth, where

Dth ¼ Dplane � �. In our experiments, � ¼ 1cm. Finally, we

halve the size of samples (from 16 bits to 8 bits) and

rescale the values as follows:

srði; jÞ ¼
M � ð1� soði; jÞ

Dth
Þ if 0� soði; jÞ�Dth

0 otherwise

8
<

:
; ð1Þ

where soði; jÞ and srði; jÞ are the values of the (i, j)-th pixel

of the image before and after rescaling, respectively.

The images preprocessed as described above are fed to a

classier. Five different architectures are considered in our

experimentation, namely VGG19 [29], ResNet50 [30],

Xception [31], MobileNet [32] and NASNet [33]. The

architectures are chosen to take into account both different

dimensions and different typologies of layers. In particular,

we considered: (1) networks of different dimensions,

namely large (VGG19, NASNet), medium sized

(ResNet50, Xception) and small networks (MobileNet); (2)

networks based on different concepts, from traditional

convolutional layers (VGG19, NASNet) to more modern

blocks inspired by Network-In-Network architectures,

respectively based on either residual blocks (ResNet50) or

on depthwise separable convolutional layers (Xception,

MobileNet).

During the training procedure, independently of the

specific architecture considered, we applied a data aug-

mentation technique to increase the robustness of the

method with respect to the following main situations

(Fig. 2): (1) the worker can be either right-handed or left-

handed; (2) while washing the hands, the worker could

assume oblique position with respect to the washbasin.

Starting from this consideration, we augmented the dataset

with (1) flipped and (2) rotated images. The rotation was

performed by 10�, 20� and 30� in both directions. We did

not consider larger rotations since they cannot be physi-

cally done by the worker.

Table 2 Overview of the dataset

Gesture Train set Test set

/# of frames / duration /# of frames / duration

W 3236 / 4s 1448 / 4s

N 17,057 / 23s 5744 / 16s

SN 10,850 / 14s 3906 / 11s

SH 16,198 / 22s 6096 / 17s

S 3149 / 4s 1109 / 3s

P 6645 / 9s 2943 / 8s

IF 6424 / 9s 2856 / 8s

BH 14,000 / 19s 5579 / 15s

F 7492 / 10s 2886 / 8s

FA 10,464 / 14s 3683 / 10s

Total 95,515 / 128s 36,250 / 100s

For each gesture, the number of frames and the average duration of

each gesture is provided for both training and test sets
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4 How the system works

The system was designed to work in real-world environ-

ments. To design the graphical user interface (GUI) of the

system, we started with an observation period of medical

staff in the frame of the BIPS national research project.

During this observation period, we noted medical staff

habits and discussed with them several possible GUI

alternatives. The most appreciated is the one presented in

Fig. 3. An automatic activation function was developed to

facilitate the access to the system: it is required to maintain

the hands under the camera for at least 3 s and the system

starts.

The GUI is divided into three areas. Going in clockwise

order, in the upper-left corner area the real-time video of

the deep camera is showed. For facilitating the gesture

recognition, a white box is impressed over the video, so

that the medical staff can easily center his/her hands under

the camera at the right distance. In the upper-right corner, a

recorded video of the actual gesture to execute according to

the WHO procedure is presented.

The bottom-half of the GUI is dedicated to the real-time

system feedback. The area is divided into twelve rows. The

first row, marked in blue, is a progress bar that indicates the

remaining time for completing the actual gesture. This is

important since each gesture has a specific duration as

defined by the WHO guidelines; the next tens rows provide

the real-time gestures recognition feedback and finally the

bottom row report the performance: the actual achieved

score (updated at the end of the procedure), the daily and

weekly best scores. This gaming part was appreciated by

the medical staff.

