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Abstract

Background: Bleb presence in intracranial aneurysms (IAs) is a known indication of 

instability and vulnerability. Our objective was to develop and evaluate predictive models of 

bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient 

population.

Methods: Cross-sectional data (one time-point) of 2395 IAs was used for training bleb formation 

models using machine learning (random forest, support vector machine, logistic regression, k-

nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using 

image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for 

model evaluation. Model performance was quantified by the area under the receiving operating 

characteristic (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced 

accuracy.

Results: The final model retained 18 variables including hemodynamic, geometrical, location, 

multiplicity, and morphology parameters, and patient population. Generally, strong and 

concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, 

oscillatory, and heterogeneous wall shear stress patterns as along with larger, more elongated, 
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and more distorted shapes were associated with bleb formation. The best performance on the 

validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, 

misclassification error=27%).

Conclusions: Based on the premise that aneurysm characteristics prior to bleb formation 

resemble those derived from vascular reconstructions with their blebs virtually removed, ML 

models are capable of identifying aneurysms prone to bleb development with good accuracy. 

Pending further validation with longitudinal data, these models may prove valuable for assessing 

the IAs propensity of progressing to vulnerable states and potentially rupturing.

Introduction

Blebs or secondary outpouchings have been identified as an important risk factor for 

intracranial aneurysm (IA) rupture.1–3 They are thought to be the result of focalized damage 

and remodeling of the aneurysm wall and are indicative of wall instability.3,4 Approximately 

30-35% of aneurysms harbor one or more blebs.5 As such, identifying aneurysms that at the 

time of evaluation are prone to developing blebs is important for early assessment of the 

future instability of the aneurysm, which could, in turn, predispose the aneurysm for rupture.

Previous studies have found associations between the presence of blebs in IAs and 

patient characteristics.5 Additionally, significant differences in hemodynamic and geometric 

characteristics of aneurysms that developed blebs and aneurysms without blebs have been 

reported.6 Presumably, these distinguishing characteristics could be used to discriminate 

between aneurysms prone to develop blebs and those not likely to develop blebs. Recently, 

artificial intelligence and machine learning (ML) techniques have seen tremendous advances 

and have been widely applied in diverse fields. In particular, several prediction models based 

on ML techniques have been developed to predict the risk of aneurysm development,7,8 

rupture risk of aneurysms,9,10 and prognosis of aneurysm after flow diverter implantation.11

Thus, the purpose of this work was to develop and evaluate predictive models of bleb 

development in intracranial aneurysms using the aneurysm features mentioned above to 

train machine learning algorithms. The current study is based on the hypothesis that bleb 

development is faster than typical aneurysm growth, and therefore it is reasonable to 

approximate the shapes of aneurysms prior to bleb formation by virtually deleting blebs 

from 3D vascular reconstructions. Further discussion and support for this hypothesis can be 

found in the Supplementary material accompanying Suppl. Fig. 1.

Methods

Strategy

The study was carried out in three steps: 1) identify the distinguishing characteristics 

between aneurysms with blebs (prior to bleb formation) and aneurysms without blebs, 2) 

construct predictive models of bleb development using machine learning techniques, and 

3) validate the ML model predictions on a separate dataset. To accomplish these goals, 

two independent datasets were used. The first dataset was used for identifying differences 

between aneurysms with and without blebs and to train ML models. The second dataset 

was used to validate the predictions of these models and characterize their predictive power. 
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Protocols for consent, data handling, and analysis were approved by the institutional review 

boards at the University of Pittsburg and George Mason University.

Datasets

A total of 2395 aneurysms in 1614 patients were used for ML model development (training 

set). These aneurysms correspond to patients referred for diagnostic angiography and 

imaged with 3D rotational angiography (3DRA) or computer tomographic angiography 

(CTA). This set contains data from different populations, including the United States (US), 

South America (SA), Europe (EU, other than Finland), Finland (FIN), and Japan (JAP). 

