Table 3.
Performance achieved over the test set by each of the 48 considered model configurations
Arch. | Init. | Opt. | L.F. | Re | Pr | f1 |
---|---|---|---|---|---|---|
MobileNet | R | Adadelta | CCE | 0.797 | 0.802 | 0.796 |
MSE | 0.806 | 0.810 | 0.806 | |||
Adam | CCE | 0.831 | 0.841 | 0.832 | ||
MSE | 0.847 | 0.856 | 0.849 | |||
RMSprop | CCE | 0.781 | 0.802 | 0.782 | ||
MSE | 0.833 | 0.847 | 0.835 | |||
SGD | CCE | 0.764 | 0.778 | 0.767 | ||
MSE | 0.737 | 0.758 | 0.740 | |||
I | Adadelta | CCE | 0.877 | 0.881 | 0.878 | |
MSE | 0.851 | 0.850 | 0.849 | |||
Adam | CCE | 0.851 | 0.856 | 0.852 | ||
MSE | 0.834 | 0.841 | 0.832 | |||
RMSprop | CCE | 0.838 | 0.849 | 0.839 | ||
MSE | 0.873 | 0.875 | 0.873 | |||
SGD | CCE | 0.797 | 0.805 | 0.798 | ||
MSE | 0.781 | 0.780 | 0.778 | |||
NASNet | R | Adadelta | CCE | 0.802 | 0.803 | 0.801 |
MSE | 0.767 | 0.768 | 0.763 | |||
Adam | CCE | 0.804 | 0.817 | 0.804 | ||
MSE | 0.811 | 0.821 | 0.812 | |||
RMSprop | CCE | 0.752 | 0.751 | 0.749 | ||
MSE | 0.787 | 0.809 | 0.790 | |||
SGD | CCE | 0.794 | 0.792 | 0.792 | ||
MSE | 0.805 | 0.811 | 0.806 | |||
I | Adadelta | CCE | 0.836 | 0.837 | 0.835 | |
MSE | 0.828 | 0.833 | 0.829 | |||
Adam | CCE | 0.838 | 0.840 | 0.837 | ||
MSE | 0.821 | 0.829 | 0.821 | |||
RMSprop | CCE | 0.795 | 0.795 | 0.793 | ||
MSE | 0.850 | 0.857 | 0.850 | |||
SGD | CCE | 0.811 | 0.813 | 0.811 | ||
MSE | 0.783 | 0.787 | 0.784 | |||
ResNet50 | R | Adadelta | CCE | 0.836 | 0.839 | 0.837 |
MSE | 0.828 | 0.829 | 0.827 | |||
Adam | CCE | 0.708 | 0.722 | 0.709 | ||
MSE | 0.699 | 0.704 | 0.697 | |||
RMSprop | CCE | 0.702 | 0.711 | 0.700 | ||
MSE | 0.711 | 0.740 | 0.715 | |||
SGD | CCE | 0.799 | 0.800 | 0.796 | ||
MSE | 0.807 | 0.805 | 0.805 | |||
I | Adadelta | CCE | 0.845 | 0.845 | 0.844 | |
MSE | 0.855 | 0.856 | 0.855 | |||
Adam | CCE | 0.825 | 0.834 | 0.826 | ||
MSE | 0.813 | 0.815 | 0.813 | |||
RMSprop | CCE | 0.807 | 0.810 | 0.806 | ||
MSE | 0.827 | 0.831 | 0.826 | |||
SGD | CCE | 0.831 | 0.831 | 0.830 | ||
MSE | 0.781 | 0.791 | 0.779 | |||
VGG19 | R | Adadelta | CCE | 0.734 | 0.744 | 0.734 |
MSE | 0.822 | 0.826 | 0.822 | |||
Adam | CCE | 0.810 | 0.814 | 0.809 | ||
MSE | 0.751 | 0.768 | 0.751 | |||
RMSprop | CCE | 0.799 | 0.807 | 0.800 | ||
MSE | 0.791 | 0.803 | 0.793 | |||
SGD | CCE | 0.684 | 0.693 | 0.685 | ||
MSE | 0.819 | 0.821 | 0.818 | |||
I | Adadelta | CCE | 0.835 | 0.835 | 0.834 | |
MSE | 0.806 | 0.808 | 0.805 | |||
Adam | CCE | 0.874 | 0.876 | 0.873 | ||
MSE | 0.885 | 0.887 | 0.884 | |||
RMSprop | CCE | 0.867 | 0.872 | 0.867 | ||
MSE | 0.833 | 0.842 | 0.832 | |||
SGD | CCE | 0.792 | 0.794 | 0.791 | ||
MSE | 0.753 | 0.769 | 0.754 | |||
InceptionV3 | R | Adadelta | CCE | 0.780 | 0.781 | 0.778 |
MSE | 0.764 | 0.773 | 0.763 | |||
Adam | CCE | 0.814 | 0.819 | 0.815 | ||
MSE | 0.757 | 0.766 | 0.755 | |||
RMSprop | CCE | 0.791 | 0.796 | 0.791 | ||
MSE | 0.793 | 0.796 | 0.792 | |||
SGD | CCE | 0.658 | 0.665 | 0.654 | ||
MSE | 0.719 | 0.731 | 0.717 | |||
I | Adadelta | CCE | 0.876 | 0.880 | 0.877 | |
MSE | 0.837 | 0.844 | 0.838 | |||
Adam | CCE | 0.859 | 0.863 | 0.859 | ||
MSE | 0.835 | 0.838 | 0.836 | |||
RMSprop | CCE | 0.835 | 0.837 | 0.835 | ||
MSE | 0.848 | 0.850 | 0.848 | |||
SGD | CCE | 0.834 | 0.842 | 0.834 | ||
MSE | 0.836 | 0.838 | 0.836 |
The four leftmost columns account for the network meta-parameters, where specifically: Arch. stands for the deep network architecture, Init. stands for weight initialization (with R = random, I = from ImageNet), Opt. denotes the optimizer, and L.F. is the loss function (CCE = categorical croos-entropy, MSE = mean square error). The performance achieved by each model are in the three rightmost columns and are expressed in terms of Recall (Re), Precision (Pr) and f1. The model that achieves the highest value of f1 over the test set is highlighted in bold