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Abstract

Sudden cardiac death from arrhythmia is a major cause of mortality worldwide. Here, we develop 

a novel deep learning (DL) approach that blends neural networks and survival analysis to predict 

patient-specific survival curves from contrast-enhanced cardiac magnetic resonance images and 

clinical covariates for patients with ischemic heart disease. The DL-predicted survival curves offer 

accurate predictions at times up to 10 years and allow for estimation of uncertainty in predictions. 

The performance of this learning architecture was evaluated on multi-center internal validation 

data and tested on an independent test set, achieving concordance index of 0.83 and 0.74, and 

* ntrayanova@jhu.edu .
Author Contributions Statement
D.M.P., J.K.S, C.M.A., K.C.W, M.M., and N.A.T. contributed to the study design. K.N.A., M.V.M., D.C.L, A.K, C.M.A, and K.C.W. 
provided clinical perspective and interpretation of clinical variables. C.L., M.V.M., and D.C.L. assisted with data curation. D.M.P., 
M.M., and N.A.T. developed the methodology. D.O. and N.R.C. assisted with the statistical and machine learning methodology. 
D.M.P. was responsible for conceptualization, formal analysis, investigation, software development, and writing the manuscript. 
N.A.T. and M.M. were the senior supervisors on all aspects of the project and contributed to the writing. All authors read, edited, and 
approved the final manuscript.

Competing Interests Statement
The machine learning techniques for predicting sudden cardiac death survival discussed in this manuscript relate to pending US 
provisional patent application 63/287,395 naming The Johns Hopkins University as the applicant and listing N.A.T., D.M.P., J.K.S., 
and M.M. as the inventors.

HHS Public Access
Author manuscript
Nat Cardiovasc Res. Author manuscript; available in PMC 2022 October 07.

Published in final edited form as:
Nat Cardiovasc Res. 2022 April ; 1(4): 334–343. doi:10.1038/s44161-022-00041-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10-year integrated Brier score of 0.12 and 0.14. We demonstrate that our DL approach with 

only raw cardiac images as input outperforms standard survival models constructed using clinical 

covariates. This technology has the potential to transform clinical decision-making by offering 

accurate and generalizable predictions of patient-specific survival probabilities of arrhythmic death 

over time.

Introduction

Sudden cardiac death (SCD) continues to be a leading cause of mortality worldwide, with an 

incidence of 50 to 100 per 100,000 in the general population in Europe and North America 

[1], and accounts for 15–20% of all deaths [2]. Patients with coronary artery disease are 

at the highest risk of arrhythmic SCD (SCDA) [3, 4]. While implantable cardioverter 

devices (ICD) effectively prevent SCD due to ventricular arrhythmias, current clinical 

criteria for ICD candidacy — that is, left ventricular ejection fraction (LVEF) < 30–35% 

[5] — only capture a mere 20% all SCDA[6], highlighting the critical need to develop 

personalized, accurate, and cost-effective arrhythmia risk assessment tools to mitigate 

this enormous public health and economic burden. Several studies have identified risk 

factors for SCDA and numerous risk stratification approaches have attempted to transcend 

LVEF [7, 8]. However, limitations in these approaches have been barriers to their clinical 

implementation. Previous attempts have broadly stratified populations based on subgroup 

risk, failing to customize predictions to patients’ unique clinical features [9]. SCDA risk has 

been typically assessed at predefined finite time points, ignoring the likely patient-specific 

time-evolution of the disease [10]. Additionally, in previous work confidence estimates for 

predictions have been “one-size-fits-all”, varying only by risk subgroup, thus preventing 

the identification of low confidence, potentially highly erroneous prediction outliers [11]. 

Moreover, few prior studies have validated their results externally or comprehensively 

compared model performance to standard approaches. A robust, generalizable SCDA risk 

stratifier with the ability to predict individualized, patient-specific risk trajectories and 

confidence estimates could significantly enhance clinical decision-making. Finally, although 

arrhythmia arises, mechanistically, from the heterogeneous scar distribution in the disease-

remodeled heart, machine learning the features of that distribution has not been explored for 

risk analysis. Image-derived mechanistic computational models of cardiac electrical function 

that incorporate scar distribution have proven successful in predicting arrhythmia risk 

[12], however, they remain exceedingly computationally intensive. Therefore, computational 

models are impractical as a first stage screening tool in a broad population. Using raw 

contrast-enhanced (LGE) cardiac images that visualize scar distribution in a deep learning 

(DL) framework which additionally draws on standard clinical covariates, could overcome 

these limitations and lead to accurate patient-specific SCDA probabilities in fractions of a 

second.

Here, we present a DL technology for prediction of SCDA risk in patients with ischemic 

heart disease. Our approach, which we term Survival Study of Cardiac Arrhythmia Risk 

(SSCAR), embeds, within a survival model, neural networks to estimate individual patient 

times to SCDA (TSCDA). The neural networks learn from raw clinical imaging data, which 

visualize heart disease-induced scar distribution, as well as from clinical covariates. The 
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predicted patient-specific survival curves offer accurate SCDA probabilities at all times up 

to 10 years. The performance and high generalizability of the approach are demonstrated by 

testing on an external cohort, following internal cross-validation. Our technology represents 

a fundamental change in the approach to arrhythmia risk assessment, as SSCAR uses the 

data to directly estimate uncertainty in its predictions. Therefore, SSCAR has the potential to 

significantly shape clinical decision-making regarding arrhythmia risk, offering not a simple 

“at risk/not at risk” prediction, but instead, an estimate of the time to SCDA together with a 

sense of “how certain” the model is about each predicted TSCDA.

Results

SSCAR Overview

The arrhythmia risk assessment algorithm in SSCAR is a deep learning framework that 

incorporates multiple custom neural networks (which fuse different data types) combined 

with statistical survival analysis, to predict patient-specific probabilities of SCDA at future 

time points. Fig. 1 presents an overview of SSCAR. On the left and right, cardiac magnetic 

resonance (CMR) images and clinical covariates (yellow panel) are used as inputs to the 

two corresponding branches of the model. The goal of each of the branches is to predict 

the patient-specific survival curve. In the left branch, cardiac CMR images — visualizing 

the patients’ 3-D ventricle geometry and contrast-enhanced remodeled tissue — are used as 

input by a custom-designed encoder-decoder convolutional neural sub-network (red panel, 

left). This CMR sub-network is trained to reduce the dimension of the input (that is, 

encode) and to discover and extract imaging features associated with SCDA risk directly 
from the CMR images by learning and applying filters (that is, convolving). The encoder-

decoder design of the sub-network ensures that resulting imaging features retain sufficient 

information to be able to reconstruct the original images (red panel, left, decoder path). In 

the right branch, the 22 clinical covariates in Table 1 are provided to a dense sub-network 

(green panel, right), which discovers and extracts nonlinear relationships between the input 

variables. The outputs of the sub-networks are combined (ensembled) in a way that best 

fits the observed SCDA event training data (center path, dot-dashed) to estimate the most 

probable time to SCDA (TSCDA) and the uncertainty in the prediction. The output of the 

model is a per-patient cause-specific survival curve (bottom, blue).

