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Integrated profiling of human pancreatic cancer
organoids reveals chromatin accessibility features
associated with drug sensitivity
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Gang Jin 1✉ & Dong Gao 2,9✉

Chromatin accessibility plays an essential role in controlling cellular identity and the ther-

apeutic response of human cancers. However, the chromatin accessibility landscape and

gene regulatory network of pancreatic cancer are largely uncharacterized. Here, we integrate

the chromatin accessibility profiles of 84 pancreatic cancer organoid lines with whole-

genome sequencing data, transcriptomic sequencing data and the results of drug sensitivity

analysis of 283 epigenetic-related chemicals and 5 chemotherapeutic drugs. We identify

distinct transcription factors that distinguish molecular subtypes of pancreatic cancer, predict

numerous chromatin accessibility peaks associated with gene regulatory networks, discover

regulatory noncoding mutations with potential as cancer drivers, and reveal the chromatin

accessibility signatures associated with drug sensitivity. These results not only provide the

chromatin accessibility atlas of pancreatic cancer but also suggest a systematic approach to

comprehensively understand the gene regulatory network of pancreatic cancer in order to

advance diagnosis and potential personalized medicine applications.
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Pancreatic cancer is one of the most aggressive malignancies,
with a 5-year survival rate of 9%1. In the past decade,
substantial advances have been made in the genetic and

transcriptomic classification of pancreatic cancer2–8. However,
therapeutic selection for pancreatic cancer patients is commonly
based on clinical experience and patient status and is rarely
predicted by the defined genetic and transcriptomic classifica-
tions. A detailed understanding of the molecular networks that
integrate the landscapes of chromatin accessibility, DNA muta-
tion, gene expression and drug sensitivity may provide insights
into the therapeutic refractoriness of pancreatic cancer.

Recently, the application of the assay for transposase-accessible
chromatin using the sequencing (ATAC-seq) method effectively
enabled genome-wide profiling of chromatin accessibility with
small sample quantities9. Chromatin accessibility landscapes has
provided tremendous insights into the regulatory function to
bridge the noncoding mutations and potential therapeutic strate-
gies. Several previous studies indicated the critical effect of chro-
matin accessibility on identifying WNT signaling amplification in
pancreatic cancer10 and revealing an enhancer reprogramming-
mediated developmental transition to metastasis11. However, the
chromatin accessibility landscape of human pancreatic cancer has
not been investigated and neglected in pan-cancer study12.

The emerging patient-derived cancer organoid system could be
a functional preclinical research platform for understanding
pancreatic cancer progression and drug resistance8,13–18. Pan-
creatic ductal adenocarcinoma (PDAC) organoids have been
generated to study patient chemosensitivity and develop perso-
nalized drug screening approaches8,19. Notably, three organoid
lines derived from pancreatic neuroendocrine neoplasms (NENs)
were recently generated20. Multiomics characterization of a large
repertoire of patient-derived pancreatic cancer organoid (PDPCO)
lines would improve the understanding and facilitate the devel-
opment of new diagnostic and therapeutic strategies for this lethal
disease.

In this work, we establish a PDPCO biobank including 4 NEN
lines and thoroughly characterize these organoid lines by whole-
genome sequencing (WGS), RNA sequencing (RNA-seq), ATAC-
seq and drug sensitivity screening. We integrate the multiomics
profiling data for PDPCOs, reveal functional pancreatic cancer-
related noncoding mutations, provide new insights into the gene
regulatory networks of different pancreatic cancer subtypes, and
reveal a chromatin accessibility signature associated with drug
sensitivity.

Results
Establishment and histological characterization of the
PDPCOs. We seeded pancreatic cancer samples freshly collected
by surgery or endoscopic ultrasound-guided fine-needle aspira-
tion biopsy (EUS-FNA) into pancreatic cancer organoid culture
medium and generated a total of 84 PDPCOs from 99 patients
with exocrine pancreatic tumors (80.80%, 80 lines from 99 patient
samples) and 39 patients with neuroendocrine tumors (10.26%, 4
lines from 39 patient samples) (Fig. 1a and Supplementary
Data 1). In addition, 6 normal pancreatic ductal organoids
(NPOs) were established. The pathological types of the original
tumors were as follows: 75 PDACs, 4 intraductal papillary
mucinous neoplasms (IPMNs), 1 acinar cell carcinoma (ACC)
and 4 pancreatic NENs.

Although the PDPCOs showed great morphological diversity
(Fig. 1b), they displayed the histological and immunohistological
patterns present in the original patient tumor samples. Organoids
derived from PDACs formed typical glandular tubular structures,
as seen in the corresponding patient specimens (Fig. 1c and
Supplementary Fig. 1a), and had similar expression levels of the

ductal cell marker CK19 and the cell proliferation marker Ki67
(for example, CAS-DAC-21 and CAS-DAC-25) (Supplementary
Fig. 1b). The mucinous neoplasm characteristic of IPMNs was
maintained in CAS-IPMN-1, as evidenced by alcian blue staining
(Fig. 1d). In CAS-ACC-1, the typical acinar cell markers α1-
Antichymotrypsin (α1-ACT) and Bcl-10 were highly expressed,
whereas the ductal cell marker CK19 and the neuroendocrine cell
markers Chromogranin-A (CHGA) were not expressed (Supple-
mentary Fig. 1c). Moreover, tumors generated by engrafting CAS-
DACs, CAS-IPMN-1 and CAS-ACC-1 into SCID mice were
reminiscent of the original tumor tissues (Fig. 1c, d and
Supplementary Fig. 1a-c).

NEN is a rare but clinically important subtype of pancreatic
neoplasia21. The efficiency of establishing continuously propa-
gated organoid lines from NEN samples was approximately 10%
(4 lines from 39 “attempts” with samples). CAS-NEN-1 and CAS-
NEN-4 (derived from neuroendocrine carcinomas (NECs), with
>50% positive Ki67 staining), CAS-NEN-2 (grade G2, with 3 to
20% positive Ki67 staining) and CAS-NEN-3 (grade G1, with
<3% positive Ki67 staining), originating from pancreatic NENs,
showed extensive neuroendocrine features, including islet mor-
phology and positivity for Synaptophysin (SYP) and CHGA
staining both in organoid culture and when engrafted in vivo
(Fig. 1e and Supplementary Fig. 1d).

These results strongly indicated that the histological organiza-
tion, differentiation status and morphological heterogeneity of the
primary tumors were conserved in the PDPCOs.

PDPCOs retain typical genomic alterations in pancreatic can-
cer. Chromosomal copy number variations (CNVs) constitute a
common class of mutations that are an important mechanism of
gene disruption or gene activation in pancreatic
carcinogenesis6,22. To characterize the genomic alterations in the
established PDPCOs, WGS was performed on 70 exocrine and 4
neuroendocrine tumor organoid lines, and the data were com-
pared to those for the matched normal DNA from peripheral
blood samples. The CNV segments of the exocrine PDPCOs
showed high concordance with the TCGA pancreatic adeno-
carcinoma (PAAD) dataset23, including the amplification of
regions near KRAS, MYC and AKT2 and loss of regions near
CDKN2A, TP53 and SMAD4 (Supplementary Fig. 2a). Strikingly,
focal amplification of KRAS and increased inactivation events for
CDKN2A, TP53 and SMAD4 were identified previously6.

In total, 3,968 nonsynonymous somatic mutations were
detected within coding regions (Supplementary Data 2). The 70
exocrine organoids harbored a median of 53.0 somatic mutations
(range: 28–113) (Fig. 2), similar to that observed in the TCGA
cohort23. The top mutated genes reported in the list of cancer-
related genes in the COSMIC database24 and OncoKB database25,
such as KRAS (96%), TP53 (86%), SMAD4 (37%), CDKN2A
(24%), RNF43 (10%), ARID1A (10%), TGFBR2 (9%) and KMT2C
(7%), were identified in PDPCOs (Fig. 2), consistent with the
TCGA dataset23(Supplementary Fig. 2b). KRASG12D (48%, 32/67)
was the most frequent KRAS mutation, while KRASG12V (34%,
23/67), KRASG12R (9%, 6/67) and KRASG12C (3%, 2/67) were also
identified in the exocrine organoid lines.

Three mutational signatures (A, B and C) were identified by the
nonnegative matrix factorization (NMF) method in the 70
exocrine organoids, which were highly similar to the Cosmic
signatures: Cosmic signature 5, Cosmic signature 17, and Cosmic
signature 1, respectively (Supplementary Fig. 2c). Cosmic signature
1 and Cosmic signature 5 were reported to exist in all cancer types,
and Cosmic signature 17 was also found in many gastrointestinal
cancers. The aetiology of Cosmic signature 5 and 17 remained
unknown, while Cosmic signature 1 was thought to be the result of
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an endogenous mutational process initiated by spontaneous
deamination of 5-methylcytosine. Based on signature exposure,
the 70 exocrine organoids were divided into three clusters, among
which the cluster enriched for signature C accounted for the
majority of exocrine organoids (47/70) and signature B exhibited
notable advantages in only two organoid lines (2/70) (Supplemen-
tary Fig. 2d). These results revealed the commonly enriched gene
mutational signatures in exocrine organoids and Cosmic signature
1, as well as Cosmic signature 5 achieved the major compositions.

Among the 70 organoid lines, enough fresh frozen tumor tissue
was available to perform whole-exome sequencing (WES) on
10 specimens. We firstly examined the purity of PDPCOs and
tissues, and further compared their concordance in mutations
among exon regions. As expected, the estimated cellularity of
theses tissues was relatively high at around 40%, since we have
selected samples with enough tumor cells based on histological
examination (Supplementary Fig. 2e). Besides, extremely high
purity was observed in the PDPCOs, which has been reported one
of the advantages for the organoid model (Supplementary Fig. 2e).

