Skip to main content
. 2022 Apr 21:1–16. Online ahead of print. doi: 10.1007/s00521-022-07194-5

Table 3.

Performance achieved over the test set by each of the 48 considered model configurations

Arch. Init. Opt. L.F. Re Pr f1
MobileNet R Adadelta CCE 0.797 0.802 0.796
MSE 0.806 0.810 0.806
Adam CCE 0.831 0.841 0.832
MSE 0.847 0.856 0.849
RMSprop CCE 0.781 0.802 0.782
MSE 0.833 0.847 0.835
SGD CCE 0.764 0.778 0.767
MSE 0.737 0.758 0.740
I Adadelta CCE 0.877 0.881 0.878
MSE 0.851 0.850 0.849
Adam CCE 0.851 0.856 0.852
MSE 0.834 0.841 0.832
RMSprop CCE 0.838 0.849 0.839
MSE 0.873 0.875 0.873
SGD CCE 0.797 0.805 0.798
MSE 0.781 0.780 0.778
NASNet R Adadelta CCE 0.802 0.803 0.801
MSE 0.767 0.768 0.763
Adam CCE 0.804 0.817 0.804
MSE 0.811 0.821 0.812
RMSprop CCE 0.752 0.751 0.749
MSE 0.787 0.809 0.790
SGD CCE 0.794 0.792 0.792
MSE 0.805 0.811 0.806
I Adadelta CCE 0.836 0.837 0.835
MSE 0.828 0.833 0.829
Adam CCE 0.838 0.840 0.837
MSE 0.821 0.829 0.821
RMSprop CCE 0.795 0.795 0.793
MSE 0.850 0.857 0.850
SGD CCE 0.811 0.813 0.811
MSE 0.783 0.787 0.784
ResNet50 R Adadelta CCE 0.836 0.839 0.837
MSE 0.828 0.829 0.827
Adam CCE 0.708 0.722 0.709
MSE 0.699 0.704 0.697
RMSprop CCE 0.702 0.711 0.700
MSE 0.711 0.740 0.715
SGD CCE 0.799 0.800 0.796
MSE 0.807 0.805 0.805
I Adadelta CCE 0.845 0.845 0.844
MSE 0.855 0.856 0.855
Adam CCE 0.825 0.834 0.826
MSE 0.813 0.815 0.813
RMSprop CCE 0.807 0.810 0.806
MSE 0.827 0.831 0.826
SGD CCE 0.831 0.831 0.830
MSE 0.781 0.791 0.779
VGG19 R Adadelta CCE 0.734 0.744 0.734
MSE 0.822 0.826 0.822
Adam CCE 0.810 0.814 0.809
MSE 0.751 0.768 0.751
RMSprop CCE 0.799 0.807 0.800
MSE 0.791 0.803 0.793
SGD CCE 0.684 0.693 0.685
MSE 0.819 0.821 0.818
I Adadelta CCE 0.835 0.835 0.834
MSE 0.806 0.808 0.805
Adam CCE 0.874 0.876 0.873
MSE 0.885 0.887 0.884
RMSprop CCE 0.867 0.872 0.867
MSE 0.833 0.842 0.832
SGD CCE 0.792 0.794 0.791
MSE 0.753 0.769 0.754
InceptionV3 R Adadelta CCE 0.780 0.781 0.778
MSE 0.764 0.773 0.763
Adam CCE 0.814 0.819 0.815
MSE 0.757 0.766 0.755
RMSprop CCE 0.791 0.796 0.791
MSE 0.793 0.796 0.792
SGD CCE 0.658 0.665 0.654
MSE 0.719 0.731 0.717
I Adadelta CCE 0.876 0.880 0.877
MSE 0.837 0.844 0.838
Adam CCE 0.859 0.863 0.859
MSE 0.835 0.838 0.836
RMSprop CCE 0.835 0.837 0.835
MSE 0.848 0.850 0.848
SGD CCE 0.834 0.842 0.834
MSE 0.836 0.838 0.836

The four leftmost columns account for the network meta-parameters, where specifically: Arch. stands for the deep network architecture, Init. stands for weight initialization (with R = random, I = from ImageNet), Opt. denotes the optimizer, and L.F. is the loss function (CCE = categorical croos-entropy, MSE = mean square error). The performance achieved by each model are in the three rightmost columns and are expressed in terms of Recall (Re), Precision (Pr) and f1. The model that achieves the highest value of f1 over the test set is highlighted in bold