SSCAR Overall Risk Prediction Performance

SSCAR was developed and internally validated using data from 156 patients with 

ischemic cardiomyopathy (ICM) enrolled in the Left Ventricle Structural Predictors of SCD 

(LVSPSCD) prospective observational study [11, 13]. SS-CAR performance was evaluated 

comprehensively on this internal set using Harrell’s concordance-index (c-index) [14] — 

range is [0, 1], higher is better — and the integrated Brier score (Bs) [15] — range is [0, 1], 

lower scores are better. SSCAR has excellent concordance on the internal set (.82–.89) for 

all times up to 10 years (Fig. 2a). Additionally, the Bs ranges from .04 to 0.12, suggesting 

strong calibration, given the high concordance. The model maintains its risk discrimination 

abilities at all times, as further evidenced by the high areas under the receiver operator 

characteristic (ROC) curves evaluated at years 2–9 (Extended Data 1). All events up to 10 

years are used to construct the cross-validated ROC and precision-recall (PR) curves for the 
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internal validation set (Figs. 2b, c). The area under the ROC curve is 0.87 (95% CI: 0.84 – 

0.90), while the area under the PR curve is 0.93 (95% CI: 0.91 – 0.95).

To demonstrate the model’s performance, an external test was performed using an 

independent, case-control set of 113 patients with coronary heart disease selected from 

participants with available CMR images and the same list of covariates enrolled in the 

PRE-DETERMINE study [16]. These patients had less severe left ventricular systolic 

dysfunction, but otherwise had similar inclusion/exclusion criteria to those in the LVSPSCD 

study (see Methods for details). Despite the dissimilarities between cohorts, SSCAR 

performance carries over well to the external cohort, resulting in a c-index of 0.71 – 0.77 and 

Bs of .03 – 0.14 (Fig. 2a, dashed lines). The area under the ROC curve is 0.72 (95% CI: 0.67 

– 0.77) and the area under the PR curve is 0.73 (95% CI: 0.68 – 0.78) on the external set 

(Figs. 2b, c).

Patient-Specific Survival Curves Predicted by SSCAR

The SSCAR survival model presented here predicts cause-specific survival curves for each 

patient through two individualized parameters: the location μ and scale σ, characterizing 

the probability distribution of TSCDA (see Methods for details). Using deep neural networks 

to directly learn these parameters from CMR images and from clinical covariates in a 

way that best models the survival data produces highly-individualized survival probability 

predictions. Extended Data 2a illustrates individualized cause-specific survival curves (solid, 

blue) for a patient with TSCDA around 6 years (left panel) and a patient censored (non-SCDA 

event) at around 7 years (right panel). In both cases, the survival curves estimated by 

SSCAR accurately predict the event probabilities: in the first case, the estimated survival 

probability crosses the 50% threshold close to the event time; in the censored case, SSCAR 

predicts > 80% probability of survival at the time of the (non-SCDA) event. For reference, 

two commonly used survival curves are depicted: the Kaplan-Meier estimate (purple, dot-

dashed) and the Breslow estimate based on a Cox proportional hazards model using the 

clinical covariates (green, dashed), demonstrating worse performance by underestimating the 

risk for the patient with SCDA and overestimating for the censored patient. Further details 

on SSCAR’s internal performance compared to the Cox proportional hazards model are 

presented in Fig. 3.

The predicted location parameter estimates the most probable TSCDA and the predicted 

scale parameter provides a measure of confidence for the location. The inclusion of both a 

location and a scale parameter in the model offers the advantage of building in uncertainty 

directly into the TSCDA prediction. Importantly, this uncertainty is patient-specific and 

learned from data. Extended Data 2b presents examples of predicted TSCDA probability 

distributions for two patients (P1 and P2) with different scale parameters, visualized as the 

widths of the distributions. Shown are the actual (dotted) and predicted (solid) TSCDA, as 

well as the probability distributions (shaded). For P1, the prediction error is small (solid 

vs. dashed vertical lines) and the model is certain, as seen by the narrower probability 

distribution of P1’s TSCDA, or, equivalently, a smaller predicted scale parameter. In the 

case of P2, the prediction error is larger and the model predicts a wider distribution, or, 

equivalently, a larger scale parameter, indicating higher uncertainty. Remarkably, using 
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the entire internal cohort to quantify this direct relationship between prediction error — 

calculated as the relative mean absolute difference of actual and predicted times — and 

scale parameter reveals significant positive correlation (Pearson’s r = 0.42, p < 0.001), 

demonstrating that SSCAR recognizes which predictions of TSCDA will turn out inaccurate 

and “lowers the confidence” in them through a larger scale parameter.

Image-based Risk Prediction

The CMR sub-network (see Extended Data 3 for architecture details) in SSCAR integrates 

neural network DL on images within an overall statistical survival model. This branch of 

SSCAR uses LGE-CMR — a modality uniquely suited for visualizing ventricle geometry 

and portions of the myocardium with contrast-enhanced remodelling — to learn image 

features most useful in predicting a patient’s survival TSCDA. CMR raw pixel values from 

the automatically segmented left ventricle are directly provided to the network, eliminating 

the need for arbitrary thresholds aiming to delineate areas of enhancement. Using only 

images as inputs (Fig. 3 and Supplementary Table 1), SSCAR achieves 0.70 (95% CI: 

0.67–0.72) c-index and 0.17 (95% CI: 0.167–0.178) Bs for event data truncated at 10 years 

on the internal validation set. On the external testing set, the CMR only model achieves 

0.63 (95% CI: 0.59–0.66) c-index and 0.19 (95% CI: 0.186–0.200) Bs. It is noteworthy 

that, although the covariate sub-network uses 22 clinical covariates and already includes 

manually engineered features from the CMR images. For example, infarct size — calculated 

as the percentage of LV tissue deemed fibrotic using manual segmentation performed by 

trained experts — was among the 22 and, indeed, had significant impact on lowering TSCDA. 

Despite including CMR-based features in the covariate network, the CMR sub-network 

(using only CMR as inputs) achieves similar performance to the covariate one (Fig. 3). 

Furthermore, ensembling the two sub-networks together leads to a significant increase in 

overall performance compared to using just the covariate-based one, demonstrating that the 

CMR sub-network identifies different CMR-based features than the manually engineered 

ones.