The second dataset (validation set) contained 266 aneurysms in 195 patients selected 

for surgical clipping and imaged with 3DRA or CTA prior to surgery. This set includes 

data from the US and FIN populations. For this study, deidentified vascular geometries 

and patient demographic information were obtained from our database. More details 

about these datasets are provided in Suppl. Table 1. Supplementary Table 2 lists the 

number of aneurysms in the testing set with and without blebs imaged with 3DRA and 

CTA, respectively. The p-value of the Fisher’s test provided (p=1.0) indicating that the 

presence of blebs is independent of the imaging modality. This supports the combination 

of both modalities since it implies that associations between hemodynamic and geometric 

parameters and bleb presence are not affected by the imaging modality.

Aneurysm Characterization

Patient-specific 3D vascular models were constructed for all aneurysms in the training and 

testing sets from the available 3DRA or CTA images as previously described.12 Blebs 

were then identified (see Suppl. Fig. 2) by visual inspection of the vascular reconstruction, 

volume-rendered 3D images, and surface Gaussian curvature maps (a measure of the local 

bending of the aneurysm surface). In these curvature maps, the blebs generally appear as 

red regions of positive curvature surrounded by a blue ring of negative curvature.5 Blebs 

were then interactively marked (painted) on the vascular reconstructions using a previously 

developed tool (ChePen3D).14 Once blebs were identified, in order to approximate the 

aneurysm characteristics prior to bleb development, the marked blebs were automatically 

removed and the surface locally retriangulated as previously described (see Suppl. Fig. 3).6

Computational fluid dynamics (CFD) simulations were carried out to characterize the 

aneurysm hemodynamic environment. As in previous studies,13,14 blood was modeled as 

a Newtonian incompressible fluid with a density of 1.0 g/cm3 and viscosity of 0.04 Poise, 

and the unsteady Navier-Stokes equations were numerically solved using finite elements. 

Vascular walls were approximated as rigid. Pulsatile inflow conditions were imposed by 

scaling a representative flow waveform with an empirical law relating flow rate and cross-

sectional vessel area in internal carotid and vertebral arteries. Outflow conditions were 

imposed by dividing flows consistent with Murray’s law. No-slip boundary conditions were 

imposed at the walls and wall compliance was neglected. Simulations were computed for 

two cardiac cycles with a heart-beat rate of 60 beats per minute using 100 time-steps per 

cardiac cycle, and data from the second cycle was used to characterize the flow conditions in 

the aneurysm.
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The aneurysm hemodynamics and geometry were characterized by computing 15 flow 

variables and 10 geometric parameters defined on the aneurysm region.15,16 The 

aneurysm anatomical characteristics (location, morphology, and multiplicity) and patient 

demographics (population, sex, and age) were described by 6 additional categorical variables 

(numerical in the case of age).

Post-Processing and Dimensionality Reduction

Aneurysm characteristics associated with the presence of blebs were identified by 

performing contingency table analysis and Pearson’s Chi-squared test for categorical 

variables. For continuous variables, tests for differences in the median of the two groups 

defined by the bleb presence were performed using the two-sample unpaired Wilcoxon 

(Mann-Whitney) test. All statistical analysis and ML modeling were performed in R. The 

p-values were adjusted for multiple testing using the Bonferroni method available in R, and 

associations were considered significant if p<0.05 after adjustment.

To improve model interpretability and performance, the variable reduction was performed 

to detect and remove variables that were redundant or irrelevant before training the model. 

The correlation matrix of the predictor variables was analyzed to remove highly correlated 

variables (i.e. with an absolute correlation of 0.75 or higher). Among pairs of variables 

with correlation > 0.75, the variable that exhibited the strongest association with bleb status 

as measured by the p-value of the univariate association was retained. Moreover, variables 

were ranked according to their variance inflation factor (VIF), in decreasing magnitude, 

and multicollinear variables with VIF of 10 or higher were removed in a recursive fashion, 

one at a time, and then the VIF was re-evaluated, to prevent redundancy between predictor 

variables and to obtain more accurate and easier to interpret variable importance rankings.

Construction of Predictive Models of Bleb Development

Several ML methods for supervised binary classification were used to have a good 

representation of algorithm types (linear, non-linear, trees, etc.) and to identify the best 

predictive approach. This includes logistic regression (LR), support vector machine (SVM), 

K – nearest neighbor (KNN), random forest (RF), and bagging or bootstrap aggregating 

(BG). These ML models were trained with data of all 2395 aneurysms of the training set.