The most relevant part of the GUI is the one dedicated to

the single gesture feedback. Differently from what the

other systems offer, exploiting the system architecture

based on ten different classifiers and the selected hardware

platform, our solution can show in real-time the level of

classification of the gesture actually recognised by the

system. To advise the medical staff with the gesture to be

Fig. 2 Example of images generated after data augmentation. The

first column contains the original image (top) and the flipped version

(bottom). From the second to the last column, we can find rotated

versions of the first image; from left to right, counterclockwise and

then clockwise by 10�, 20� and 30�

Fig. 3 Handwashing system

GUI: Real-time feedback (Left);

Overall performance (right)
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performed, its name is highlighted in yellow (e.g., in Fig. 3

the Interdigital fold has to be executed). The level of

compliance of the gesture is provided by a green bar: the

longer the bar, the higher is the compliance with the ges-

ture described by the WHO guidelines (full length mean

100% compliance).

The system provides a visual feedback about misclas-

sifications too. Indeed, during the specific gesture execu-

tion, the GUI shows (through red bars) the level of

classification of the other gestures. Since this happen in

real-time, the user immediately realises that the performed

gesture is not properly recognised by the system and try to

improve its execution in the remaining time. Also this

feature was considered very useful from the medical staff.

Finally, when all the gestures were executed, the overall

performance is summarised by the GUI (right part of

Fig. 3) so that the medical staff next time can improve the

execution of those gestures with a lower level of recogni-

tion. The Score value is calculated as the average of the

estimated accuracy of the gestures.

5 Experimental results

In this section, we present the performance achieved by the

proposed system for conformance assessment of the hand

washing procedure carried out by an healthcare worker. We

assess the impact on performance of the different choices

made during the design phase of the proposed approach by

considering two main dimensions of analysis: the deep

network architecture and the temporal dimension

exploitation.

As regards the first point, we consider different state-of-

the-art deep neural network architectures and for each of

them we evaluate performance using different optimizers,

loss functions and initialization procedures. Then, we

select the network architecture and configuration providing

the highest performance on the test set as the base network

for the successive studies related to the remaining dimen-

sion of analysis.

As for the second point, we explore the beneficial

impact that may derive from the exploitation of the tem-

poral information, which allows us to make the classifi-

cation decision on a sequence of contiguous frames instead

of a single frame. In this direction, we consider the

aggregation by majority voting, or weighted voting, of the

outputs provided by a classifier on all the frames within a

sliding window.

The remainder of the current section is organized as

follows: in Sect. 5.1 we describe the indices used to mea-

sure performance; then, we dedicate a specific subsection

to each dimension of analysis: the deep network

architecture and the temporal dimension exploitation are

discussed in Sects. 5.2 and 5.3, respectively.

5.1 Performance indices

Depending on the level of detail and the goal of the anal-

ysis, we use several indices to assess the performance

achieved by the investigated methods. In particular, the f1
score is adopted as a single global performance index that

compares and ranks different solutions; we also report the

Precision and Recall to provide additional information on

the type of the errors, i.e., false positive and false negative,

respectively. The above three indices are calculated as:

f1 ¼
1

P
l2L ŷlj j

X

l2L
ŷlj jF1ðyl; ŷlÞ ð2Þ

Recall ¼ 1
P

l2L ŷlj j
X

l2L
ŷlj jRðyl; ŷlÞ ð3Þ

Precision ¼ 1
P

l2L ŷlj j
X

l2L
ŷlj jPðyl; ŷlÞ ð4Þ

where:

F1ðyl; ŷlÞ ¼
2 � Pðyl; ŷlÞ � Rðyl; ŷlÞ
Pðyl; ŷlÞ þ Rðyl; ŷlÞ

;

Pðyl; ŷlÞ ¼
yl \ ŷlj j
ylj j and Rðyl; ŷlÞ

¼ yl \ ŷlj j
ŷlj j

ð5Þ

L is the set of the labels, y and ŷ are the sets of pre-

dicted(sample, label) and true(sample, label) pairs,

respectively, yl and ŷl the subsets of y and ŷ with label l.

We also use the box plots (see Fig. 4 to briefly recall the

elements of the box plot representation) as a tool for

studying the impact over performance when setting specific

values for the various parameters of the deep networks. In

particular, we use this representation to graphically depict

the collection of values of the f1 score that are obtained by

setting a value for a specific method parameter and by

varying all the remaining parameters.