Imaging features learned by the CMR network can be interpreted using a gradient-based 

sensitivity analysis (Fig. 4a). The gradient here quantifies the impact on the predicted 

TSCDA of features identified by the CMR neural network, which are averaged per patient 

to form the gradient map (see Methods for details). This map overlaid on the myocardium 

(right column, blue and red heatmap) shows the degree of contribution of the local pixel 

intensity to the most probable TSCDA (that is, to the location parameter) for a patient 

without an SCDA event (top) and one with SCDA (bottom). Myocardial regions found 

to be characterized with large positive gradient (dark blue) are interpreted as having high 

importance in increasing TSCDA and, conversely, regions with large magnitude negative 

gradient (dark red) represent areas that are responsible for decreasing the predicted TSCDA. 

The areas of contrast-enhanced myocardium (middle column in brighter green) do not 

fully overlap with the gradient map, which suggests that while features learned by the 

CMR neural network may co-localize with enhanced tissue, the algorithm does not act 

as a mere enhancement locator. For example, the patient who did not experience SCDA 

has contrast-enhanced tissue, but the effect of these regions is to increase the predicted 
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TSCDA, suggesting a nuanced relationship between presence of enhancement and propensity 

of SCDA.

Nonlinear Neural Network for Covariate Data

SSCAR incorporates patient clinical covariate data (Table 1) through the use of a 

dense multi-layer neural network (Fig. 1, green panel). This sub-network discovers and 

extracts potential nonlinear relationships between the covariates and integrates them within 

SSCAR’s overall survival predictions. We demonstrate the utility of the sub-network by 

comparing its performance with a (linear) Cox proportional hazards model (Fig. 3). To 

avoid mis-attributing performance differences to the underlying statistical models, we 

consider an intermediary model which uses neural network feature extraction with a Cox 

proportional hazards model. Using clinical covariate data only, SSCAR with a Cox survival 

model (cov. only, Cox) outperforms the standard Cox proportional hazards model (Linear 

Cox PH) in terms of c-index (0.73 vs. 0.58, dark blue, left y-axis), balanced accuracy 

(0.65 vs. 0.45, mid-blue, left y-axis), F-score (0.78 vs 0.69, light blue, left y-axis), and 

Bs (0.14 vs 0.30, red, right y-axis). We show that the neural-network model maintains 

interpretability by performing a sensitivity analysis of the predicted TSCDA with respect 

to changes in the covariates (Fig. 4b). As above, high positive gradients (blue) denote 

covariates for which small increases in their values lead to large increases in TSCDA, whereas 

small negative gradients (red) represent covariates for which small increases lead to large 

decreases in TSCDA. The top four positive gradient covariates are left ventricular ejection 

fraction computed from CMR, β-blocker medication, heart rate computed from ECG, and 

use of Digoxin. The bottom four negative gradient covariates are left ventricular mass at 

end-diastole, use of diuretic medication, QRS duration computed from ECG, and infarct size 

(%).

Discussion

In this study we present an approach to SCDA risk assessment, the SSCAR framework, 

which uses a deep neural network survival model to predict patient-specific survival curves 

in ischemic heart disease. SSCAR consists of two neural networks, a 3-D convolutional 

network learning on raw unsegmented LGE-CMR images that visualize heart disease-

induced scar distribution, and a fully-connected network operating on clinical covariates. 

SSCAR’s predicted patient-specific survival curves offer accurate SCDA probabilities at 

all times up to 10 years. SSCAR is not only a highly flexible model, able to capture 

complex imaging and non-imaging feature inter-dependencies, but is also robust owing to 

the statistical framework governing the way these features are combined to fit the survival 

data. Our framework predicts entire probability distributions for the TSCDA, allowing 

for uncertainties in predictions to be themselves patient-specific and learned from data, 

thereby equipping the model with a self-correction mechanism. This approach remedies 

a well-known significant limitation of neural networks, the high confidence in erroneous 

predictions. SSCAR’s integration of deep neural network learning within a survival analysis 

and the resulting detailed outputs could represent a paradigm shift in the approach to SCDA 

risk assessment.
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Despite many heralding DL as the arrival of the artificial intelligence age in personalized 

healthcare[17, 18, 19, 20, 21], no significant progress has so far been made using DL on 

contrast-enhanced cardiac images to assess arrhythmia risk. Although there have been non-

DL efforts to incorporate clinical imaging-derived features in SCDA risk stratification[22, 

23, 24], these severely underutilize the data, suffering from two main limitations: features 

often rely on time-consuming, manual processing steps, typically involving arbitrarily 

chosen image intensity thresholds; or features are either too coarse to capture the 

intricacies of the scar distribution, or highly mathematical, undermining their physiological 

underpinning. On the other hand, the DL efforts related to arrhythmia have focused 

primarily on its cardiologist-level detection in ECG signals [25, 26, 27, 28, 29]. In the 

current work, we present a DL approach which takes as input directly raw, unsegmented 

LGE-CMR images and automatically identifies features which best model and predict the 

TSCDA.

SSCAR is an SCDA risk prediction model which combines raw imaging with other data 

types in the same DL framework. Our technology operates on LGE-CMR images and 

clinical covariates within a unified feature learning process, allowing for the different 

data types to synergistically inform the overall survival model. Among the clinical 

covariates used in SSCAR are standard manually derived imaging features, which prevents 

the CMR neural network from merely re-discovering these known features, and instead 

encourages it to learn new features. SSCAR achieves performance that is beyond the 

state-of-the-art in both relative terms — SCDA risk ordering among patients —as well 

as absolute — accurately calibrated probabilities of SCDA. Our robust testing scheme 

overcomes significant limitations of previous work on SCDA risk prediction [10, 22, 16, 

30, 23]. First, we demonstrate high generalizibility by computing internal cross-validation 

performance numbers resulting from 100 train/test splits of the data and, importantly, on 

an entirely separate external cohort, showing modest performance degradation. Second, our 

approach prevents the model from being over-tuned to a certain time horizon by computing 

performance metrics at multiple time points up to 10 years.

Since SSCAR is a combination of neural networks, each working on different data types 

(images and clinical covariates), we were able to perform a comprehensive bottom-up 

analysis of overall performance. We demonstrated that the added complexity of our DL 

approach — potentially at some expense to interpretability — is justified by the significantly 

elevated performance numbers. Indeed, we developed and evaluated a regularized Cox 

proportional-hazards model using the available clinical covariates to serve as a baseline 

for the rest of the analysis. We showed that the neural network-driven feature extraction 

of SSCAR on the same covariates performs significantly better in the same proportional-

hazards setting, highlighting the importance of nonlinear relationships in the covariates. 

Furthermore, we showed that even when using only LGE-CMR images to predict arrhythmia 

risk, the CMR neural network in SSCAR 1) outperforms the Cox proportional-hazards 

model constructed using clinical covariates which include standard imaging and non-

imaging features, and 2) performs on par with the covariate-only network in SSCAR 

using the same clinical variables, suggesting that the image-only neural network in SSCAR 

is able to identify highly predictive imaging features in the LGE-CMR images. Finally, 

we demonstrate that the imaging features found by SSCAR’s CMR network cannot be 
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explained away even when considering nonlinear relationships between standard covariates, 

as evidenced by the ensembled SSCAR model superior performance over SSCAR using 

either data type.

