Table 4.
Confusion matrix on the test set of the VGG19 network with weights initialized on ImageNet, and trained using the mean square error loss function and the Adam optimizer
W | N | SN | SH | S | P | IF | BH | F | FA | |
---|---|---|---|---|---|---|---|---|---|---|
W | 96.1 | 0.3 | 0.0 | 0.2 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 |
N | 0.1 | 95.5 | 2.6 | 0.5 | 0.0 | 0.3 | 0.0 | 0.8 | 0.1 | 0.0 |
SN | 0.4 | 0.5 | 88.3 | 6.7 | 0.0 | 2.1 | 0.1 | 0.8 | 1.1 | 0.0 |
SH | 1.0 | 0.9 | 5.4 | 77.4 | 0.2 | 2.8 | 0.6 | 8.8 | 2.0 | 1.0 |
S | 8.2 | 0.0 | 0.0 | 0.4 | 88.2 | 0.0 | 0.0 | 0.0 | 0.0 | 3.2 |
P | 0.1 | 0.1 | 0.1 | 0.3 | 0.0 | 90.9 | 2.4 | 4.0 | 0.1 | 1.9 |
IF | 0.7 | 0.6 | 0.0 | 0.6 | 0.0 | 9.6 | 83.3 | 4.3 | 0.8 | 0.0 |
BH | 0.5 | 0.3 | 0.5 | 4.8 | 0.9 | 1.9 | 0.6 | 86.6 | 1.8 | 2.0 |
F | 0.0 | 0.0 | 0.0 | 0.9 | 0.1 | 1.1 | 1.8 | 0.3 | 95.8 | 0.0 |
FA | 1.1 | 0.4 | 0.1 | 0.0 | 0.4 | 0.7 | 0.0 | 2.0 | 0.0 | 95.4 |
Results are referred to the single frame classifier, i.e., sliding windows size equal to 1