Finally, we use the 10� 10 confusion matrix for

reporting the performance for each gesture class to focus

on the ability of the system to distinguish some hand

gestures from others.

5.2 Deep network architecture

To select the classifier used as base for the successive

design stage regarding the exploitation of the temporal

information, we consider various possible choices of the

deep network architecture, the optimizer, the loss function,

the training initialization procedure. In particular, as for the
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deep network architecture, we consider MobileNet, NAS-

Net, ResNet50, VGG19 and Xception. As optimizer, we

consider the following four choices: Adam, Adadelta,

SGD, RMSprop [34]. We investigate also on the loss

function by considering the mean square error (MSE) and

the categorical cross entropy (CCE). As a final element of

the study, we consider the starting point of the training

procedure, i.e., training the network from scratch using

randomly initialized weights (R) or, conversely, using the

weights of the corresponding network already trained on a

different domain (in this case, we used ImageNet initial-

ization - I).

In our tests, we consider all the possible quadruples of

values given by the Cartesian product of the sets of the

dimensions of analysis: we evaluate 80 models (5 network

architectures � 4 optimizers � 2 loss functions � 2

training procedures). Each model is individually trained by

starting with an initial value of the learning rate of 0.001

and then by decreasing it by a 0.3 factor when the vali-

dation loss does not increase after six consecutive epochs.

In Table 3, we report the performance achieved on the

test set by the considered models with indication of the

respective configuration of the parameters. Specifically, the

performance of each model is reported in the three right-

most columns of the table and are expressed in terms of the

Recall, Precision and f1 indices.

We notice a large variability of the performance of the

different configurations of the classifiers ranging from a

minimum value f1 ¼ 0:654 obtained by InceptionV3 using

random weight initialization, using the SGD optimizer and

categorical cross-entropy loss function, to the maximum

value f1 ¼ 0:884 achieved by VGG19 architecture,

Fig. 4 Elements of the box plot model used for reporting compactly

the salient elements of a distribution: they report the 25th, 50th

(median) and 75th percentiles, the mean value and standard deviation.