Importantly, a level of interpretability is embedded in the overall design of the custom 

neural network used in SSCAR. Interpretability of AI algorithms is paramount to their 

broad adoption and concerns surrounding it are particularly prevalent in healthcare. In our 

approach, we take multiple steps to ensure the relevance and interpretability of resulting 

features. Our sensitivity analysis of the outputs to the extracted features offers a lens into 

the neural network, rendering some transparency to the algorithm “black-box” (Fig. 4). 

In addition, CMR images taken as input by the CMR neural network are automatically 

segmented to include myocardium-only raw intensity values and the network is designed 

as an encoder-decoder to ensure minimal loss of information during the feature extraction 

process.

SSCAR achieves strong performance despite working on a relatively small data set. 

A concern with DL on smaller data sets is overfitting, which manifests itself as high 

performance during training (good fit), but poor performance when applied to a new test 

set. Indeed, the results in this paper show some differences between metrics on the internal 

validation and external test cohorts. However, we emphasize that although the two cohorts’ 

covariates were “harmonized” where possible (see Methods), they represent two different 

distributions (e.g., low versus moderately reduced LVEF, unmatched versus matched case-

control, 3 versus 60 CMR acquisition sites etc.), likely accounting for any performance 

differences in the two populations. Furthermore, several measures were taken to mitigate 

overfitting: in addition to standard techniques — dropout, kernel and bias regularizers — 

we designed the CMR sub-network as an encoder-decoder which uses the distilled features 

used in risk prediction to also re-construct the original image as an additional regularization 

technique. Finally, all numbers cited on the internal validation set are averages of the test 

performance of hundreds of train/test data splits, adding a layer of statistical rigour.

In SSCAR, we directly model the cause-specific hazard rate and use the implied survival 

function to make predictions. A potential shortcoming of models which do not directly 

model competing risks is that predicted probabilities for the event of interest assume 

a reality where no other type of death could occur, thereby potentially undermining 

interpretability. A limitation here is that we could not compute the cause-specific cumulative 

incidence function, as it requires additional all-cause mortality data, as well as competing 

risk data (e.g., revascularization data). However, should such data become available, our 

competing risk framework makes such an extension straightforward.

An additional limitation in this work is that the list of covariates is not comprehensive. 

Few standard clinical covariates were dropped when “harmonizing” the internal and external 

cohorts (for example, all diuretic types were merged into one variable, no angiotensin 

receptor-neprilysin inhibitor data, etc..). However, since no LV standard imaging covariates 

were excluded, we do not expect any of the omitted variables to affect conclusions drawn 

regarding the performance of the sub-components of SSCAR relative to the baseline Cox 

model. Including additional covariates identified in past work as predictors of SCDA, but not 
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part of standard clinical practice, was beyond the scope of our work. However, these could 

in principle erode the performance of the image-based feature extraction in SSCAR in favor 

of the covariate-only part. Nevertheless, we would expect that, in general, including more 

variables with proper regularization can only improve the overall results in SSCAR, even if 

a re-balance of its components’ performance contribution occurs. Similarly, including right 

ventricle CMR images and parameters and adjusting the methodology accordingly could 

help generalize SSCAR to more cardiomyopathies.

SSCAR fuses cutting-edge DL technology with modern survival analysis techniques. 

It represents innovation in CMR imaging feature extraction and learning of nonlinear 

relationships between standard clinical covariates. The technology aims to transform 

clinical decision-making regarding arrhythmia risk and patient prognosis by encouraging 

practitioners to eschew the view of predicted risk as a single number outputted by a 

“black-box” algorithm, but rather be guided by the estimated time-to-outcome in the 

context of patient-specific time prediction uncertainty, which is itself built in SSCAR’s 

learning process. Through its accurate predictions and significant levels of generalizability 

and interpretability, SSCAR represents an essential step towards bringing patient trajectory 

prognostication into the age of artificial intelligence.

Methods

The research protocol used in this study was reviewed and approved by the Johns 

Hopkins University Institutional Review Board and by the Brigham and Women’s Hospital 

Institutional Review Board. All participants provided informed consent to be part of the 

clinical studies described below. There was no participant compensation.

Patient Population and Data Sets

This study was a retrospective analysis based on a subset (n = 269) of patients selected from 

the prospective clinical trials described below using the process outlined in Extended Data 

4. Of note is that the entire model development in this manuscript was based on the internal 

cohort (see below), while the case-control external cohort was used exclusively for testing 

(outcomes were solely used for computing relevant metrics once the model was fixed).

LV Structural Predictors of SCD cohort (internal)—Patient data came from the Left 

Ventricular Structural Predictors of Sudden Cardiac Death Study (ClinicalTrials.gov ID 

NCT01076660) sponsored by Johns Hopkins University. As previously described[11, 13], 

patients satisfying clinical criteria for ICD therapy for SCDA (LVEF ≤35%) were enrolled 

at 3 sites: Johns Hopkins Medical Institutions (Baltimore, MD), Christiana Care Health 

System (Newark, DE), and the University of Maryland (Baltimore, MD). A total of 382 

patients were enrolled between November 2003 and April 2015. Patients were excluded if 

they had contraindications to CMR, New York Heart Association (NYHA) functional class 

IV, acute myocarditis, acute sarcoidosis, infiltrative disorders (e.g., amyloidosis), congenital 

heart disease, hypertrophic cardiomyopathy, or renal insufficiency (creatinine clearance < 
30 mL/minute after July 2006 or < 60 mL/minute after February 2007). The protocol 

was approved by the institutional review boards at each site, and all participants provided 

informed consent. CMR imaging was performed within a median time of 3 days before 
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ICD implantation. The current study focused on the ischemic cardiomyopathy patient subset 

with adequate late gadolinium enhanced (LGE)–CMR, totaling 156 patients. As part of 

the clinical study, the participants had undergone single-chamber or dual-chamber ICD, or 

cardiac resynchronization with an ICD (CRT-D) implantation based on current guidelines. 

The programming of antitachycardia therapies was left to the discretion of the operators.