Comparison of detailed mutations among exon regions between
organoids and matched tissues showed that the majority of the 10
pairs achieved favorable concordance of 50–60%, and the
organoid line derived from ACC which was characterized by
abundant tumor cell exhibited the highest concordance of 74.60%
(Supplementary Fig. 2e). Moreover, we found that most of the
mutations in exon regions of tumor tissues could be similarly
detected in their corresponding organoid lines, in which 6 pairs
reached to more than 70% (Supplementary Fig. 2e, f). Then we
compared the mutational landscape between the original tumors
and the patient-derived organoids and found that the distribution
of variation within the coding region was similar between the
PDPCOs and corresponding tissue samples (Supplementary
Fig. 2g). In addition, the six top mutated genes, KRAS, TP53,
SMAD4, CDKN2A, RNF43 and ARID1A, were examined for their
consistency between the PDPCOs and corresponding tissue
samples (Supplementary Fig. 2h). The vast majority of these
mutations were also observed in the matched tissue samples,
except for one SMAD4 mutation in CAS-DAC-16, which might
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be due to tissue heterogeneity or the higher tumor purity of the
organoid model or could be an additional mutation acquired
during culture. Moreover, somatic CNV patterns were similar
between the organoid lines and original patient samples
(Supplementary Fig. 2i).

The 4 neuroendocrine tumor-derived organoid lines were also
subjected to WGS; among these lines, CAS-NEN-2 lacked
germline information (Fig. 2). Two organoid lines, CAS-NEN-1
and CAS-NEN-4, generated from NECs, carried mutations in both
KRAS and TP53, which are common in malignant NENs26,27. In
addition, CAS-NEN-1 also had a mutation in PTEN, while CAS-
NEN-4 carried mutations in SMAD4 and GNAS. However, these
two NEC organoid lines showed limited variants in CNVs. In
contrast, although the G1 organoid line CAS-NEN-3 exhibited
very few mutational alteration, significant differences were
observed in CNVs, including in DAXX, whose loss is closely
correlated with pancreatic neuroendocrine tumorigenesis28,29. In
addition to deep deletion of DAXX, the G2 organoid line CAS-
NEN-2 also harbored a mutation in TP53, indicating aggressive
biological behavior and consistent with its clinical metastasis.

Collectively, these results indicated that the PDPCO lines
harbored copy number alterations highly representative of the
overall landscape of pancreatic cancer as well as highly pancreatic
cancer-specific gene mutations.

PDPCOs reveal noncoding mutations in pancreatic cancer.
Both coding and noncoding driver mutations performed critical
roles on tumorigenesis, while compared with coding tumor dri-
vers which have been comprehensively investigated, the discovery

of noncoding driver mutations is particularly incomplete30,31. We
further identified mutations in the noncoding region of 69 paired
exocrine organoid-blood samples (Fig. 2 and Supplementary
Data 2). A total of 527,272 noncoding mutations were identified
in this cohort. Strikingly, many shared noncoding mutations were
identified within noncoding RNA regions, regulatory regions
(promoters, 5′ untranslated regions (UTRs), 3′ UTRs and
enhancers), intergenic regions and intronic regions (Fig. 2). Most
of these noncoding mutations have not been reported before, and
their functions remain generally unknown. Further investigations
to determine the roles of these noncoding mutations would cer-
tainly provide insights into pancreatic cancer.

Transcriptomic profiling of PDPCOs identifies four types of
exocrine pancreatic cancer. PDAC is a deadly malignancy that
has been classified into two major subtypes: basal-like and
classical3,4. RNA-seq was performed on 84 PDPCOs and 3 NPOs,
among which 45 pancreatic cancer organoid lines (39 CAS-DACs,
1 CAS-IPMN, 1 CAS-ACC and 4 CAS-NENs), as well as 3 NPOs
were first used as a discovery cohort to explore transcriptomic
subtypes. As expected, the NPOs were clearly separated from the
pancreatic cancer organoids, while the pancreatic cancer orga-
noids were divided into an exocrine group and a neuroendocrine
group by principal component analysis (PCA) (Fig. 3a). Repre-
sentative genes of acinar cell, neuroendocrine cell and PDAC
showed significant higher expression in matched organoids
(Supplementary Fig. 3a)

Using NMF clustering, we identified four PDAC subtypes in the
exocrine group, not including the CAS-ACC organoid line (Fig. 3b,
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Supplementary Fig. 3b and Supplementary Data 3). Based on
differentially expressed genes (DEGs) and gene set enrichment
analysis (GSEA) with 5 previously identified subtypes3,4,8, we
revealed the biological characteristics of the four subtypes. Class 1
and class 2 were named the classical-like and basal-like types of
PDAC and were predominantly composed of classical signatures
and basal-like signatures, respectively (Fig. 3c). Class 3 was
significantly enriched with both classical- and progenitor-type
signatures and named the classical-progenitor type of PDAC
(Fig. 3c). Class 4 constituted a new type of PDAC that did not
match any of the reported subtypes. GSEA revealed that class 4
was highly associated with glycometabolic pathways, such as
glycolysis, carbohydrate metabolism and glucose metabolism
(Fig. 3d). Consistent with this finding, glycolysis pathway-related
genes were highly expressed in class 4 (Fig. 3e). Therefore, we
named class 4 the glycomet type of PDAC.

To verify the classification of the PDAC subtypes, the
remaining 39 organoids (36 CAS-DACs and 3 CAS-IPMNs)
were used for internal validation. The classical-like, basal-like and
glycomet types were successfully identified (Supplementary Fig. 3c
and Supplementary Data 3). However, the classical-progenitor
type was not reproduced, possibly because of the limited size of
this cohort. Furthermore, the four subtypes of PDACs were

independently confirmed in the recently published TCGA PAAD
dataset23 (Fig. 3f).

We next examined the clinical significance of these PDAC
transcriptomic subtypes. Previously, the classical subtype was found
to have a markedly better outcome than the basal-like subtype3,4,32

(Supplementary Fig. 3d). Strikingly, in our study, only the classical-
progenitor type showed a prognosis significantly better than that of
the other subtypes, while classical-like, basal-like and glycomet types
had similar poor survival outcomes (Fig. 3g and Supplementary
Fig. 3e). These results demonstrated that a glycomet type of PDAC
revealed in our PDPCOs has a high level of glycometabolic activity
and the classical-progenitor type of PDAC has a better prognosis.

The chromatin accessibility landscape provides new insights
into the gene regulatory network of pancreatic cancer. We
profiled the chromatin accessibility landscape of 41 exocrine
PDPCOs (39 CAS-DACs, 1 CAS-IPMN and 1 CAS-ACC) and 4
NEN organoid lines (CAS-NEN-1, CAS-NEN-2, CAS-NEN-3, CAS-
NEN-4) by overcoming a daunting task due to the intense desmo-
plastic stroma in pancreatic cancer with ATAC-seq. A total of
156,721 and 26,975 reproducible (observed in more than one
organoid) chromatin accessibility peaks were identified in the 41
exocrine pancreatic tumor organoids and 4 NEN organoid lines,
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Fig. 3 Transcriptome analysis of PDPCOs. a PCA of gene expression for 45 PDPCOs in the discovery cohort: 39 CAS-DACs, 4 CAS-NENs, 1 CAS-IPMN
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respectively. We merged these chromatin accessibility peaks
(162,026) for comparison with previous pan-cancer data12 (Sup-
plementary Fig. 4a), and we observed similar enrichment in tran-
scription start site (TSS) and enhancer (Enh) regions between the
PDPCO and pan-cancer data (Supplementary Fig. 4b). As expected,
in principal coordinates analysis, the PDPCOs were markedly
separated from the other cancers (Supplementary Fig. 4c).

To comprehensively understand the underlying cell types of
pancreatic tumors, we integrated the transcriptomic and
chromatin accessibility data to explore the underlying key
transcription factors (TFs). Based on the TF regulon set generated
from the transcriptomic data, we identified cluster-specific TF
regulons by motif enrichment according to the chromatin
accessibility data (Fig. 4a and Supplementary Data 4). Compar-
ison between exocrine and neuroendocrine tumor organoid lines
showed significant enrichment of neuroendocrine cell lineage-
associated TFs, such as ASCL1, NEUROD1, NKX2-5 and
POU3F2, in neuroendocrine organoids (Fig. 4b)20. In addition,
neuroendocrine tumor organoids were markedly enriched with
the NKX6-1 regulon (Fig. 4b). Previous studies have demon-
strated that NKX6-1 is a homeobox TF participating in the
development and regulation of the endocrine function of
pancreatic islets33, which further helps to reveal the biological
characteristics of pancreatic neuroendocrine tumor organoids.

