Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Apr 22;71(2):292–297. doi: 10.1007/s11172-022-3410-9

Effect of visible light onto self-assembly in l-cysteine-silver solution

A N Adamyan 1,, A I Ivanova 1, M D Malyshev 1, S D Khizhnyak 1, P M Pakhomov 1
PMCID: PMC9023329  PMID: 35474970

Abstract

Effects of irradiation with visible light on the process of self-assembly in an aqueous l-cysteine-silver solution (CSS) and hydrogels based on were investigated using a set of physico-chemical methods. It was found that the exposure to light of CSS and hydrogels based on l-cysteine and silver acetate colors them firstly into yellow and subsequently to brown, which is due to the plasmon resonance of free electrons at the surface of resulting silver nanoparticles (AgNPs). A mechanism involving participation of AgNPs was proposed for the self-assembly in CSS and hydrogel.

Key words: l-cysteine, silver acetate, aqueous l-cysteine-silver solution, visible light illumination, self-assembly processes, hydrogel, silver nanoparticles

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-33-90096) and carried out using the equipment of the Center for Collective Use at the Tver State University.

Footnotes

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 292–297, February, 2022.

The authors are grateful to S. S. Abramchuk (M. V. Lomonosov Moscow State University) for recording TEM images and electron diffraction patterns of the samples, and to E. M. Semenova (Tver State University) for recording AFM images of the hydrogel.

No human or animal subjects were used in this research.

The authors declare no competing interests.

References

  • 1.Kerksick C, Willoughby D. J. Int. Soc. Sports Nutrition. 2005;2:38. doi: 10.1186/1550-2783-2-2-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Piepenbrock M-O M, Lloyd G O, Clarke N, Steed J W. Chem. Rev. 2009;110:1960. doi: 10.1021/cr9003067. [DOI] [PubMed] [Google Scholar]
  • 3.Blagitko Y M, Burmistrov V A, Kolesnikov A P, Mikhaylov Y I, Rodionov P P. Serebro v meditsine. Novosibirsk: Nauka-Tsentr; 2004. p. 254. [Google Scholar]
  • 4.Krutyakov Y A, Kudrinsky A A, Olenin A Y, Lisichkin G V. Russ. Chem. Rev. 2008;77:233. doi: 10.1070/RC2008v077n03ABEH003751. [DOI] [Google Scholar]
  • 5.Yegorova Y M, Kubatiyev A A, Shvets V I. Biologicheskie effekty nanochastits metallov. Moscow: Nauka; 2014. p. 350. [Google Scholar]
  • 6.Andersson L O. J. Polym. Sci., Part A1. 1972;10:1963. doi: 10.1002/pol.1972.150100707. [DOI] [Google Scholar]
  • 7.Cui Y, Wang Y, Zhao L. Small. 2015;11:5118. doi: 10.1002/smll.201501245. [DOI] [PubMed] [Google Scholar]
  • 8.Fan Y, Liu S, Yi Y, Rong H, Zhang J. ACS Nano. 2021;15:2005. doi: 10.1021/acsnano.0c06962. [DOI] [PubMed] [Google Scholar]
  • 9.Zheng W, Jia Y, Zhao Y, Zhang J, Xie Y, Wang L, Zhao X, Liu X, Tang R, Chen W, Jiang X. Nano Lett. 2021;21:1992. doi: 10.1021/acs.nanolett.0c04451. [DOI] [PubMed] [Google Scholar]
  • 10.Seaberg J, Hossein M, Hossen N, Bhattacharya R, Khademhosseini A, Mukherjee P. ACS Nano. 2021;15:2099. doi: 10.1021/acsnano.0c09382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sedyakina N E, Feldman N B, Gudkova O I, Rozofarov A L, Kuryakov V N, Lutsenko S V. Mendeleev Commun. 2021;31:312. doi: 10.1016/j.mencom.2021.04.011. [DOI] [Google Scholar]
  • 12.Du X, Zhou J, Sch J, Xu B. Chem. Rev. 2015;115:13165. doi: 10.1021/acs.chemrev.5b00299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Inter. J. Medicine. 2018;13:2217. doi: 10.2147/IJN.S154748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Pakhomov P M, Khizhnyak S D, Lavrienko M V, Ovchinnikov M M, Nierling W, Lechner M D. Russ. Colloid J. 2004;66:65. doi: 10.1023/B:COLL.0000015059.50285.e9. [DOI] [Google Scholar]
  • 15.Pakhomov P M, Khizhnyak S D, Ovchinnikov M M, Komarov P V. Supramolekularnye geli. Tver: Tver State University; 2011. p. 269. [Google Scholar]
  • 16.Pakhomov P M, Ovchinnikov M M, Khizhnyak S D, Roshchina O A, Komarov P V. Polym. Sci., Ser. A. 2011;53:820. doi: 10.1134/S0965545X11090094. [DOI] [Google Scholar]
  • 17.Adamyan A N, Vishnevetskii D V, Ivanova A I, Khizhnyak S D, Pakhomov P M. Russ. Chem. Bull. 2020;69:1799. doi: 10.1007/s11172-020-2964-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vishnevetskii D V, Mekhtiev A R, Perevozova T V, Averkin D V, Ivanova A I, Khizhnyak S D, Pakhomov P M. Soft Matter. 2020;16:9669. doi: 10.1039/D0SM01431A. [DOI] [PubMed] [Google Scholar]
  • 19.Vishnevetskii D V, Laguseva V S, Ivanova A I, Khizhnyak S D, Pakhomov P M. Fibre Chem. 2018;50:161. doi: 10.1007/s10692-018-9953-8. [DOI] [Google Scholar]
  • 20.Vishnevetskii D V, Adamyan A N, Laguseva V S, Ivanova A I, Khizhnyak S D, Pakhomov P M. Polymer Sci., Ser. A. 2019;61:96. doi: 10.1134/S0965545X19010103. [DOI] [Google Scholar]
  • 21.Vishnevetskii D V, Adamyan A N, Ivanova A I, Khizhnyak S D, Pakhomov P M. Russ. Chem. Bull. 2020;69:1443. doi: 10.1007/s11172-020-2921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Baranova O A, Khizhnyak S D, Pakhomov P M. Russ. J. Struct. Chem. 2016;57:1203. doi: 10.1134/S0022476616060214. [DOI] [Google Scholar]
  • 23.Pakhomov P M, Abramchuk S S, Khizhnyak S D, Ovchinnikov M M, Spiridonova V M. Nanotechnologies in Russia. 2010;5:209. doi: 10.1134/S1995078010030080. [DOI] [Google Scholar]
  • 24.Baranova O A, Khizhnyak S D, Pakhomov P M. Russ. J. Struct. Chem. 2014;55:169. doi: 10.1134/S0022476614010296. [DOI] [Google Scholar]
  • 25.Babu S, Claville M O, Ghebreyessus K. J. Experimental Nanoscience. 2015;57:1242. doi: 10.1080/17458080.2014.994680. [DOI] [Google Scholar]
  • 26.Olenin A Y, Lisichkin G V. Russ. Chem. Rev. 2011;80:605. doi: 10.1070/RC2011v080n07ABEH004201. [DOI] [Google Scholar]

Articles from Russian Chemical Bulletin are provided here courtesy of Nature Publishing Group

RESOURCES