PRE-DETERMINE and DETERMINE Registry cohorts (external)—The PRE-

DETERMINE (ClinicalTrials.gov ID NCT01114269) and accompanying DETERMINE 

Registry (ClinicalTrials.gov ID NCT00487279) study populations are multi-center 

prospective cohort studies comprised of patients with coronary disease on angiography or 

documented history of myocardial infarction (MI). The PRE-DETERMINE study enrolled 

5764 patients with documented MI and/or mild to moderate LV dysfunction (LVEF between 

35–50%) who did not fulfill consensus guideline criteria for ICD implantation on the basis 

of LVEF and NYHA class (that is, LVEF > 35% or LVEF between 30% – 35% with NYHA 

Class I HF) at study entry [6]. Exclusion criteria included a history of cardiac arrest not 

associated with acute MI, current or planned ICD, or life expectancy < 6 months. The 

accompanying DETERMINE Registry included 192 participants screened for enrollment 

in PREDETERMINE who did not fulfill entry criteria on the basis of having an LVEF 

< 30% (n = 99), LVEF between 30% – 35% with NYHA Class II-IV heart failure (n = 

19), or an ICD (n = 31) or were unwilling to participate in the biomarker component of 

PREDETERMINE (n = 43). Within these cohorts, 809 participants had LGE-CMR imaging 

performed. Within this subset of patients, 23 cases of SCD occurred and were matched to 

4 controls on age, sex, race, LVEF and follow-up time using risk set sampling. Out of the 

resulting 115 patients, the current study focused on 113 patients with adequate LGE–CMR 

images for analysis. Finally, covariate data for this cohort were minimally “harmonized” 

with the internal cohort, by retaining common covariates only. Some significant differences 

between the external and internal cohorts remained, such as significantly higher LVEF in the 

external cohort.

LGE-CMR Acquisition

The CMR images in the internal and external cohort were acquired using 1.5-T magnetic 

resonance imaging devices (Signa, GE Medical Systems, Waukesha, Wisconsin; Avanto, 

Siemens, Erlangen, Germany). The exact software versions for the devices cannot be 

precisely retroactively ascertained given the very broad nature of the study. All were 2-D 

parallel short-axis left ventricle stacks. The contrast agent used was 0.15 − 0.20 mmol/kg 

gadodiamide (Omniscan, GE Healthcare) or gadopentetate dimeglumine (Magnevist, 

Schering AG) and the scan was captured 10–30 minutes after injection. Due to the 

multi-center nature of the clinical studies considered here, there were variations in CMR 

acquisition protocols. The most commonly used sequence was inversion recovery fast 

gradient echo pulse, with an inversion recovery time typically starting at 250ms and adjusted 

iteratively to achieve maximum nulling of normal myocardium. Typical spatial resolutions 

ranged 1.5 – 2.4 × 1.5 – 2.4 × 6 – 8 mm, with 2 – 4mm gaps. CMR images in the external 

cohort was sourced from 60 sites with a variety of imaging protocols, whereas those in 

internal cohort originated from 3 sites and were more homogeneous. No artifact corrections 
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were applied to the images. More details regarding on CMR acquisition can be found in 

previous work[31, 32, 11, 13].

Clinical Data and Primary Endpoint

In both LVSPSCD and PRE-DETERMINE/DETERMINE cohorts, baseline data on 

demographics, clinical characteristics, medical history, medications, lifestyle habits, and 

cardiac test results were collected (see Table 1 for a list of the common ones between the 

cohorts that were used in SSCAR). The primary endpoint for LVSPSCD was SCDA defined 

as therapy from the ICD for rapid ventricular fibrillation or tachycardia, or a ventricular 

arrhythmia not corrected by the ICD. For the PRE-DETERMINE studies, the primary 

end point was sudden and/or arrhythmic death. Deaths were classified according to both 

timing (sudden versus non-sudden) and mechanism (arrhythmic versus non-arrhythmic). 

Unexpected deaths due to cardiac or unknown causes that occurred within 1 hour of 

symptom onset or within 24 hours of being last witnessed to be symptom free were 

considered sudden cardiac deaths. Deaths preceded by an abrupt spontaneous collapse 

of circulation without antecedent circulatory or neurological impairment were considered 

arrhythmic in accordance with the criteria outlined by Hinkle and Thaler [16]. Deaths 

that were classified as non-arrhythmic were excluded from the endpoint regardless of 

timing. Out-of-hospital cardiac arrests due to ventricular fibrillation that were successfully 

resuscitated with external electrical defibrillation were considered aborted arrhythmic deaths 

and included in the primary endpoint.

Data Preparation

The inputs to our model were the unprocessed late gadolinium enhanced (LGE)-CMR scans 

and the clinical covariates listed in Table 1. The training targets were the event time and 

event type (SCDA or non-SCDA). As a pre-processing step, the raw LGE-CMR scans were 

first segmented for LV myocardium using a method based on convolutional neural networks 

developed and described in previous work [33]. Briefly, this segmentation network consisted 

of 3 sub-networks: a U-net with residual connections trained to identify the entire region of 

interest, a U-net with residual connections trained to delineate the myocardium wall, and an 

encoder-decoder tasked with correcting anatomical inaccuracies that may have resulted in 

the segmentation. In this context, anatomical correctness was defined via a list of pass/fail 

rules (e.g., no holes in the myocardium, circularity threshold, no disconnected components, 

etc.). Once each patient’s LGE–CMR 2-D slices were segmented via this method, they were 

stacked, had all voxels outside the LV myocardium were zeroed out and the slices were 

sorted apex-to-base using DICOM header information and step-interpolated on a regular 64 

× 64 × 12 grid with voxel dimensions 2.5 × 2.5 × 10 mm. These dimensions were chosen to 

make all patient volumes consistent with minimal interpolation from the original resolution, 

while allowing enough room to avoid truncating the LV. Finally, the input to the neural 

network model consisted of a two-channel volume (that is, 64 × 64 × 12 × 2). The first 

channel was a one-hot encoding of the myocardium and blood pool masks. The second 

channel had zeros outside of the myocardium and the original CMR intensities on the 

myocardium, linearly scaled by multiplication with half the inverse of the median blood pool 

intensity in each slice. To mitigate overfitting, train-time data augmentation was performed 

on the images, specifically 3-D in-plane rotations in increments of 90◦ to avoid artifacts, and 
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panning of the ventricle within the 3-D grid. The clinical covariate data were de-meaned and 

scaled by the standard deviation.

Survival Model

Statistical Fit—For each patient i, the outcome data was the pair (Xi, Δi), where Xi is 

the minimum between the the time to SCDA from arrhythmia Ti and the (right) censoring 

time Ci after which either follow-up was lost or the patient died due to a competing risk. 

The outcome Δi is 1 if the patient had the arrhythmic event before they were censored (Ti 

≤ Ci) and 0 otherwise. We estimated the (pseudo-)survival probability function Si(t), the 

probability that the time to SCDA exceeds t. We modeled the Ti’s as independent, each 

having a cause-specific hazard rate [34] based on the log-logistic distribution with location 

parameter μi and scale parameter σi, such that Si t; μi, σi = 1/ 1 + exp logt − μi /σi . The 

patient-specific parameters μi and σi were modeled as outputs of neural networks applied to 

LGE-CMR images and clinical covariates, trained by minimizing the loss function given by 

the negative likelihood:

−logℒ = − ∑
i

logxi − μi
σi

+ δilogσi + 1 + δi log 1 + exp
logxi − μi

σi
,

where xi is the observed time and δi the censoring status. With μi and σi estimated, the 

patient-specific survival functions were given by Si(t) as above.