We next investigated the heterogeneity of TF regulons among
the four subtypes of PDAC, where the enriched TFs could
regulate as many as 40%~50% of the DEGs between subtypes
(Fig. 4c, Supplementary Fig. 4d and Supplementary Data 4).
Specifically, in the classical-like subtype, we found significant
enrichment of HNF4A, which was demonstrated to be a hallmark
of the classical subtype of pancreatic cancer10. Additionally,
enrichment of HNF4G was found in this subtype. Previous
studies have suggested that overexpression of HNF4G can
promote PDAC invasion34. TP63, a well-defined basal/squamous
cell marker3, showed higher enrichment in the basal-like subtype.
Consistent with the poor prognosis of the basal-like subtype, we
revealed notable enrichment of FOXA1, which was showed to
promote the metastasis of pancreatic cancer11. Surprisingly, the
HOX gene family was also significantly enriched in the basal-like
subtype. Many HOX genes, such as HOXA13, HOXB7 and
HOXB8, were previously reported to be upregulated in pancreatic
cancers with increased proliferative and metastatic abilities35, and
we first revealed their common enrichment in the basal-like
subtype of pancreatic cancer. As expected, in the classical-
progenitor subtype, we observed enrichment of MYC, MYB and
ATOH1, which have been previously identified as critical
regulators of progenitor cells in the pancreas, colonic crypt and
intestinal epithelium36–38, reinforcing the specific progenitor
feature of this subtype. In the newly discovered glycomet subtype,
we found many enriched TFs such as NFE2, MAFK and PAX8,
which have been demonstrated to played critical roles in other
aggressive solid cancers, facilitating a deeper understanding for
this subtype. Recent studies proposed that overexpression of
NFE2 could significantly enhance the metastasis capability of
triple-negative breast cancer by mimicking the bone microenvir-
onment and activating Wnt pathway39. Similarly, MAFK was also
reported to promote the progression of triple-negative breast
cancer, in which MAFK notably induced epithelial-mesenchymal
transition (EMT) and tumor invasion by regulating the targeted
gene GPNMB40. In addition, a potential oncogenic TF in renal
and ovarian cancers-PAX841 appeared in the glycomet subtype,
indicating its important contribution to the malignant behavior of
this class. These results provide new comprehensive insights into
the biological heterogeneity of pancreatic cancer from both the
transcriptomic and chromatin accessibility perspectives and
reveal subtype-specific TFs.

To more completely decipher noncoding genome in exocrine
pancreatic tumors by associating ATAC-seq peaks and the genes,
we correlated the chromatin accessibility peak and gene
expression data across the 41 exocrine pancreatic tumor
organoids using the published strategy12,42. We identified 2,257
ATAC-seq peak-to-gene links, which could be divided into three
types: (i) 154 promoter peak-to-gene links, (ii) 1,462 positive
distal ATAC-seq peak-to-gene links, and (iii) 641 negative distal
ATAC-seq peak-to-gene links (Fig. 4d and Supplementary
Data 5). As expected, we found a notable difference between
promoter-to-gene links and distal ATAC-seq peak-to-gene links
in the histogram showing the distance from a peak to its target
gene. All links in promoter-to-gene correlation had no gaps, as
expected, while links in the distal ATAC-seq peak-to-gene
correlation decayed gradually with distance (Supplementary
Fig. 4e, h). Further comparison revealed that most promoter-to-
gene links were exclusively related (Supplementary Fig. 4f, g). In
contrast, 95% of genes were regulated by no more than 6 different
peaks in the distal ATAC-seq peak-to-gene links (Supplementary
Fig. 4i), whereas 80% of peaks were predicted to link with a single
gene (Supplementary Fig. 4j). This peak-to-gene linkage land-
scape not only provided new insights into the regulation of well-
recognized driver genes such as CDKN2A (Supplementary Fig. 4k,
l) but also predicted potential DNA regulatory elements of genes,
such as GPANK1, which are largely unknown (Supplementary
Fig. 4m). These results expanded our understanding of pancreatic
cancer to include an analysis of these predicted peak-to-gene links
and provided a comprehensive extension of the gene regulatory
reference in pancreatic cancer and serves as resource to interpret
noncoding somatic mutations.

Integrated analysis reveals potential functional pancreatic
cancer-related noncoding mutations. Given the role of non-
coding mutations as potential drivers of cancer initiation and
progression12,31, we performed integrated analysis of the WGS,
ATAC-seq and RNA-seq data to identify regulatory noncoding
mutations (Fig. 5a). The 31 exocrine pancreatic organoid samples
(29 CAS-DACs, 1 CAS-IPMN, and 1 CAS-ACC) harbored a total
of 240,900 called noncoding mutations. A total of 3.07%
(n= 7,398) of these noncoding mutations were located within
annotated ATAC-seq peaks (Fig. 5b and Supplementary Data 6),
which potentially had functions in regulating chromatin acces-
sibility and gene expression. In addition, 1,516 (20.49%) muta-
tions correlated with a significant increase or decrease in
chromatin accessibility at the mutation site compared with that of
the other non-mutated organoids in this cohort (Fig. 5c).

Among these mutations, a mutation was identified within the
enhancer of the RIMBP2 gene, which was reported to correlate
with more favorable prognosis in lung squamous cell carcinoma
patients43. This enhancer mutation was associated with a
significant increase in chromatin accessibility at the mutated site
and was accompanied by an increase in RIMBP2 mRNA
expression (Fig. 5d, e). Notably, RIMBP2 expression was
positively associated with pancreatic cancer patient survival in
the TCGA PAAD cohort23 (Fig. 5f), indicating a potential
protective function of both this noncoding mutation and
RIMBP2. In contrast, mutation of the S100A6 gene enhancer
was associated with a decrease in chromatin accessibility at the
mutation site and correlated with reduced S100A6 mRNA
expression (Supplementary Fig. 5a, b). S100A6 functions in
promoting cell invasion and EMT in pancreatic cancer44,45,
predicting worse patient outcomes with this mutation (Supple-
mentary Fig. 5c). This mutation in the S100A6 gene enhancer
could have functional consequences in pancreatic cancer. These
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results identified regulatory noncoding mutations that have
potential as cancer drivers or diagnostic biomarkers.

High-throughput drug screening reveals a chromatin accessi-
bility signature associated with drug sensitivity. To characterize
the drug sensitivity signatures of pancreatic cancer, we performed
primary drug screening on 35 exocrine PDPCOs (34 CAS-DACs
and 1 CAS-IPMN) using a library of 283 chemicals targeting
epigenetic-related signaling pathways, including those involved in
histone modification, the cell cycle, DNA damage, some classical
cellular signaling cascades, the cytoskeleton and other cellular
aspects (Supplementary Fig. 5d and Supplementary Data 7). We
first selected 87 chemicals that exhibited an inhibition rate of
higher than 60% in at least one organoid. Among these 87

chemicals, 17 were excluded for similar inhibition rates among all
screened organoids, and 11 were excluded for inadequate inhi-
bition rates (the screening concentration was markedly higher
than the reported IC50, while the inhibition rate was <80% in all
screened organoids). The remaining 59 chemicals (Supplemen-
tary Fig. 5e, f and Supplementary Data 7) and 5 chemotherapeutic
drugs used as first-line therapy for pancreatic cancer (gemcita-
bine, paclitaxel, 5-fluorouracil, oxaliplatin and irinotecan) were
used for the secondary screening of 39 exocrine PDPCOs (38
CAS-DACs and 1 CAS-IPMN) (Supplementary Fig. 5f and
Supplementary Data 8).

We next examined the association between ATAC-seq peaks
and drug sensitivity. This analysis identified 15,397 links in this
cohort, including both positive and negative correlations (Fig. 5g
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and Supplementary Data 9). Strikingly, the chromatin accessibility
peak at chr1:179797737-179798364 was negatively correlated with
sensitivity to mivebresib, a bromodomain and extraterminal
domain (BET) family inhibitor (Fig. 5h). In contrast, another
chromatin accessibility peak at chr14:91694414-91695079 was
positively correlated with sensitivity to domatinostat, a dual class I
histone deacetylase (HDAC) and lysine demethylase inhibitor

(Fig. 5i). These results indicated the potential link between
chromatin accessibility and drug sensitivity.

To understand the mechanisms underlying the abovemen-
tioned chromatin accessibility peak-to-drug links, we next
investigated the link between these ATAC peaks and RNA
expression. The ATAC peak at chr12:125033345-125034019 was
positively correlated with the expression of the NCOR2 gene (Ten

Fig. 5 Integrated analysis of noncoding mutations and drug sensitivity in PDPCOs. a Schematic for identifying potential functional noncoding mutations
in 31 exocrine PDPCOs. b Proportions of noncoding mutations located within and outside ATAC peaks. c Dot plot showing fold change in accessibility at
ATAC-seq peaks containing noncoding mutations across above 31 exocrine PDPCO. d Box plot showing chromatin accessibility at RIMBP2 putative
enhancer and RIMBP2 gene expression across above 31 exocrine PDPCOs. Boxplot show the median (central line), the 25–75% interquartile range (box
limits). e Normalized ATAC-seq tracks of RIMBP2 putative enhancer locus in 5 representative samples. The red and gray tracks represent samples with and
without mutation of the RIMBP2 putative enhancer, respectively. Black dotted line indicates the position of the mutation, and the predicted enhancer region
is highlighted by light blue shading. f Kaplan-Meier analysis of overall survival in the TCGA PAAD cohort stratified by high and low expression of RIMBP2
gene. P value is determined by using log-rank test. g Heatmap of 15,397 putative peak-to-drug links in 39 exocrine PDPCOs. Each row represents an
individual link between one ATAC-seq peak and one drug. The color represents the z-score for chromatin accessibility (left) or the z-score for drug AUC
(right). Dot plot showing a representative negative correlation in h and a representative positive correlation in i. Significance is computed by Pearson’s
correlation coefficients without adjustment. j Normalized ATAC-seq tracks of BAG3 putative enhancer locus in 10 representative samples. The yellow and
purple tracks represent samples with and without peaks in BAG3 putative enhancer, respectively. The peak region is highlighted by light blue shading.
Comparison between peak high group with peaks in the BAG3 putative enhancer and peak low group without such peaks in the above 10 samples of BAG3
gene expression in k, AUC of 5-FU in l and AUC of PTX in m. Each group contains 5 biologically independent samples. Boxplot show the median (central
line), the 25–75% interquartile range (box limits). Significance is computed by two-sided unpaired t test. PDPCO, patient-derived pancreatic cancer
organoid; AUC, area under curve; 5-FU, 5-fluorouracil; PTX, paclitaxel.
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representative examples showing the most extreme differences in
Supplementary Fig. 5g, h, general comparison in Supplementary
Fig. 6a), which is involved in the regulation of the oncogenic JAK/
STAT3 pathway in anaplastic large cell lymphomas and estrogen
receptor-positive breast cancer46,47. As expected, this NCOR2
gene-related ATAC peak predicted sensitivity to Go6976, an
inhibitor of the PKC and JAK/STAT3 pathways (Ten represen-
tative examples showing the most extreme differences in
Supplementary Fig. 5i, general comparison in Supplementary
Fig. 6b). As another example, MSH2 mRNA expression was
significantly positively correlated with the ATAC peak at
chr2:47355361-47355625 (Ten representative examples showing
the most extreme differences in Supplementary Fig. 5j, k, general
comparison in Supplementary Fig. 6c), which predicted sensitiv-
ity to HDAC inhibitors (panobinostat, abexinostat and quisino-
stat) (Ten representative examples showing the most extreme
differences in Supplementary Fig. 5l-n, general comparison in
Supplementary Fig. 6d). A previous study indicated that HDAC10
was the crucial enzyme for deacetylating MSH2 to promote DNA
mismatch repair activity in cancer cells48.