The upper and lower fences represent values more and less than 75th

and 25th percentiles (3rd and 1st quartiles), respectively, by 1.5 times

the difference between the 3rd and 1st quartiles; values above upper

fence or below lower fence are generally declared as outliers

Table 3 Performance achieved over the test set by each of the 48

considered model configurations

Arch. Init. Opt. L.F. Re Pr f1

MobileNet R Adadelta CCE 0.797 0.802 0.796

MSE 0.806 0.810 0.806

Adam CCE 0.831 0.841 0.832

MSE 0.847 0.856 0.849

RMSprop CCE 0.781 0.802 0.782

MSE 0.833 0.847 0.835

SGD CCE 0.764 0.778 0.767

MSE 0.737 0.758 0.740

I Adadelta CCE 0.877 0.881 0.878

MSE 0.851 0.850 0.849

Adam CCE 0.851 0.856 0.852

MSE 0.834 0.841 0.832

RMSprop CCE 0.838 0.849 0.839

MSE 0.873 0.875 0.873

SGD CCE 0.797 0.805 0.798

MSE 0.781 0.780 0.778

NASNet R Adadelta CCE 0.802 0.803 0.801

MSE 0.767 0.768 0.763

Adam CCE 0.804 0.817 0.804

MSE 0.811 0.821 0.812

RMSprop CCE 0.752 0.751 0.749

MSE 0.787 0.809 0.790

SGD CCE 0.794 0.792 0.792

MSE 0.805 0.811 0.806

I Adadelta CCE 0.836 0.837 0.835

MSE 0.828 0.833 0.829

Adam CCE 0.838 0.840 0.837

MSE 0.821 0.829 0.821

RMSprop CCE 0.795 0.795 0.793

MSE 0.850 0.857 0.850

SGD CCE 0.811 0.813 0.811

MSE 0.783 0.787 0.784

ResNet50 R Adadelta CCE 0.836 0.839 0.837

MSE 0.828 0.829 0.827

Adam CCE 0.708 0.722 0.709

MSE 0.699 0.704 0.697

RMSprop CCE 0.702 0.711 0.700

MSE 0.711 0.740 0.715

SGD CCE 0.799 0.800 0.796

MSE 0.807 0.805 0.805

I Adadelta CCE 0.845 0.845 0.844

MSE 0.855 0.856 0.855

Adam CCE 0.825 0.834 0.826

MSE 0.813 0.815 0.813

RMSprop CCE 0.807 0.810 0.806

MSE 0.827 0.831 0.826

SGD CCE 0.831 0.831 0.830

MSE 0.781 0.791 0.779
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initialized with ImageNet weights, using the Adam opti-

mizer and the mean square error loss function (reported in

bold in Table 3).

The large variability of the results does not allow us to

find evident correlations between the classification

performance and each of the meta-parameters described

above. To overcome this limitation, we use the box plots to

compare the distributions of the f1 score obtained by setting

a value for each parameter and varying the remaining ones.

Consequently, each plot of Fig. 5 deepens the study with

regard to the architecture, the weight initialization, the

optimizer and the loss function. As an example, the left-

most box plot in Fig. 5.a is derived from the 16 values of

the f1 score reported in Table 3 using the MobileNet as

network architecture.

The first observation that we can draw from the analysis

of the plots in Fig. 5 is that the weights initialization pro-

cedure is the only configuration parameter that has a rele-

vant impact over performance. Fig. 5b suggests a

superiority of the I choice with respect to R; this is further

confirmed by the fact that 35 over 40 models (almost 90%
of cases) trained with weights initialized from ImageNet

achieve an f1 score superior to the corresponding model

trained with randomly initialized weights. Conversely, for

all the other meta-parameters we do not find a value that

relevantly stands alone over the others with respect to the

value of the f1 index.

Nevertheless, from Fig. 5a, we notice the high com-

pactness of the box plot related to the NASNet, which

denotes a degree of robustness of this network with respect

to the considered training parameters that is higher than the

other deep networks; in fact, with exception of NASNet, all

the other networks are characterized by a large difference

between the upper and the lower fences. From a practical

standpoint, this may be a relevant aspect when one does not

want to train the network by considering all the possible

parameters configurations.

From Fig. 5c, we notice that on one side it has to be

expected similar performance when choosing Adadelta,

Adam and RMSprop while on the other side, at least for the

problem under analysis, the SGD optimizer should be

avoided.

Finally, Fig. 5.d does not suggest any particular

advantage in using the categorical cross entropy or the

mean square error as loss function for the problem under

consideration.

5.3 Temporal dimension exploitation

In this subsection, we analyze how the performance can be

improved by exploiting the temporal dimension. The hand

gesture occurs over a time interval and thus consists of a

sequence of consecutive and highly correlated frames. The

approaches considered in Sect. 5.2 take a decision over the

generic i-th frame only using information extracted from

that frame. Here, we intend to perform classification of the

i-th frame by exploiting information of the r consecutive

frames in the time window preceding the i-th frame.

Table 3 (continued)