Performance Metrics—The all-time performance of the models was evaluated using two 

measures. The first was Harrell’s c-index [14] with the patient-specific μi’s as the risk scores 

(exp(μi) is the mode of the log-logistic distribution) to gauge the model’s risk discrimination 

ability. The second was the integrated Brier score [15], which is defined as the time-average 

of mean squared error between true 0/1 outcome and predicted outcome probability and 

gauges both probability calibration and discrimination. Both measures were adjusted for 

censoring, corrected by weighing with the inverse probability of censoring, and calculated 

for data prior to a given cut-off time τ [35]; if unspecified, τ = 10 years, corresponding 

with the maximum event time in the data set. Metrics derived from the confusion matrix 

(e.g., precision and recall) were computed at several time points (τ = 2, 3 . . . years). 

Probability thresholds at these times were selected by maximizing F-score (for precision, 

recall, F-score) or Youden’s J statistic (for sensitivity, specificity, balanced accuracy) on 

the training data. Of note, to preserve consistency in evaluation between the internal and 

external cohorts, metrics computed on the external cohort were not covariate-adjusted, 

potentially underestimating performance [36].

Neural Network Architecture—SSCAR is a supervised survival analysis regression 

model composed of two sub-networks, each operating on different input types (Fig. 1): 

a convolutional sub-network (“CMR”) which takes the LGE-CMR images as inputs, 

and a dense sub-network (“covariate”) which uses the clinical covariate data. Feature 

extraction in the CMR sub-network from the LGE–CMR images was achieved by a 3-D 

convolutional encoder-decoder model. The encoder used a sequence of 3-D convolutions 

and pooling layers, followed by one dense layer to encode the original 3-D volume into 
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a lower-dimensional vector. Nonlinear activation functions and dropout layers were added 

before each downsampling step. The encoding was further used for two purposes: survival 

and reconstruction. For the survival branch, the encoding was first stratified into one of r 
(learned) risk categories (see Supplementary Table 2) and then fed to a 2-unit dense layer 

to predict — for each patient — a set of 2 parameters, location μ and scale σ, which fully 

characterized the probability distribution of the patient’s log-time to SCDA (see Statistical 

Fit), followed by a bespoke activation function. This activation function clipped ln μ on 

[ 3, 3] and clipped σ from below at σmin, where σmin was found such that the difference 

between the 95th and 5th percentiles of the predicted TSCDA distribution was no less than a 

month. This survival activation function effectively restricted the “signal-to-noise” ratio μ/σ. 

For the purpose of reconstruction, the encoding was decoded via a sequence of transposed 

convolutions to re-create the original volume. Feature extraction from the clinical covariate 

data was performed using a sequence of densely connected layers, followed by a dropout 

layer to prevent overfitting. The resulting tensor used a similar path to the one followed 

by the convolutional encoding to eventually map to the 2 survival parameters. Finally, once 

the two sub-networks were trained, they were frozen and joined using a learned linear 

combination layer to ensemble the survival predictions.

The predicted survival parameters (location and scale) aimed to minimize the 

aforementioned negative log likelihood function for the log-logistic distribution, accounting 

for censoring in the data and class imbalance. The re-constructed output of the CMR 

sub-network minimized the mean squared error (MSE) to the original input. Its contribution 

to total loss was learned to provide regularization to the imaging features extracted, ensuring 

the survival fit relied on features able to reconstruct the original image. Both stochastic 

gradient descent (SGD) and Adam[37] optimizers were used. All code was developed in 

Python 3.7 using Keras 2.2.4[38], Tensorflow 1.15[39], numpy 1.6.2, scipy 1.2.1, openCV 

3.4.2, pandas 0.24.2, and pydicom 1.2.2. Each train/evaluate fold took 3–5 minutes on an 

NVIDIA Titan RTX graphics processing unit.

Training and Testing—The entire model development and internal validation were 

performed using the LVSPSCD cohort. Following a hyperparameter tuning step, the best 

model architecture was then used on the entire internal validation set to find the best 

neural network weights. As the ensembling layer was hyperparameter-free, it did not use 

hyperparameter tuning.

Hyperparameter tuning.: A hyperparameter search was performed using the set of 

parameter values described in Supplementary Table 2, given the vast number of 

hyperparameter configurations available to define the model architectures. The package 

hyperopt 0.1.2 [40] was used to sample parameter configurations from the search space 

using the Parzen window algorithm to minimize the average validation loss resulting 

from a stratified 10-times repeated 10-fold cross-validation process. The maximum number 

of iterations was 300 for the covariate sub-network and lowered to 100 for the CMR 

sub-network, given its highly increased capacity. Each fold was run using early stopping 

based on the loss value on a withheld 10% portion of the training fold with a maximum 

of 2000 epochs (20 gradient updates per epoch). In hyperparameter tuning, models were 
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optimized using SGD with a learning rate of .01 (default value in the neural network 

package used). The architecture with the highest Harrell’s concordance index [14] was 

selected. Hyperparameters deemed to have little impact on learning (e.g., maximum number 

of epochs) were fixed. Convolutional kernel size and the activation function for convolutions 

were kept at the default values in the neural network package used. The batch size was set to 

the highest value, given the memory constraints of our hardware.

Internal validation and external test.: Internal model performance was assessed using 10 

repetitions of stratified 10-fold cross-validation on the LVSPSCD cohort. Early stopping 

based on the c-index on a withheld 10% subset was implemented with a maximum training 

of 2000 epochs (20 gradient updates per epoch). The optimizer was Adam with learning 

rate 10−5 for the CMR sub-network, 5 × 10−4 for the covariate sub-network, and .01 for 

the ensemble. A final model was trained with all the available LVSPSCD data and tested 

on the PRE-DETERMINE cohort. Of note, the final model shares the same architecture and 

training parameters with all the models in the 100 internal data splits, but has different (fine-

tuned) weights which are derived using the entire internal dataset. To estimate confidence 

intervals on the external cohort, the same cross-validation process was applied to the PRE-

DETERMINE cohort, supplementing the training data in each fold with the LVSPSCD 

cohort. Approximate normal confidence intervals were constructed using the 100 folds.

Gradient-based Interpretation of SSCAR.: The trained network weights in SSCAR were 

interpreted for both covariate and CMR sub-network using the gradients of outputs with 

respect to intermediary neural network internal representations of data. For the CMR sub-

network, we adapted Grad-CAM [41] to work on regression problems and applied it to 

SSCAR by performing a weighted average of the last convolutional layer feature maps, 

where the weights were averages of gradients of the location parameter output with respect 

to each channel. The result was then interpolated back to the original image dimensions 

and overlaid to obtain the gradient maps shown (Fig. 4a, bottom row). For the covariate 

sub-network, the gradient of the location parameter output was taken with respect to each of 

the inputs and averaged over three groups: all patients, patients with SCDA, patients with no 

SCDA.