As cytotoxic neoadjuvant or adjuvant chemotherapy in
combination with oncologic resection is still the most widely
used treatment strategy for PDAC patients, we investigated the
chromatin accessibility signature associated with sensitivity to
cytotoxic chemotherapeutics. PDPCOs with higher chromatin
accessibility at the peak at chr10:121441617-121442244 displayed
significant resistance to 5-fluorouracil and paclitaxel (Ten
representative examples showing the most extreme differences
in Fig. 5j, l, m, general comparison in Supplementary Fig. 6f), and
this peak positively correlated with BAG3 gene expression (Ten
representative examples showing the most extreme differences in
Fig. 5k, general comparison in Supplementary Fig. 6e). Recent
studies proved that BAG3 can effectively induce 5-fluorouracil
and paclitaxel resistance in cancer cells49,50. Furthermore, we
showed that the ATAC-seq peak at chr6:139728666-139729424
predicted sensitivity to oxaliplatin (Ten representative examples
showing the most extreme differences in Supplementary Fig. 5o,
q, general comparison in Supplementary Fig. 6h). This peak had a
direct positive correlation with the expression of the CITED2 gene
(Ten representative examples showing the most extreme
differences in Supplementary Fig. 5p, general comparison in
Supplementary Fig. 6g), which was previously identified as a
potential drug resistance gene for platinum51. These results
indicated that chromatin accessibility peaks can be useful
biomarkers for predicting chemosensitivity in pancreatic cancer
and revealed the potential mechanism of drug sensitivity.

PDPCOs recapitulate the patients’ chemosensitivity. Since
chromatin accessibility could predict chemosensitivity in pan-
creatic cancer, we further investigated whether PDPCOs can
accurately reflect the chemosensitivity profiles of pancreatic cancer
patients. The results from high-throughput screening of che-
motherapeutic drugs revealed significant interorganoid variability
for a single agent and interagent variability within a single orga-
noid, as similarly documented in clinical practice (Fig. 6a). In
terms of chemosensitivity, we defined the organoids as sensitive
(area under the curve (AUC) lowest 1st-13th), intermediate (AUC
lowest 14th–26th) or resistant (AUC lowest 27th–39th) based on
the dose-response curve and the corresponding AUC value
(Fig. 6a). We explored the correlations in chemosensitivity between
the organoids and patients. Clinical follow-up data of the 39 cor-
responding patients were collected from the prospective database
of Changhai Hospital (Supplementary Data 10). Thirty-one
patients underwent upfront radical surgery with subsequent
adjuvant therapy, 6 patients received upfront radical surgery

without adjuvant therapy, and the other 2 patients received
neoadjuvant therapy rather than upfront surgery (Fig. 6b). We
divided the 31 patients into 3 groups based on the sensitivity of the
paired organoids and the patients’ actual adjuvant chemotherapy
regimens: the sensitive group (patients treated with at least one
chemotherapeutic agent to which the paired organoid was sensi-
tive), the intermediate group (patients treated with at least one
chemotherapeutic agent with an intermediate response in the
paired organoid), and the resistant group (patients treated with
chemotherapeutic agents to which the paired organoid was resis-
tant) (Supplementary Fig. 7a). Survival analysis showed that the
sensitive group had a significantly longer recurrence-free survival
time than both the intermediate group (N/A vs 225 d, P= 0.046)
and the resistant group (N/A vs 217 d, P= 0.006) (Fig. 6c).
Comparison of imaging results between the sensitive group and
resistant group at 6 months after surgery revealed that no evident
recurrence occurred in patient CAS-DAC-24, who received gem-
citabine; moreover, the paired organoid line (CAS-DAC-24) was
sensitive to gemcitabine. In contrast, the organoid line CAS-DAC-
22 was resistant to 5-fluorouracil, and the corresponding patient
developed multiple liver metastases and local recurrence when
5-fluorouracil was used as adjuvant therapy (Fig. 6d). In the
intermediate group, patient CAS-DAC-20 was treated with S1
(which has the same mode of action as 5-fluorouracil), to which
the paired organoid CAS-DAC-20 had intermediate sensitivity,
and exhibited liver metastasis upon imaging examination 6 months
postsurgery (Fig. 6d). After the addition of another intermediate
agent, gemcitabine, the lesion remained stable in terms of both
tumor size and biomarker expression for approximately 4 months
before a second progression (Supplementary Fig. 7b, c). Besides, we
compared the image results of patients used the same che-
motherapy agents but with different organoid sensitivity. S1 was
used in CAS-DAC-5 (intermediate), CAS-DAC-20 (intermediate),
CAS-DAC-21 (resistant), CAS-DAC-22 (resistant) and CAS-DAC-
31 (sensitive), while GEM in CAS-DAC-24 (sensitive) and CAS-
DAC-21 (resistant). Comparison of image examinations sig-
nificantly demonstrated a strong consistency between organoid
sensitivity and recurrence status under the same chemotherapy
agent (Supplementary Fig. 7d, e), in which “sensitive” showed less
recurrence than “intermediate”, while “resistant” exhibited the
most progression. These results indicated a high consistency in
chemosensitivity between the organoids and paired patients.

We next evaluated the chemosensitivity of the PDPCOs in vivo
using organoid-derived xenograft (ODX) models. CAS-DAC-18
(sensitive to gemcitabine), CAS-DAC-20 (intermediate sensitivity to
gemcitabine and 5-fluorouracil), CAS-DAC-22 (resistant to 5-
fluorouracil), CAS-DAC-24 (sensitive to gemcitabine) and CAS-
DAC-36 (resistant to gemcitabine, 5-fluorouracil and paclitaxel)
represented diverse groups of organoids with different chemosensi-
tivities. As expected, ODX-18 (the CAS-DAC18-derived xenograft)
and ODX-24 (the CAS-DAC24-derived xenograft) was highly
sensitive to gemcitabine (Fig. 6e and Supplementary Fig. 8a-c), while
ODX-20 (the CAS-DAC20-derived xenograft) was modestly sensitive
to 5-fluorouracil and gemcitabine (Fig. 6f and Supplementary Fig. 8a),
and ODX-22 exhibited notable resistance to 5-fluorouracil (Supple-
mentary Fig. 8d, e). The reductions in tumor growth were 92.33% for
ODX-18 treated with gemcitabine (P < 0.001), 64.50% for ODX-20
treated with gemcitabine (P < 0.001), 56.67% for ODX-20 treated
with 5-fluorouracil (P= 0.001), 17.04% for ODX-22 treated with
5-fluorouracil (P > 0.05) and 75.58% for ODX-24 treated with
gemcitabine (P < 0.001). In particular, ODX-36 displayed significant
resistance to all of the three drugs (gemcitabine, 5-fluorouracil and
paclitaxel; P= 0.566, P= 0.183 and P= 0.077), as demonstrated by
the 7.79, 24.51, and 25.17% reductions in tumor growth in response
to these respective drugs, which was consistent with the in vitro
organoid drug screening results (Fig. 6g and Supplementary Fig. 8f).
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These results demonstrated that PDPCOs can reliably recapitulate
patient-specific and clinically relevant responses to chemotherapy.

Moreover, we tried to expand these observations to the
neoadjuvant therapy setting. Organoid CAS-DAC-38 was gener-
ated by EUS-FNA biopsy before treatment and showed sensitivity
to gemcitabine and paclitaxel and resistance to 5-fluorouracil in
chemotherapeutic drug screening (Supplementary Fig. 9a). During
neoadjuvant therapy in patient CAS-DAC-38, although the level
of the pancreatic cancer cell marker cancer antigen (CA) 19-9 was
persistently above the upper limit of detection (>1200 U/mL), the
levels of carcinoembryonic antigen (CEA) and CA 72-4 notably
declined during combination chemotherapy with gemcitabine and
paclitaxel (Supplementary Fig. 9b). However, tumor growth was
no longer suppressed after the patient switched to combination

chemotherapy with 5-fluorouracil and paclitaxel due to the
intolerable side effects of combination chemotherapy with
gemcitabine and paclitaxel (Supplementary Fig. 9b). The chemo-
sensitivity profiles of patient CAS-DAC-38 and the paired
organoid CAS-DAC-38 showed high consistency in the clinical
setting of neoadjuvant therapy.