Arch. Init. Opt. L.F. Re Pr f1

VGG19 R Adadelta CCE 0.734 0.744 0.734

MSE 0.822 0.826 0.822

Adam CCE 0.810 0.814 0.809

MSE 0.751 0.768 0.751

RMSprop CCE 0.799 0.807 0.800

MSE 0.791 0.803 0.793

SGD CCE 0.684 0.693 0.685

MSE 0.819 0.821 0.818

I Adadelta CCE 0.835 0.835 0.834

MSE 0.806 0.808 0.805

Adam CCE 0.874 0.876 0.873

MSE 0.885 0.887 0.884

RMSprop CCE 0.867 0.872 0.867

MSE 0.833 0.842 0.832

SGD CCE 0.792 0.794 0.791

MSE 0.753 0.769 0.754

InceptionV3 R Adadelta CCE 0.780 0.781 0.778

MSE 0.764 0.773 0.763

Adam CCE 0.814 0.819 0.815

MSE 0.757 0.766 0.755

RMSprop CCE 0.791 0.796 0.791

MSE 0.793 0.796 0.792

SGD CCE 0.658 0.665 0.654

MSE 0.719 0.731 0.717

I Adadelta CCE 0.876 0.880 0.877

MSE 0.837 0.844 0.838

Adam CCE 0.859 0.863 0.859

MSE 0.835 0.838 0.836

RMSprop CCE 0.835 0.837 0.835

MSE 0.848 0.850 0.848

SGD CCE 0.834 0.842 0.834

MSE 0.836 0.838 0.836

The four leftmost columns account for the network meta-parameters,

where specifically: Arch. stands for the deep network architecture,

Init. stands for weight initialization (with R = random, I = from

ImageNet), Opt. denotes the optimizer, and L.F. is the loss function

(CCE = categorical croos-entropy, MSE = mean square error). The

performance achieved by each model are in the three rightmost col-

umns and are expressed in terms of Recall (Re), Precision (Pr) and f1.
The model that achieves the highest value of f1 over the test set is

highlighted in bold
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(a) Architecture

(b) Network weights initialization

(c) Optimizer

(d) Loss function

Fig. 5 Representation by using

box plots of the distributions of

the f1 score for each dimension

of analysis with respect to the

remaining ones
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There is a wide literature on methods for frame

sequences analysis applied to gesture recognition. In this

regard, the recent trends of the scientific community sug-

gest the use of deep learning methods specifically devised

to learn a time-series representation, as recurrent neural

networks (RNNs). Long Short Term Memory recurrent

networks (LSTM-RNN) represents a notable example of

such approaches. However, it is well-known that such a

method requires very large train datasets to achieve an

acceptable level of generalization. This observation was

also confirmed by experiments that we carried out by

training a LSTM-RNN with features extracted by the

VGG19 base network; as a matter of fact, we obtained poor

performance, largely below those yielded by using the

network operating at the frame level (for the sake of con-

ciseness we do not report detailed information on the

outcomes of this experiment).

As an alternative solution to exploit temporal dimen-

sion, we decide to consider a simpler, yet effective, strat-

egy based on the aggregation of the decisions of single

frame classifiers operating over a sliding window. In this

regard, we consider two aggregation strategies, namely:

• Majority vote (MV): each frame is classified individ-

ually, then the most represented class in the window is

the one assigned to the frame.

• Weighted sum (WS): the classification outputs of each

class across all the frames in the window are added

together, then the class with the highest score is chosen.

The advantage of the second approach is that it does not

require an additional training phase to the base single-

frame classifier and does not introduce further computa-

tional burden. It only requires to set the size of the sliding

window. Thus, to study the impact of this parameter on the

performance, in Fig. 6 we find the curves of the perfor-

mance, over the test set expressed in terms of the f1 index,

as a function of the sliding window size. In particular, there

are included all the values from 1 to 60, where the per-

formance with window size equal to 1 refers to the single

frame classifier. The plots in Fig. 6 are all referred to the

network configuration that achieves the highest perfor-

mance (f1 ¼ 0:884) on the test set and highlighted in bold

in Table 3.

It is immediately evident the beneficial impact of taking

the decision on a frame by exploiting also the classification

outputs over the preceding frames included in a sliding

window. We note that the larger is the sliding window, the

higher is the overall performance, which passes from f1 ¼
0:884 with window size equal to one to f1 ¼ 0:953

adopting the MV strategy or f1 ¼ 0:957 with WS strategy,

when the window size reaches the value of 60 frames. It is

important to note that, since the dataset adopted for the

experimental validation contains video captured at 15 fps, a

window size of 60 frames corresponds to a time interval of

4 seconds that is roughly the duration of some gestures of

the washing procedure (i.e., W and S). For this reason, the

analysis of Figure 6 is stopped at the value of 60 frames.