Statistical Analysis

All values reported on the internal validation data set were averages over 100 data 

splits resulting from a 10-times repeated 10-fold stratified cross-validation scheme. Values 

reported on the external test data set represented a single evaluation on the entire set. 

All confidence intervals were normal approximations resulting from the aforementioned 

100 splits. In computing confidence intervals for the external test set, the same procedure 

was used on all available data, ensuring test folds came exclusively from the external 

data set. Error bars are standard errors with sample standard deviation estimated from 

the 100 splits. Correlation P-value was based on the exact distribution under the bivariate 

normal assumption. Covariate P-values are based on two-sample Welch’s t-test [42] for 

continuous variables and Mann–Whitney U test for categorical variables. Cox proportional 

hazards analysis was performed using the Python lifelines 0.25.5 [43] package, it included 
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a hyperparameter sweep for the l1 and l2 regularization terms, and followed the same train/

test procedure as the neural network models.

Data Availability

Patient data used in this manuscript cannot be made publicly available without further 

consent and ethical approval due to privacy concerns. The CMR images and patient clinical 

data can be provided by the authors pending Johns Hopkins University Institutional Review 

Board and Brigham and Women’s Hospital Institutional Review Board approval and a 

completed material transfer agreement. Requests for these data should be sent to N.A.T. 

and/or C.M.A.

Code Availability

The code for this project is available under the Johns Hopkins University Academic 

Software License Agreement at https://gitlab.com/natalia-trayanova/sscar.

Extended Data

Extended Data Fig. 1. Survival Study of Cardiac Arrhythmia Risk Results at Various Time 
Points
Receiver operator characteristic curves (ROC) for years 2–9 for the internal and external 

cohorts, with the respective areas under the curve (AUROC). Predicted outcomes are based 

on the estimated survival probability at the respective time points as computed from the 

survival probability function. Shaded areas represent approximate 95% confidence intervals, 

solid and dashed lines indicate the internal and external cohort averages, respectively, and 

random chance performance thresholds are shown using dotted lines.
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Extended Data Fig. 2. Individual Patient Survival Probability
a. Survival probability curves are shown for an example patient in the external test set who 

experienced sudden cardiac death from arrhythmia (SCDA, left display), and for one who 

did not (No SCDA, right display). Survival probability curves are plotted over time for 

Survival Study of Cardiac Arrhythmia Risk (SSCAR) (solid, blue), Cox proportional hazards 

(Cox PH) model (dashed, green) on the clinical covariates, Kaplan-Meier estimator (dot-

dashed, purple), together with the indicator ground truth (dotted, black). For the patient with 

SCDA, SSCAR crosses the 50% survival probability threshold significantly closer to the 

SCDA time, as compared to the alternative curves, highlighting the model’s high calibration. 

For the censored patient (no SCDA), SSCAR estimates higher survival probability at the 

time of non-SCDA event compared to the other models. b. Examples of SSCAR’s predicted 

probability distributions for the time to SCDA (shaded areas, pdf(TSCDA)) for two patients 

in the external test set who experienced SCDA (P1, blue and P2, orange). The predicted 

times to event (Predicted TSCDA) are depicted as solid vertical lines (peaks of distributions); 

actual times (Actual TSCDA are depicted by dotted vertical lines. Note that SSCAR has a 

larger prediction error in P2 compared to P1, seen on the graph as the distance between 

the respective solid and dotted lines. However, SSCAR “recognizes” the inaccurate TSCDA 

prediction and compensates for that by also predicting a more spread out distribution (larger 

scale parameter) for P2. This direct relationship between the prediction error and predicted 

scale parameter holds more generally for the entire dataset, suggesting SSCAR learns to 

quantify the degree of inaccuracy in the TSCDA prediction.
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Extended Data Fig. 3. Survival Study of Cardiac Arrhythmia Risk Cardiac Magnetic Resonance 
(CMR) Sub-network
Top-left panel (yellow) shows patient data used in by the CMR sub-network. The CMR 

sub-network uses as input contrast-enhanced (LGE) CMR images with the left ventricle 

automatically segmented (top inset). Labels associated with each patient (SCDA Events, 

bottom inset, dot-dashed contour) — consisting of the observed time to event, and an 

indicator whether the event was sudden cardiac death from arrhythmia (SCDA) or non-

SCDA — are used as targets during training only. LGE-CMR data is taken as input by a 

3-D convolutional neural network constructed using an encoder-decoder architecture (red 

panel, left). The encoder branch consists of a sequence of 3-D convolutions, downsampling 

(maxpool), and rectified linear unit (ReLU) activation functions. The encoded version of 

the image is transformed using a dense layer with a custom survival activation function 

into two parameters (location, μ and scale, σ, bottom panel, blue) for each patient, which 

fully characterize the probability distribution function of the patient-specific time to SCDA. 

The decoder branch uses transpose convolutions to reconstruct the original images, thereby 

ensuring that the encoded version of the CMR data is meaningful and able to reproduce 

the original images. During training (dot-dashed arrows), the neural network weights are 

optimized via a likelihood-based loss and a reconstruction loss.
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Extended Data Fig. 4. Clinical Trial Data Diagram
On the left (continuous outline), the flowchart shows the eligibility assessment process for 

the internal cohort (LVSPSCD), a subset of which was used for cross-validation and final 

model training. On the right (dashed outline), the flowchart shows the eligibility assessment 

process for the external cohort (PRE-DETERMINE and DETERMINE) used for testing the 

final model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Schematic Overview of Survival Study of Cardiac Arrhythmia Risk (SSCAR).
Top panel (yellow) shows patient data used in this study. SSCAR uses contrast-enhanced 

(LGE) cardiac magnetic resonance (CMR) images with the left ventricle automatically 

segmented (left inset) and clinical covariates (right inset, see Methods, Table 1 for a 

complete list) as inputs to the two sub-networks (left and right pathways). Labels associated 

with each patient (sudden cardiac death from arrhythmia [SCDA] Events, middle inset, 

dot-dashed contour) — consisting of the observed times to event, and indicators whether the 

events were SCDA or non-SCDA — are used as targets during training only. LGE-CMR 
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data is taken as input by a 3-D convolutional neural network constructed using an encoder-

decoder architecture (red panel, left). Clinical covariates are fed to a dense neural network 