Discussion
Epigenetic characteristics have shown that chromatin states, such
as chromatin accessibility, histone modifications and chromatin
interactions, play a critical role in dissecting cellular
heterogeneity52. For example, the accessible pan-cancer genome
provides comprehensive information on the prognosis and

Fig. 6 Clinically relevant chemosensitivity of PDPCOs with validation in in vivo xenograft models. a AUCs of 5 chemotherapeutic agents in 39 exocrine
PDPCOs (38 CAS-DACs and 1 CAS-IPMN). With respect to each chemotherapeutic agent, the 39 PDPCOs were divided equally into sensitive (blue, AUC
lowest 1st-13th), intermediate (yellow, AUC lowest 14th–26th) and resistant (red, AUC lowest 27th–39th) groups. The gray dot indicated CAS-DAC-14.
b Diagram of the clinical analysis workflow. c Kaplan-Meier survival analysis showing the recurrence-free survival outcomes of the patients corresponding
to the 39 PDPCOs. P value is determined by using log-rank test. Based on the consistency between the clinical adjuvant chemotherapy regimen and
chemosensitivity of the matched organoid, three groups were identified: sensitive (n = 10), intermediate (n = 13) and resistant (n = 8). d Representative
radiation examination of both the surgical area and liver in the sensitive group (CAS-DAC-24, CE-CT), intermediate group (CAS-DAC-20, CE-MRI), and
resistant group (CAS-DAC-22, CE-MRI) at the time of diagnosis and six months post-surgery. Yellow arrow, primary tumor; Blue arrow, hepatic cyst; Red
arrow, metastasis. e Drug test of ODX-18 with GEM (n=6), using Vehicle as a control (n=6). Data are presented as mean values + SEM. Statistical
Significance was computed by two-sided unpaired t test. Source data are provided as a Source Data file. f Drug test of ODX-20 with GEM (n = 6) and 5-FU
(n = 6), using Vehicle as a control (n = 6). Data are presented as mean values + SEM. Statistical Significance was computed by two-sided unpaired t test.
Source data are provided as a Source Data file. g Drug test of ODX-36 with GEM (n = 6), 5-FU (n = 6) and PTX (n = 6), using Vehicle as a control (n=6).
Data are presented as mean values + SEM. Statistical Significance was computed by two-sided unpaired t test. Source data are provided as a Source Data
file. Statistical analysis, ns P≥ 0.05,*P < 0.05, **P < 0.01, ***P < 0.001. PDPCO, patient-derived pancreatic cancer organoid; AUC, area under curve; GEM,
gemcitabine; 5-FU, 5-fluorouracil; PTX, paclitaxel; OXA, oxaliplatin; IRI, irinotecan; CE-CT: contrast-enhanced computed tomography; CE-MRI: contrast-
enhanced magnetic resonance imaging.
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potential therapeutic strategies of diverse cancer types12. Primary
PDAC tissue contains an excessive population of stromal cells,
which has been an obstacle in characterizing chromatin accessi-
bility. Here, we generated a pancreatic cancer organoid biobank
and completed an initial characterization of the chromatin reg-
ulatory landscape of human pancreatic cancer. Integration of the
chromatin accessibility landscape with WGS, transcriptome and
high-throughput drug sensitivity profiling data identified gene
regulatory network underlying pancreatic cancer, expanded the
repertoire of functional noncoding mutations in pancreatic can-
cer, and revealed the potential ability of chromatin accessibility to
predict drug sensitivity networks. These data may constitute a
fundamental research resource that facilitates the discovery of
potential treatment targets and drugs for pancreatic cancer.

The discovery of driver mutations in both protein-coding and
noncoding regions has critical implications for patients with
cancer30,31. Previously, mutations in the coding regions of the
pancreatic cancer genome have been investigated using patient-
derived organoid models8,17,19. In this study, we found that driver
mutations in protein-coding regions were consistent with those in
primary tumors and a published database23. Furthermore, we
investigated the mutations in noncoding regions and identified
527,272 noncoding mutations. We integrated WGS, ATAC-seq
and RNA-seq data to identify regulatory noncoding mutations
with corresponding chromatin accessibility and expression
changes53. Strikingly, more than 3% of the noncoding mutations
were located within chromatin accessibility peaks, and more than
20% (1527 of 7470 cases) of these noncoding mutations sig-
nificantly changed chromatin accessibility at the peaks in which
they were included, compared with that in the non-mutated genes
in this cohort. For example, noncoding mutations in the enhancer
region of RIMBP2 were highly associated with elevated chromatin
accessibility at the mutation site, which promoted the expression
of RIMBP2, leading to improved patient prognosis. Notably,
noncoding mutations without significant changes in chromatin
accessibility at their peaks, especially highly recurrent noncoding
mutations, might exert their influence through mechanisms other
than affecting chromatin accessibility54. In general, the integrated
multi-omics data in the biobank provided a systematic approach
for investigating the regulatory function across the noncoding
genome and could effectively facilitate the understanding of the
roles of noncoding mutations in promoting and suppressing
tumor development.

The transcriptomic classification of pancreatic cancer has been
intensively investigated. Via microdissection to enrich epithelial
cells, pancreatic cancer can be divided mainly into the classical
and basal-like subtypes2, which can also be observed in several
pancreatic organoid biobanks8,17. Recently, genomic aberrations
and metabolic classifications have also provided novel biological
insight into previously established PDAC subtypes7,32. In this
study, we identified four transcriptomic subtypes incorporating
three known subtypes (classical-like, basal-like and classical-
progenitor) and one new subtype, glycomet, which is highly
associated with glycometabolic pathways. Survival analysis
demonstrated that the classical-progenitor subtype significantly
correlated with better outcomes, unlike the other subtypes,
indicating the prognostic value of this classification. Furthermore,
we revealed the potential underlying regulatory mechanism by
integrated analysis of TF regulons and the binding motifs of
chromatin accessibility peaks. These results provided insights into
the transcriptomic characteristics of pancreatic cancer and further
revealed the underlying regulatory mechanism of different sub-
types. The integrated profiling confirmed TFs, which could
facilitate a comprehensive understanding of the distinct biological
behavior of pancreatic cancer and potentially promote the clinical
utility of transcriptomic subtypes.

Epigenetic aberrations are potential therapeutic targets that
could be pharmacologically reversible, whereas genetic changes
are commonly difficult to reverse55. In this study, we performed
high-throughput drug screening on pancreatic cancer organoids
using a library of 283 chemicals targeting epigenetic-related sig-
naling pathways. The chromatin accessibility peak-to-gene link-
age data demonstrated that these peak-to-gene links are new
biomarkers for predicting sensitivity to epigenetic-related che-
micals. In addition, similar ATAC peak-to-gene biomarkers for
the chemosensitivity of pancreatic cancers were observed in this
study. Based on this high-throughput drug screening and inte-
grated profiling of PDPCOs, we identified that ATAC-seq peaks
could be used to predict drug sensitivity, which may promote the
exploration of new treatment strategies and the development of
personalized therapies.

Previously, transcriptomic signatures for the five chemother-
apeutic agents were generated to predict the specific sensitivity of
pancreatic cancer patients using organoid cultures8. However,
sufficient evidence proving the consistency between the pan-
creatic cancer organoids and the clinical responses of the corre-
sponding patients was noticeably lacking. We compared organoid
sensitivity with the clinical responses of the paired patients in a
large cohort and confirmed significant survival benefits in
patients who were treated with chemotherapeutics to which the
corresponding organoid was sensitive. Furthermore, we validated
and quantified organoid chemosensitivity in vivo with ODX
models. We confirmed the strong correlation between organoid
chemosensitivity and clinically relevant responses, which formed
a solid foundation for guiding individualized chemotherapy in
pancreatic cancer with PDPCOs in drug screening and clinical
practice.

Pancreatic NENs are heterogeneous tumors with a highly
variable prognosis. Patients with lower grade (G1/G2) tumors
were reported to have more favorable survival outcomes than
those with higher grade (G3/NEC) tumors56, while a small subset
of G1/G2 NENs were also aggressive and had a chance of
metastasis57. Recently, research on pancreatic NENs has attracted
much attention but has been restricted by the limited availability
of models20,58. In this study, we generated 4 pancreatic NEN
organoids with the capability of continuous passage in vitro. By
histological and molecular analysis, we confirmed the NEN fea-
tures of these 4 organoid lines. In particular, although DAC-47
was pathologically diagnosed as G2, it harbored a TP53 mutation,
which is a common mutation in G3/NEC tumors20,27, indicating
aggressive biological behavior consistent with its clinical metas-
tasis. DAC-46 was also generated from a metastasis, but unlike
DAC-47, it harbored mutations in KRAS, TP53, and PTEN, which
is another typical characteristic of malignant NENs26. These 4
organoid lines are critical supplements for the research model of
pancreatic NEN, which could help us to better comprehend the
aggressive biological behavior of NEN and facilitate the devel-
opment of clinical treatment.

In conclusion, integrated profiling of the PDPCO biobank
identified the potential regulatory function of noncoding muta-
tions and the gene regulatory network underlying pancreatic
cancer and revealed peak-to-gene links as new biomarkers for
predicting drug sensitivity. The clinical responses of the paired
patients further confirmed the advantages of organoid models in
predicting therapeutic outcomes. Our study revealed a systematic
approach to comprehensively understand the biology of pan-
creatic cancer and extended the utility of pancreatic cancer
organoids.