Table 4, shows the confusion matrix calculated over the

test set of the best performing deep neural network,

according to the previous subsection. The results in the

table allow us to deepen the analysis on the performance of

the approach with regard to each single gesture class. We

notice that for four gestures, namely W, N, F and FA, the

class accuracy is above 95%, then there are three other

gestures, SN, S and P, with performance around 90%,

while only 77:4% of the frames belonging to the SH ges-

ture class is correctly recognized. The low performance on

this class is mainly due to the erroneous attribution of 5:4%
and 8:8% of samples of this class to the SN and BH. This

confusion can be motivated by the presence of a sponge in

the former or of the back of the hands in the latter as in the

frames of the SH gesture class that the classifier is not able

to discriminate correctly when taking the decision on a

single frame. Similar considerations can be made on other

classification errors, such as the 8:2% S samples wrongly

attributed to the W class.

To evaluate how the exploitation of the temporal

information contributes to the mitigation of the afore-

mentioned problems, we refer to the example cases of a

sliding window with sizes 15, 30 and 60 that corresponds to

Fig. 6 Performance assessed on

the test set and reported in terms

of f1 score of the top performing

classifier (VGG19, initialized on

Imagenet, trained using mean

square error loss function and

Adam optimizer) when a sliding

window of 15 frames (on the

dataset considered in this paper

15 frames correspond to a time

interval of 1 s)
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a time interval of 1, 2 and 4 seconds, respectively. In

particular, in Tables 5, 6, 7 and in Tables 8, 9, 10 we

report the confusion matrices over the test set when using

the MV and the WS aggregation rules, respectively, for the

three values of the window size. As it could be expected

from the results in Fig. 6, the larger is the window size the

higher is the recognition rate on each single gesture class;

furthermore, in all cases, the WS aggregation rule assures a

slightly better performance compared to the majority vot-

ing. Interestingly, when using WS with a window of 4

seconds, we achieve almost 90% accuracy on the most

challenging class, that is SH.

Table 4 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 96.1 0.3 0.0 0.2 2.0 0.0 0.0 0.0 0.0 1.3

N 0.1 95.5 2.6 0.5 0.0 0.3 0.0 0.8 0.1 0.0

SN 0.4 0.5 88.3 6.7 0.0 2.1 0.1 0.8 1.1 0.0

SH 1.0 0.9 5.4 77.4 0.2 2.8 0.6 8.8 2.0 1.0

S 8.2 0.0 0.0 0.4 88.2 0.0 0.0 0.0 0.0 3.2

P 0.1 0.1 0.1 0.3 0.0 90.9 2.4 4.0 0.1 1.9

IF 0.7 0.6 0.0 0.6 0.0 9.6 83.3 4.3 0.8 0.0

BH 0.5 0.3 0.5 4.8 0.9 1.9 0.6 86.6 1.8 2.0

F 0.0 0.0 0.0 0.9 0.1 1.1 1.8 0.3 95.8 0.0

FA 1.1 0.4 0.1 0.0 0.4 0.7 0.0 2.0 0.0 95.4

Results are referred to the single frame classifier, i.e., sliding windows size equal to 1

Table 5 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 98,8 0,0 0,0 0,0 1,2 0,0 0,0 0,0 0,0 0,0

N 0,1 96,4 2,7 0,3 0,0 0,0 0,0 0,4 0,0 0,0

SN 0,0 0,2 94,4 3,5 0,0 1,2 0,0 0,0 0,7 0,0

SH 1,4 0,3 4,4 84,8 0,0 1,6 0,2 6,2 0,9 0,3

S 9,5 0,0 0,0 0,7 89,6 0,0 0,0 0,0 0,0 0,2

P 0,0 0,0 0,2 0,3 0,0 96,7 0,4 1,6 0,0 0,8

IF 0,0 0,1 0,0 0,1 0,0 7,5 88,1 3,4 0,8 0,0

BH 0,4 0,0 0,4 3,9 0,6 1,6 0,1 90,2 2,1 0,7

F 0,0 0,0 0,0 0,4 0,0 1,5 1,5 0,0 96,6 0,0

FA 0,3 0,1 0,0 0,0 0,0 0,8 0,0 1,1 0,0 97,7

Results are obtained setting the size of the sliding window equal to 15 and using the majority voting (MV)

aggregation rule

Table 6 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 0.1 97.3 2.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0