(green panel, right). The sub-networks are trained to estimate two parameters (location, μ 
and scale, σ) specific to each patient, which fully characterize the probability distribution 

of the patient-specific time to SCDA (top blue panel; the time to SCDA is modeled as 

probabilistic, assumed to follow a log-logistic distribution). During training (dot-dashed 

arrows and white middle panel), the neural network weights are optimized via a maximum 

likelihood process, in which a probability distribution is sought (blue double-headed arrow 

in middle white panel) to best match the observed survival data (yellow “x”‘s in middle 

white panel). Finally, the optimized probability function is used on test LGE-CMR images 

and covariates to predict patient individualized survival curves (blue bottom panel).
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Fig. 2: SSCAR Overall Performance.
a. Concordance index (top, blue) measuring model risk discrimination — higher is better — 

and integrated Brier score (bottom, red) showing overall fit — lower is better — for various 

time points. b. Receiver operator characteristic (ROC) curve at 10 years for the internal 

validation and external test cohorts, with the respective areas under the curve (AUROC). c. 
Precision-recall (PR) curve at 10 years for the internal validation and external test cohorts, 

with the respective areas under the curve (AUPR). For all panels, shaded areas represent 

approximate 95% confidence intervals, solid and dashed lines indicate averages for the 

internal and external cohorts, respectively, and random chance performance thresholds are 

shown using dotted lines (the dot-dashed line is used to differentiate the internal random 

chance performance from the external). The chosen time of 10 years was used to capture all 

sudden cardiac death from arrhythmia events in the population.
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Fig. 3: Model Comparison.
In blue (left y-axis), concordance index (c-index, dark blue), balanced accuracy (BA, mid-

blue), F-score (light blue), and in red (right y-axis) integrated Brier score (Bs) are shown 

for a standard Cox proportional hazards model fit on the clinical covariates (Linear Cox 

PH), the covariate sub-network of the Survival Study of Cardiac Arrhythmia Risk (SSCAR) 

approach using clinical covariates with a Cox survival model (covariate only, Cox), the 

covariate sub-network of SSCAR using clinical covariates and the log-logistic survival 

model (covariate only), the cardiac magnetic resonance (CMR) sub-network using images 

only (CMR only), and the full arrhythmia prediction neural network model (SSCAR). 

Random chance performance thresholds are shown using dotted lines. All performance 

measures are calculated using data up to τ = 10 years. All model comparison values are 

based on averages over 100 cross-validation train/test splits of the internal validation data 

set. The error bars represent approximate 95% confidence intervals.
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Fig. 4: Survival Study of Cardiac Arrhythmia Risk (SSCAR) Interpretation.
The features learned by SSCAR are interpreted by performing a gradient-based sensitivity 

analysis of the location parameter (the most probable time to sudden cardiac death from 

arrhythmia [SCDA], TSCDA) to changes in the neural network input or features. The gradient 

value quantifies this sensitivity. The magnitude of the gradient measures the strength of 

the sensitivity of the predicted TSCDA to inputs or intermediary features. The sign of the 

gradient shows the direction of the effect. That is, for a small increase in the value of 

inputs or features, a positive gradient (blue) indicates a higher predicted TSCDA, whereas a 
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negative gradient (red) indicates a decrease in the predicted TSCDA. a. Shown is the CMR 

sub-network feature interpretation for an example patient who did not experience SCDA (No 

SCDA, top) and for a patient who did (SCDA, bottom). For each patient, a subset of 3 of 

the 12 contrast-enhanced short-axis cardiac magnetic resonance images (corresponding to 3 

locations in the heart, base to apex, top to bottom, left column) used as inputs by SSCAR 

are overlaid with blood pool and myocardium segmentation (middle column, orange and 

green, respectively). A heat map of extracted features scaled by the value of the gradient 

shows contribution of the local pixel intensity to the predicted location parameter for the 

last convolutional layer (right column, blue and red heat maps). Of note, while the patient 

with SCDA shows high gradients in areas with contrast enhancement, the patient on the 

left shows that enhancement can also lead to positive gradients, suggesting that the network 

does not simply create a mask of the enhanced regions to make predictions, but learns 

a nuanced relationship between scar and propensity for SCDA. b. Covariate sub-network 

interpretation based on an average of all patients (mid-blue and mid-red bars), patients 

with SCDA (dark blue and dark red bars), and no SCDA (light blue and light red bars). 

Top four highest (blue bars) and bottom four lowest (red bars) average gradients of the 

neural network output (that is, the predicted location parameter) with respect to the clinical 

covariate inputs are shown. The error bars represent approximate 95% confidence intervals. 

Abbreviations (top to bottom): LVEF CMR, left ventricular ejection fraction computed from 

CMR; betablock, use of β-blocker medication; ECG hr, heart rate from ECG; digoxin, use of 

Digoxin medication; infarct %, infarct size as % of total volume; ECG QRS, QRS complex 

duration from ECG; LV mass ED, left ventricular mass in end diastole.
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Table 1:
Clinical Covariate Data.

Covariates are shown for both the internal and external cohorts. For continuous variables, the values are mean 

(± std. dev.) and for categorical, count (% of total). P-values are based on two-sample Welch’s t-test for 

continuous variables and Mann–Whitney U test for categorical variables. Both tests were two-sided.

Internal (n = 156) External (n = 113) P-Value

Demographics

 Age, y 61 (± 11) 62 (± 11) 0.443

 Male sex 135 (87) 98 (87) 0.483

 White 126 (81) 95 (84) 0.345

Risk Factors

 Tobacco use 104 (67) 83 (73) 0.117

 DM 51 (33) 44 (39) 0.146

 Hypertension 105 (67) 79 (70) 0.326

 Hyperlipidemia 121 (78) 106 (94) p < .001

 EF non-CMR, % 25 (± 7) 39 (± 13) p < .001

 Duration of CM, y 5 (± 6) 5 (± 7) 0.920

CMR Measurements

 LVEF, % 28 (± 8) 36 (± 11) p < . 001

 LV mass (ED), g 146 (± 45) 127 (± 35) p < . 001

 Infarct Size, % 28 (± 14) 16 (± 10) p < . 001

ECG Measurements

 Heart rate 70 (± 12) 69 (± 14) 0.748

 Presence of LBBB 24 (15) 5 (4) 0.002

 History of atrial fibrillation 29 (19) 4 (4) p < . 001

 QRS duration, ms 116 (± 27) 104 (± 24) p < . 001

Medication Use

 β-Blocker 146 (94) 103 (91) 0.227

 ACE inhibitor or ARB 141 (90) 94 (83) 0.040

 Lipid-lowering 142 (91) 105 (93) 0.289

 Diuretic 80 (51) 58 (51) 0.497

 Antiarrhythmic Drug 13 (8) 2 (2) 0.010

 Digoxin 20 (13) 2 (2) p < . 001

Outcome

 SCDA event 41 (26) 22 (19) 0.097

 Time to event, y 6 (± 3) 7 (± 3) 0.004

Abbreviations: CM, cardiomyopathy; CMR, cardiac magnetic resonance; DM, diabetes mellitus; ED, end-diastolic; EF, ejection fraction; LBBB, 
left bundle branch block; LV, left ventricle; LVEF, left ventricular ejection fraction; SCDA, sudden cardiac death from arrhythmia.
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