Methods
Samples and patients. Tumor samples were collected from pancreatic cancer
patients who received surgical resection or EUS-FNA at Changhai Hospital. The
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parts distant from the tumor in surgical specimens were used as normal samples.
Samples were pathologically confirmed as tumor or normal tissue. Clinical vari-
ables of patients were collected from the prospective database of Changhai Hos-
pital. All patients provided written informed consent for the use of their clinical
data and surgical specimens, and consent to publish clinical information potentially
identifying individuals was obtained. The study was conducted in accordance with
the national guidelines and was approved by the Ethics Committee of Changhai
Hospital (Approval number: CHEC2018-111). In addition to approval by the local
IRB, this study has been reviewed by and is compliant with the Chinese Ministry of
Science and Technology (MOST) for the Review and Approval of Human Genetic
Resources (approval no. 2021BAT1264).

Organoid culture. The following culture media were used: basic medium
(advanced DMEM/F12, 10 mM HEPES, 1X GlutaMAX-I, 100 µg/ml Primocin, 1X
penicillin/streptomycin solution) and complete medium (advanced DMEM/F12,
10 mM HEPES, 1X GlutaMAX-I, 100 µg/ml Primocin, 1X penicillin/streptomycin
solution, 500 nM A83-01, 10 µM Y-27632, 1.56 mM N-acetylcysteine, 10 mM
nicotinamide, 10 ng/ml FGF10, 1X B27 supplement, 10 µM forskolin, 30% Wnt3A
conditioned medium, 2% R-spondin conditioned medium, 4% Noggin conditioned
medium). For surgical samples, tissues were minced and incubated in digestion
medium (2.5 mg/ml collagenase II and 10 µM Y-27632 in basic medium) at 37 °C
with mild agitation for approximately 1 h. The obtained cells were cultured on
suspension plates with Matrigel and complete medium (PDAC samples were
cultured in complete medium, while samples of normal pancreas and other sub-
types of pancreatic cancer were cultured in complete medium supplemented with
EGF 50 ng/ml). Material obtained from biopsy samples was directly cultured under
the above conditions without digestion. The media used for organoid cryopre-
servation were composed of the corresponding culture medium (90%) and 10%
DMSO. Detailed information of involved reagents was provided in Supplementary
Data 11. The established organoids were routinely tested for mycoplasma con-
tamination. All organoid experiments were performed at the Shanghai Institute of
Biochemistry and Cell Biology.

Histology and immunohistochemistry. Tissues and xenografts were fixed with 4%
paraformaldehyde overnight at 4 °C, while PDPCOs were fixed with 4% paraf-
ormaldehyde for 15 min at room temperature. The samples were then embedded in
paraffin before slicing to a 5-µm thickness. All sections were dried at 60 °C for
120 min and incubated in xylene before dehydration in alcohol. The sections were
either stained with H&E or processed for immunohistochemistry. After incubation
in 0.1 mol/L citrate buffer (pH 6.0) in a boiling water bath for 20 min, endogenous
peroxidase activity was blocked with 3% hydrogen peroxide for 15 min, and
nonspecific binding was further blocked with 5% goat serum for 60 min. The
sections were incubated with the primary antibody for 120 min at room tem-
perature and were then washed and incubated with the secondary antibody for
60 min at 37 °C. Detection was performed with DAB prior to hematoxylin coun-
terstaining, dehydration, clearing and mounting. The antibodies used for staining
organoids, tissues and xenografts were as follows: anti-CK19 (1:500, D4G2, CST),
anti-Ki67 (1:500, SP6, Abcam), anti-α1-ACT (1:150, ZA-0006, ZSGB-BIO), anti-
Bcl-10 (1:50, ab33905, Abcam), anti-CHGA (1:3000, SP-1, ImmunoStar), and anti-
SYP (1:250, RM-9111-S, Thermo).

Whole-genome library preparation and sequencing. Genomic DNA from
PDPCOs and blood was extracted using a QIAamp DNA kit (Qiagen, 51306).
Whole-genome libraries were generated using a NEBNext Ultra DNA Library Prep
Kit (New England Biolabs, E7370L) according to the manufacturer’s protocols. A
1 μg aliquot of DNA was used as input for fragmentation into ~300 bp fragments
using a Covaris LE220 sonicator, and purification was performed with DNA Clean
Beads. The DNA fragments underwent bead-based size selection and subsequent
end repair, adenylation, and ligation to Illumina sequencing adapters. The final
libraries were evaluated using a QIAxcel bioanalyzer. Libraries were sequenced on
the Illumina HiSeq XTen platform aiming for 30X and 50X coverage for blood and
organoids, respectively, and 150 bp paired-end reads were generated.

Whole-exome library preparation and sequencing. Genomic DNA from tissue
and blood was extracted using a QIAamp DNA kit (Qiagen, 51306). Whole-exome
libraries were generated using an Agilent Sure Select Human All Exon V6 Kit
(Agilent Technologies, 5190-8865) following the manufacturer’s recommendations.
A 0.6 μg aliquot of DNA was used as input material for DNA sample preparation.
In brief, fragmentation was carried out with a Covaris LE220 sonicator to generate
180–280 bp fragments. After end repair, adenylation and ligation to adapter oli-
gonucleotides, DNA fragments with ligated adapters on both ends were selectively
enriched by PCR. Then, libraries were hybridized with a biotin-labeled probe to
capture the exons of genes with streptavidin-coated magnetic beads. The captured
libraries were enriched by PCR. Products were purified using an AMPure XP
system (Beckman Coulter, A63882) and quantified using the Agilent High Sensi-
tivity DNA assay in an Agilent Bioanalyzer 2100 system. The DNA libraries were
sequenced on the Illumina HiSeq platform aiming for 200X coverage for blood as
well as tissue, and 150 bp paired-end reads were generated.

Somatic mutation calling. DNA sequencing data were processed according to the
Genome Analysis Toolkit (GATK, https://software.broadinstitute.org/gatk/) best
practices workflow. First, raw data from both WGS and WES were processed with
Trimmomatic59 for adapter trimming and low-quality read filtering. Clean reads
were then aligned to the hg19 human reference genome using BWA-mem60.
SAMtools61 was used to convert the resulting SAM files to BAM files and then sort
the BAM files. PCR duplicate marking was performed with Picard, and base quality
scores were recalibrated using the BaseRecalibrator tool in GATK (version
4.0.11.0). Next, Mutect2 was run to call somatic mutations from the tumor-normal
paired BAM files. In addition, each normal file was processed with the tumor-only
mode in Mutect2, and a panel of normal (PON) files was then generated to filter
out expected artifacts and germline variations. For the organoid without a paired
blood DNA sample (CAS-NEN-2), only the PON file was used as a control. The
resulting VCF files were annotated with ANNOVAR62, and variations with allele
frequencies of less than 0.05 were filtered out.

Copy number analysis. For DNA sequencing data, BAM files were processed with
CNVKit63 to call copy number variations, and GISTIC2.064 was then used to
identify regions of focal gain and loss. Segments of PDPCO and TCGA PAAD
cohort23 data were displayed using Integrated Genomics Viewer (IGV)65. Circos
plots of CNVs between paired organoid and tissue samples were drawn with the
Rcircos package66 using the data from the “all_thresholded.by_genes.txt” file
generated with GISTIC2.0 as CNV scores.

Mutational signature analysis. Somatic base substitutions were classified into 96
mutation trinucleotides and the somatic mutation rate of each type of substitutions
was calculated to generate a context-specific mutation profile. Mutational signatures
were extracted from the context-specific mutation profile by using NMF algorithm
(“MutationalPatterns” package). Consensus clustering (“CancerSubtypes” package;
clusterAlg= “hc”, distance= “pearson”, innerLinkage= “ward.D2”) was performed
on contribution of each mutational signature among all samples.

Assessment of tumor cell purity. For whole-exome sequenced data of organoids,
tumor purity was estimated with ABSOLUTE (https://software.broadinstitute.org/
cancer/cga/absolute). For whole-genome sequenced data of tissues, tumor cell
purity was inferred by Sequenza. Concordance represented shared proportion of
somatic mutations in coding regions between matched tissue and organoid. Tissue
found in organoid represented percentage of the primary tumor mutations found
in paired organoid.

RNA library preparation and sequencing. PDPCOs and NPOs in Matrigel were
collected and washed with precooled PBS before lysis with 1 ml of TRIzol (Invi-
trogen, 15596018), and total RNA was extracted according to the manufacturer’s
instructions. A total amount of 3 μg RNA per sample was used as input material for
RNA sample preparation. Ribosomal RNA was removed with a Globin-Zero Gold
rRNA Removal Kit (Illumina, E7750X), and rRNA-free residue was cleaned up by
ethanol precipitation. RNA-seq libraries were generated using a NEBNext Ultra
RNA Library Prep Kit (New England Biolabs, E7530L) according to the manu-
facturer’s instructions. After cluster generation, the libraries were sequenced on the
Illumina HiSeq X Ten platform, and 150 bp paired-end reads were generated.

RNA-seq data processing. We used TopHat67 to map the sequencing reads of 84
PDPCOs (75 CAS-DACs, 4 CAS-IPMNs, 1 CAS-ACC and 4 CAS-NENs) and 3
NPOs to the human reference genome hg19. Then, fragments per kilobase of exon
per million mapped reads (FPKM) values were determined using Cufflinks68 as the
gene expression measurements. Genes with FPKM values <1 in all 87 samples were
filtered out. Finally, 15,819 protein-coding genes remained for further analysis.