SN 0.0 0.2 96.5 2.3 0.0 0.8 0.0 0.0 0.2 0.0

SH 1.7 0.0 4.0 87.1 0.0 1.3 0.0 5.5 0.3 0.0

S 8.2 0.0 0.0 0.7 90.9 0.0 0.0 0.0 0.0 0.2

P 0.0 0.0 0.2 0.3 0.0 96.9 0.4 2.1 0.0 0.1

IF 0.0 0.0 0.0 0.1 0.0 5.4 92.4 2.1 0.0 0.0

BH 0.0 0.0 0.1 3.5 0.4 1.8 0.0 91.2 2.2 0.8

F 0.0 0.0 0.0 0.4 0.0 1.6 1.9 0.0 96.1 0.0

FA 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.0 0.0 98.3

Results are obtained setting the size of the sliding window equal to 30 and using the majority voting (MV)

aggregation rule
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6 Conclusions

In this paper, we presented an embedded system for eval-

uating, in real-time at what extent the medical staff is

compliant with the surgical hadwashing procedure as

defined by the WHO. The system exploits a deep convo-

lutional neural network to analyze the frames captured by a

depth camera. In the design of the system, we considered

five well-established deep neural networks architecture

(MobileNet, NASNet, ResNet50, VGG19, Xception), with

Table 7 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 0.1 98.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SN 0.0 0.2 98.2 1.2 0.0 0.4 0.0 0.0 0.0 0.0

SH 1.8 0.0 2.9 89.1 0.0 1.5 0.0 4.8 0.0 0.0

S 8.2 0.0 0.0 0.7 90.9 0.0 0.0 0.0 0.0 0.2

P 0.0 0.0 0.2 0.3 0.0 98.3 0.4 0.8 0.0 0.0

IF 0.0 0.0 0.0 0.1 0.0 3.6 95.5 0.8 0.0 0.0

BH 0.0 0.0 0.1 2.6 0.0 2.4 0.0 93.0 2.0 0.0

F 0.0 0.0 0.0 0.4 0.0 1.6 1.2 0.0 96.8 0.0

FA 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.0 0.0 98.3

Results are obtained setting the size of the sliding window equal to 60 and using the majority voting (MV)

aggregation rule

Table 8 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 98,7 0,0 0,0 0,0 1,3 0,0 0,0 0,0 0,0 0,0

N 0,0 96,7 2,6 0,3 0,0 0,0 0,0 0,4 0,0 0,0

SN 0,0 0,2 94,5 3,6 0,0 1,1 0,0 0,1 0,6 0,0

SH 1,4 0,2 3,8 85,5 0,0 1,7 0,0 6,2 1,0 0,2

S 9,1 0,0 0,0 0,0 90,2 0,0 0,0 0,0 0,0 0,7

P 0,0 0,0 0,2 0,1 0,0 96,8 0,4 1,8 0,0 0,6

IF 0,0 0,1 0,0 0,1 0,0 6,2 90,0 2,9 0,8 0,0

BH 0,3 0,0 0,4 3,9 0,7 1,1 0,0 90,7 2,3 0,6

F 0,0 0,0 0,0 0,4 0,0 1,3 1,4 0,0 96,9 0,0

FA 0,0 0,0 0,0 0,0 0,0 0,7 0,0 1,0 0,0 98,3

Results are obtained setting the size of the sliding window equal to 15 and using the weighted sum (WS)

aggregation rule

Table 9 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 0.0 97.3 2.4 0.0 0.0 0.0 0.0 0.3 0.0 0.0

