TABLE 4.
Organism | No. of rRNA operons | Reference(s) |
---|---|---|
Chlamydia pneumoniae | 1 | 50 |
Coxiella burnetii | 1 | 3 |
Mycobacterium leprae | 1 | 118 |
Mycobacterium tuberculosis | 1 | 13 |
Mycoplasma genitalium | 1 | 48 |
Mycoplasma hyopneumoniae | 1 | 130 |
Rickettsia prowazekii | 1 | 8 |
Borrelia burgdorferi | 2b | 33, 115 |
Chlamydia trachomatis | 2 | 46 |
Leptospira interrogans | 2 | 49 |
Mycobacterium celatum | 2 | 102 |
Mycoplasma gallisepticum | 2c | 25 |
Bordetella pertussis | 3 | 89 |
Campylobacter jejuni-C. coli | 3 | 71, 131 |
Moraxella catarrhalis | 4 | 91 |
Neisseria meningitidis | 4 | 153 |
Pseudomonas aeruginosa | 4 | 108 |
Bacillus cereus group | 6–10 | 101 |
Haemophilus influenzae | 6 | 77 |
Listeria monocytogenes | 6 | 86 |
Salmonella spp. | 7 | 78 |
Vibrio cholerae | 9 | 75 |
Most of these bacteria are sensitive to macrolide antibiotics, at least in vitro (see, e.g., references 12, 15, 24, 65, 72, 81, 100, 114, 127, and 135). For M. tuberculosis, some controversy exist about the effect of macrolides in vivo (81, 135). It is expected that macrolide resistance conferred by rRNA mutations is more likely to arise in the bacteria in the upper portion of the table (see text).
One 16S RNA gene and two 23S RNA genes.
One operon of rRNA genes plus a separate set of 16S and 23S RNA genes.