PCA and NMF clustering of PDPCOs in the discovery cohort. We performed
PCA based on the expression data of the 2,000 most variable genes across 45
PDPCOs (39 CAS-DACs, 1 CAS-IPMN, 1 CAS-ACC and 4 CAS-NENs) and 3
NPOs. The first two principal components are shown in Fig. 3a. PDPCO and NPO
samples were clearly separable by the first two principal components. We further
performed NMF on 40 exocrine PDPCOs without sample CAS-ACC. As shown in
Supplementary Fig. 3a, the top 2 clusters with the highest cophenetic correlations
were n= 3 and n= 4. We selected the model with n= 4, which produced more
meaningful results with clear biological significance. Via this analysis, 4 subtypes
were identified: class 1, class 2, class 3, and class 4. NMF was performed with the R
package NMF69.

Biological characteristics of transcriptomic subtypes in the discovery cohort.
We first identified DEGs across the 4 subtypes as genes with an average FPKM
value >1 and with a fold change >1.5, a t-test P value <0.05 compared with other
samples. All DEGs are shown in the heatmap in Fig. 3b, which was generated using
the pheatmap R package70. Then, we adopted the transcriptomic signatures from
published studies. The basal-like and classical signatures were defined by the union
of signatures in previous studies4,8. The progenitor, ADEX and immunogenic
signatures were also previously defined3. GSEA was performed using the JAVA
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GSEA_4.0.2 program71 with a pre-ranked gene list with 1,000 permutations. We
used Enrichr to analyze the functional pathways for class 4, which was not enriched
in all signatures72. We extracted the genes composing the glycolysis pathway and
show them in Fig. 3e.

Validation of transcriptomic subtypes in an internal cohort and a public
database. We used the DEGs of the 4 subtypes (classical-like, basal-like, classical-
progenitor, and glycomet) to independently identify stable sample clusters of the
remaining 39 exocrine PDPCOs (36 CAS-DACs and 3 CAS-IPMNs) and the
TCGA PAAD cohort23, for which RNA-seq data were collected from the cBio-
Portal database73 with the cgdsr R package74. NMF was employed to analyze the
RNA-seq data of the 39 exocrine PDPCOs and 165 TCGA PAAD samples. Three
and four subtypes were identified in the internal cohort and public database,
respectively, based on the results of Fisher’s exact test with the 4 defined subtypes.
The overlapping DEGs between the discovery cohort subtypes and internal cohort
subtypes as well as the TCGA PAAD subtypes are shown in Supplementary Fig. 3b
and Fig. 3f. Survival analysis was performed using survival R package and surv-
miner R package on the TCGA PAAD samples with available follow-up data
(n= 157)23. Kaplan-Meier curves of overall survival for patients stratified by the
four subtypes, by classical and basal-like subtypes, and by classical-progenitor and
other subtypes, are shown separately in Fig. 3g and Supplementary Fig. 3c, d,
respectively. Significance was assessed by using log-rank test.

ATAC-seq library preparation and sequencing. For each PDPCO line, we pre-
pared two sequencing libraries (technical replicates). PDPCOs in Matrigel were
collected and washed with precooled PBS. Cells were washed once with 200 μl of
cold PBS buffer and were then centrifuged for 5 min at 500× g and 4 °C. The
supernatant was removed and discarded. The cell pellet was resuspended in 50 μl of
cold lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.5% NP-
40) by gently pipetting up and down. The cells were immediately centrifuged at
500Xg for 5 min at 4 °C to collect nuclei, and the transposition reaction was
immediately continued. ATAC-seq libraries were generated using a TruePrep DNA
Library Prep Kit V2 for Illumina (Vazyme, TD501) according to the manu-
facturer’s instructions. After cluster generation, the libraries were sequenced on the
Illumina Nova platform, and 150 bp paired-end reads were generated. Libraries
that contained less than 15 million aligned, deduplicated reads were sequenced
again, and the additional reads were pooled prior to deduplication.

ATAC-seq data processing. Illumina adapter sequences as well as transposase
sequences were trimmed from paired-end ATAC-seq reads with a customized
script, and the reads were then mapped to the human reference genome hg19 with
Bowtie v1.0.075. Duplicate reads were removed with SAMtools v0.1.1961. Only
uniquely aligned reads were used for peak calling with Hotspot using default
parameters (http://www.uwencode.org/proj/hotspot/). HOTSPOT analysis gener-
ated two types of peaks: narrow peaks and hotspot regions (broad peaks). In this
study, we used the narrow peaks for subsequent analysis.

ATAC-seq data quality control. The insert size was directly calculated from the
BAM file with SAMtools. Two patterns of the insert size distribution suggested the
high quality of the libraries. First, a large proportion of reads with less than 100 bp
represented the nucleosome-free region. Second, the fragment size distribution had
a clear periodicity indicative of nucleosome binding patterns. To obtain the quality
control score (QC score), each TSS was extended to ±2000 bp and overlapped with
the insertions. To normalize this value to the local background, the insertions were
also overlapped with the region ±2000–3000 bp from the TSS. The final QC score
was defined by the ratio between the overlap of the foreground and the overlap of
the background.

Quantification of chromatin accessibility with the openness score. ATAC-seq
can measure the accessibility of chromatin in the region represented by a given
peak. We quantified the openness of ATAC-seq peaks by a simple fold change
score, which calculated the enrichment of read counts by comparing the peak with
a large background region. In brief, let N be the number of reads in peaks of width
L and G be the number of reads in the background window W (1Mb in our study)
around this peak. The openness score of the peak O can thus be defined as follows:

O ¼ ðN=LÞ=ðG=WÞ ð1Þ

Identification of reproducible peaks. For each technical replicate, we selected the
one with the higher QC score to quantify the chromatin accessibility of this sample.
We first filtered out the peaks called in a single sample and overlapped with the
ENCODE hg19 blacklist (https://www.encodeproject.org/annotations/
ENCSR636HFF/) to remove artifacts.

We further processed the overlapping peaks across samples using an iterative
removal procedure. The most significant peak was kept, and any peak that directly
overlapped with that significant peak was removed. Then, this process was iterated
for the next most significant peak until all peaks had either been kept or removed.

ATAC-seq track visualization was performed with the WashU epigenome
browser76.

Finally, we defined the reproducible peaks based on the ATAC-seq data of 41
exocrine PDPCOs (39 CAS-DACs, 1 CAS-IPMN and 1 CAS-ACC) and 4
neuroendocrine PDPCOs (CAS-NEN-1, CAS-NEN-2, CAS-NEN-3, CAS-NEN-4).
To increase credibility, the most accessible 30,000 peaks with a length ≥300 bp in
each sample were used, among which peaks observed in at least 2 samples were
labeled reproducible peaks, constituting a high-quality reproducible peak set for
exocrine PDPCOs (156,721) and neuroendocrine PDPCOs (26,975). For
comparison with published pan-cancer data, we generated a PDPCO-wide
reproducible peak set by directly merging the peak sets of the exocrine and
neuroendocrine PDPCOs. For comparison of reproducible peaks across samples,
we established an openness score matrix and performed normalization with a
quantile normalization strategy using the normalize.quantiles function in the R
package preprocessCore77.

Chromatin state analysis of reproducible exocrine PDPCO and pancancer
peaks with chromHMM. To investigate the distribution of exocrine reproducible
PDPCO peaks in the chromatin states and compare these data with pan-cancer
data, we used ChIP-seq-defined chromHMM states from the Roadmap Epige-
nomics Project. ChromHMM 15 state models were downloaded from the chro-
matin state learning site (https://egg2.wustl.edu/roadmap/web_portal/chr_state_
learning.html). We then determined the number of regions of each chromHMM
state were overlapped by ATAC-seq peak midpoints. To determine the significance
of these overlaps for each chromHMM state, we compared the proportion of
ATAC-seq midpoints overlapping the given chromHMM state with the expected
background determined from the total length covered by the chromHMM state
and the length of the hg19 genome via a binomial test in R. The genomic locations
were annotated with the annotatr R package78.

Principal coordinates analysis of reproducible PDPCO and pan-cancer peaks.
To investigate the similarity between the reproducible peaks in the PDPCO and
pan-cancer data, we performed principal coordinates analysis, which takes a set of
dissimilarities or distances as input and returns a set of points. The distances
between the points are approximately equal to the dissimilarities. We first evaluated
the similarity by computing the Jaccard similarity. Then, we created the distance
matrix by subtracting the similarity values from one and took this matrix as input.
The number of dimensions was set to 2, as we considered only the first and second
coordinates.

Inference of TF regulons from RNA-seq data. We used the SCENIC workflow79

to identify the gene regulatory network (TF regulon) and scored the activity of the
TF regulon. In brief, SCENIC was first used to identify the potential TF-target
regulatory links according to the respective relevance of TFs for the prediction of
the expression of target genes (TGs). Then, direct TF-target regulons were iden-
tified by motif binding patterns around the TSS. The regulon activity score for a
single sample was finally calculated by computing the AUC. We first inferred the
regulons and their activity by taking the gene expression data of the 41 exocrine
PDPCOs and 4 neuroendocrine PDPCOs as input. To identify the specific regulon,
we performed differential analysis based on the regulon activity score and calcu-
lated the adjusted P-value for each regulon. Differential analysis was applied to
exocrine and neuroendocrine tumors, as well as one and others for the 4 PDAC
subtypes.

Motif enrichment analysis of ATAC-seq data. To identify the key regulators for
specific peaks, we performed motif enrichment with HOMER80. For comparison
between NEN and PDAC, we used the merged NEN and PDAC peaks as input,
while for comparison among PDAC subtypes, we used the differential peaks. We
ranked the TFs ðTF1;TF2; ¼ ;TFN Þ according to the P-values associated with one-
sided unpaired t test adjusted for multiple testing using false discovery rate (FDR),
denoted as Rj

ifor the ith TF in the jth subtype. Then, we used the difference between
the average rank for other subtypes and the rank for the subtype of interest ðSjiÞ to
measure the relative enrichment levels of motifs:

Sji ¼
1

J � 1
Σk≠jðRk

i � Rj
iÞ ð2Þ

where Sji is the relative enrichment score, and a positive score suggests that motif i
is enriched in subtype j. J is the number of subtypes, which was set to 2 for
comparison between the exocrine and neuroendocrine tumors and 4 for com-
parisons between PDAC subtypes.