SN 0.0 0.2 96.8 1.9 0.0 0.9 0.0 0.0 0.2 0.0

SH 1.5 0.0 3.3 88.0 0.0 1.6 0.0 5.2 0.4 0.0

S 7.0 0.0 0.0 0.0 92.3 0.0 0.0 0.0 0.0 0.7

P 0.0 0.0 0.2 0.1 0.0 96.7 0.4 2.5 0.0 0.0

IF 0.0 0.0 0.0 0.1 0.0 3.9 94.4 1.5 0.0 0.0

BH 0.0 0.0 0.0 3.6 0.6 1.1 0.0 91.7 2.5 0.7

F 0.0 0.0 0.0 0.4 0.0 1.4 1.6 0.0 96.6 0.0

FA 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.7 0.0 98.6

Results are obtained setting the size of the sliding window equal to 30 and using the weighted sum (WS)

aggregation rule
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four optimizers (Adam, Adadelta, SGD, RMSprop), two

loss functions (mean square error and the categorical cross

entropy) and two approaches for weight initialization

(random and from the network trained in a different

domain). We also verified that the aggregation of the

decisions on a sliding window allowed us to significantly

improve performance with respect to the decision taken on

single frames. To this aim, in the tests we have explored

both majority voting and weighted sum decision aggrega-

tion rules.

The experimental analysis was conducted using the

dataset collected with the support of the medical staff of the

Department of Medicine, Surgery and Dentistry - ‘‘Schola

Medica Salernitana’’ of the University of Salerno, Italy. It

included 74 video sequences, each referring to the execu-

tion of a complete hand washing procedure, and overall it

comprised more than 131, 000 frames; the videos were

captured at constant frame rate of 15 frames per seconds,

corresponding to more than 2 hours of video footage. To the

best of our knowledge, this is the first dataset in the litera-

ture dedicated to this highly specific problem in the area of

gesture recognition. The dataset is made publicly available

for scientific purposes upon request.

At the end of the experimental analysis, the best per-

forming configuration was based on VGG19, initialized on

ImageNet, trained using the mean square error loss function

via the Adam optimizer; the proposed method achieved

valuable performance in classifying the gestures among the

10 different classes defined by the WHO procedure, with an

F1 score of 0.957 by aggregating the classification outputs

on window of 4 frames using a weighted sum.

We started to work of the system several months before

the the outbreak of the COVID-19 pandemic. It is a pre-

liminary system, thus presenting several limitations. Due to

the relevance of the hand hygiene, we plan to extend the

dataset for obtaining a more extensive and significant

performance assessment of the proposed approach; this will

also allow us to explore the adoption of more sophisticated

network architecture specifically suited for operating on

video sequences, such as the RNNs. Furthermore, we will

also consider the possibility of extending the proposed

method to recognize the handwashing gestures using

alcohol-based solutions that can be adopted for paramedi-

cal staff, patients and visiting persons, but it may be also

adopted in all the industrial sectors where careful hands

hygiene is mandatory, such as like food preparation, con-

servation industry, restaurants.
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Table 10 Confusion matrix on

the test set of the VGG19

network with weights initialized

on ImageNet, and trained using

the mean square error loss

function and the Adam

optimizer

W N SN SH S P IF BH F FA

W 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 0.0 98.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SN 0.0 0.2 98.9 0.5 0.0 0.5 0.0 0.0 0.0 0.0

SH 1.3 0.0 2.5 89.9 0.0 1.6 0.0 4.8 0.0 0.0

S 7.0 0.0 0.0 0.0 92.3 0.0 0.0 0.0 0.0 0.7

P 0.0 0.0 0.2 0.1 0.0 98.2 0.4 1.1 0.0 0.0

IF 0.0 0.0 0.0 0.1 0.0 3.2 96.3 0.5 0.0 0.0

BH 0.0 0.0 0.0 2.6 0.0 1.4 0.0 93.2 2.7 0.7

F 0.0 0.0 0.0 0.4 0.0 1.4 1.1 0.0 97.1 0.0

FA 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.7 0.0 98.6

Results are obtained setting the size of the sliding window equal to 60 and using the weighted sum (WS)

aggregation rule
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