Identification of subtype-specific regulons by integrating RNA-seq and
ATAC-seq data. We inferred 377 TF regulons from gene expression profiles. 283
of which were available for motif enrichment analysis with HOMER (Supple-
mentary Data 4). We next identified subtype-specific regulons among the 283 TF
regulons.
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For TF i in a given subtype j, we defined the specific score SSi,j as follows,

SSi;j ¼
�log10 p

1
i;j if p1i;j < 0:05 and Sji > 0

�log10 p
1
i;j if p1i;j < 0:05 and p2i;j < 0:05

0 otherwise

8
><

>:
ð3Þ

where p1i;j is the P value from the t-test of the regulon activity score and p2i;j is the P

value from motif enrichment analysis as described above. Sji is the relative
enrichment score, and a positive score suggests that motif i is enriched in subtype j.

The subtype-specific regulon set Aj in subtype j was composed by all the TFs
with positive specific score SSi;j as follows (a t-test P value < 0.05 as well as a relative
enrichment score > 0 or motif enrichment P value <0.05 for TF i in subtype j).

Aj ¼ fTFijSSi;j > 0g ð4Þ

Links between ATAC-seq peak openness and targeted gene expression. To
identify putative regulatory links between ATAC-seq peak accessibility and gene
expression, we correlated the ATAC-seq and RNA-seq data across 41 exocrine
PDPCOs (39 CAS-DACs, 1 CAS-IPMN and 1 CAS-ACC). To distinguish links
between promoters and distal elements, we annotated the peaks overlapping with
the region 2 kb upstream of the TSS as promoters and the other peaks as distal
elements. We next performed the same method to predict links on the two types of
peaks. First, all possible interactions between ATAC-seq peaks and genes within
500 kb of the peaks were identified. Then, we removed the bottom 25% of both the
genes and peaks based on variance. For each of these interactions, we calculated the
Pearson correlation coefficient and obtained the P-value for the comparison
between the openness score of the ATAC-seq peak (log2(openness+1)) and the
expression level of the gene (log2(FPKM+ 1)). P values associated with Pearson’s
correlation coefficients were adjusted for multiple testing using FDR. Positive links
were defined by adjusted P-value <0.25 and Pearson correlation coefficient >0.5,
and negative links were defined by adjusted P value <0.25 and Pearson correlation
coefficient <−0.5. Promoter-to-gene links contained only positive correlations,
while distal element-to-gene links consisted of both positive and negative
correlations.

Exploration of potential functional noncoding mutations. To explore potential
functional noncoding mutations, we used a fold change-based approach. First, we
included the noncoding mutations located within peaks; thus, 7,398 mutations
were retained. We then calculated the fold change FC in the peak openness at the
mutation site as follows:

FC ¼ Om=Ow ð5Þ
Where Om is the average peak openness score of mutated PDPCOs and Ow is the
average peak openness score of wild-type PDPCOs. In total, we gained 547
upregulating mutations with fold change >1.5 and 969 downregulating mutations
with fold change < 0.67, as shown in Fig. 5c. For survival analysis, Kaplan-Meier
survival analysis with survival R package and survminer R package was performed
on TCGA PAAD samples with available patient follow-up data (n = 157)23.
Patients were sorted by corresponding gene expression levels, and we compared the
top 33% (high) with the bottom 33% (low). P-values were determined by using log-
rank test.

High-throughput screening of chemical and chemotherapeutic drugs. White,
clear bottom 384-well plates were coated with 10 μl of collagen at room tem-
perature for at least one hour using a Multidrop Combi reagent dispenser before
the addition of organoid suspensions. PDPCOs were dissociated with Tryp-LE
before being resuspended in medium and dispensed into 384-well plates (3,500
cells per well). The next day, 283 compounds (Selleck), as well as DMSO controls
were added in duplicate using a Bravo robotic workstation. To assess cell viability,
25 μl of CellTiter-Glo Reagent per well was added after three days. The plates were
gently shaken for 15 min at room temperature before luminescence was assessed
using an Envision plate reader. Average inhibition rates from two independent
experiments were calculated with Excel and visualized using GraphPad Prism 8.
Detailed information of involved reagents was provided in Supplementary Data 11.

Five chemotherapeutic agents (gemcitabine, paclitaxel, 5-fluorouracil,
oxaliplatin and irinotecan) and chemicals that had significant inhibitory effects on
cells were used for the secondary screening. The range of concentrations selected
for each chemical was based on the primary screening data (Supplementary
Data 7). Organoids were similarly dispensed into 384-well plates. Concentration
dilution and addition of each compound were performed with the Bravo robotic
workstation. Cell viability was assessed using CellTiter-Glo Reagent after three days
of incubation with drugs. The secondary screening was performed in technical
duplicate (same screening run), and all screening plates were subjected to stringent
quality control measures. To measure sensitivity, we used 5-point dose-response
curves; for each drug, was 5 concentrations and the corresponding cell viability
values were used as input for curve generation. The viability was set to 100 if it was
higher than baseline, and each drug concentration (nmol/L) was log10
transformed. The AUC was calculated with the sintegral function in R, and the
normalized AUC was obtained by dividing one AUC by the maximum AUC for

each drug. The AUC heatmap for the secondary screening was generated with
GraphPad Prism 8.

Links between ATAC-seq peak openness and drug sensitivity. To identify
putative links between ATAC-seq peak accessibility and drug sensitivity across 39
exocrine PDPCOs (38 CAS-DAC and 1 CAS-IPMN), we performed Pearson
correlation analysis. The P value between the ATAC-seq peak openness score
(log2(openness+1)) and the drug AUC was calculated. Positive links were defined
by P value <0.01 and Pearson correlation coefficient >0.5, while negative links were
defined by P value <0.01 and Pearson correlation coefficient <−0.5. In subsequent
analysis, samples were sorted by the peak openness score. Gene expression and
drug sensitivity were compared separately among representative samples and all
samples by a one-tailed t-test.

Clinical follow-up and recurrence-free survival analysis. Clinical follow-up data
were collected from the Changhai Hospital prospective database. Patients regularly
received tumor marker and imaging examinations every three months after surgery
and were followed up at the same time interval by outpatient clinic visits and/or
telephone contact. Recurrence was confirmed by imaging examination, including
contrast-enhanced computed tomography or contrast-enhanced magnetic reso-
nance imaging. Recurrence-free survival curves and tumor marker curves were
visualized using GraphPad Prism 8. P value for Kaplan-Meier survival analysis of
the recurrence-free survival was determined by using log-rank test.

In vivo experiments. All In vivo experiments were performed according to the
Institutional Animal Care and Use Committee (IACUC) of the Center for Excel-
lence in Molecular Cell Science (CEMCS), and ethical approval was received from
the IACUC of CEMCS. PDPCOs were suspended in medium containing 50%
Matrigel and injected subcutaneously into 8-week-old female SCID mice (2 × 106

cells/injection), which were maintained according to Shanghai Laboratory Animal
Center Institutional Animal Regulations (SPF mouse room with 12 h of light, a
temperature of 18–23 degrees Celsius, and a humidity of 40–60%). Mice were
checked for tumor development every two or four days. For histological and
immunohistochemical assessment of the ODXs, mice were sacrificed for xenograft
harvesting when the tumor diameter reached approximately 0.5 cm. For drug
susceptibility evaluation of the ODXs, when the average tumor diameter reached
approximately 0.5–0.6 cm, mice were treated with either 5-fluorouracil (25 mg/kg),
GEM (50 mg/kg), PTX (3.5 mg/kg) or Vehicle. The CAS-DAC-18, CAS-DAC-20,
CAS-DAC-22 and CAS-DAC-24 tumors were treated with drugs and assessed with
Vernier calipers every 2 days, while the CAS-DAC-36 tumor was treated every
3 days. After 2 weeks (CAS-DAC-18, CAS-DAC-20, CAS-DAC-22 and CAS-DAC-
24) or 4 weeks (CAS-DAC-36) of treatment, mice were sacrificed for xenograft
harvesting. The ethically approved maximal tumor size of 15 mm by the IACUC of
CEMCS was not exceeded in this study. The tumor volume V (mm3) was calcu-
lated with following equation.

V ¼ 0:5 ´ length ´width2 ð6Þ

Statistics & Reproducibility. All statistical calculations were implemented in R
(version 3.6.3; https://cran.r-project.org/). The detailed statistical tests were indi-
cated in figures or associated legends where applicable. No statistical method was
used to predetermine sample size. No data were excluded from the analyses. Mice
used in our study were randomly divided into different groups at the same age. The
Investigators were not blinded to allocation during experiments and outcome
assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequencing data has been deposited in Genome Sequence Archive (GSA)
database that is publicly accessible with accession number HRA002013. As consent was
only provided for data use for non-commercial purposes, the data will be available via a
materials transfer agreement to any non-commercial parties. Access will be granted and
the data can be downloaded in a typical one month time window. The public dataset
(TCGA PAAD cohort) is available at cBioPortal [https://www.cbioportal.org/]. All other
data can be found within the main manuscript or the source data file. Source data are
provided with this paper.

Code availability
The custom code used is available at GitHub [https://github.com/amssyqy/Pancreatic-
cancer-organoids/tree/v1.0.0]81.
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