The columns of the feature matrix of the continuous predictor variables were standardized so 

that the attributes would have a mean value of 0 and a standard deviation of 1. Categorical 

variables were encoded as dummy variables. One hundred repetitions of ten-fold (internal) 

cross-validation, yielding 100 random partitions of the original training sample were used 

to train the models, estimate the tuning parameters, and identify the important predictor 

variables. In this step, the data were split into training and testing sub-sets for each of the 

ten folds, and the optimal value of each tuning parameter related to the training process 

was determined via a grid search to achieve the largest area under the curve (AUC) of 

the receiver operating characteristic (ROC). The 100 results were combined (averaged) to 

produce a single estimation.
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Feature Selection

In order to identify features to be used to predict the bleb presence in aneurysms, the 

recursive feature elimination (RFE)17 technique was performed. Briefly, an initial model 

was built based on the entire set of predictors and an importance score was computed for 

each predictor. Then, the least important predictor(s) were removed. The optimal subset of 

features was then used to train the final model.

Since only about one-third of aneurysms harbor blebs, the datasets are inherently 

unbalanced, which can negatively impact the model fitting and performance. Therefore, 

during the internal cross-validation of the model training process a down-sampling approach 

was used, where data from the majority class (aneurysms without blebs) were randomly 

removed to achieve a balanced class distribution and thus mitigate this issue.

Model Evaluation and Validation

First, the performance of the different ML models of bleb development was evaluated 

internally (i.e. on the same training dataset) and compared. For this purpose, the AUC of 

the ROC, the true positive rate (TPR), the false positive rate (FPR), and the misclassification 

error were calculated. 95% confidence intervals of the AUC were estimated based on 

2000 bootstrap repetitions. Pairwise comparisons of these performance metrics between 

ML models were carried out using the built-in summary function of the CARET package 

available in R (based on one-sample t-test) to determine if the differences in performance 

of the various models were statistically significant, and thus allows us to identify the model 

with the best predictive power.

Secondly, the predictive ML models were externally validated on the independent validation 

dataset containing data from 266 aneurysms, which was not used during training, parameter 

tuning, and model selection. In addition to the AUC, the accuracy of the model was assessed 

in terms of true positive rate (TPR or recall), false positive rate (FPR), positive predictive 

value (PPV or precision), NPV (negative predictive value), F1 score (harmonic mean of 

precision and recall), and balanced accuracy.

Results

Aneurysm Characteristics Associated with Bleb Development

A total of 1131 blebs were identified in 735 (31%) aneurysms in 603 patients of the 2395 

aneurysms in the training dataset. The remaining 1660 (69%) aneurysms in 1011 patients 

were classified as having no blebs.

Statistical comparisons between patient and aneurysm characteristics between aneurysms 

with and without blebs are presented in Table 1. No significant associations were observed 

between bleb presence and patient sex (p=1) and age (p=1). The presence of blebs 

was significantly associated with aneurysm rupture status (p<0.01), as well as aneurysm 

multiplicity (p<0.01), morphology (p<0.01), and location (p<0.01), and patient population 

(p<0.01).
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Statistical comparisons between hemodynamic and geometric parameters of aneurysms with 

blebs (prior to bleb formation, i.e. with their blebs virtually removed) and aneurysms 

without blebs are presented in Suppl. Table 3. Hemodynamically, aneurysms in which 

blebs developed had stronger (Q, p<0.01) and more concentrated inflow jets (ICI, p<0.01), 

higher intra-aneurysmal flow velocity (VE, p<0.01), more complex (corelen, p<0.01) and 

unstable (podent, p<0.01) flow patterns than aneurysms where blebs did not form. They 

also had larger maximum wall shear stress (WSSmax, p<0.01; MaxWSSnorm, p<0.01), 

more concentrated (SCI, p<0.01) and oscillatory (OSImax, p<0.01; OSImean, p<0.01) 

WSS distribution, and a larger number of critical points of the WSS field (nCrPoints, 

p<0.01). Geometrically, aneurysms that developed blebs were larger (Asize, p<0.01; SR, 

p<0.01; GAA, p<0.01), more elongated (AR, p<0.01; VOR, p<0.01; BF, p<0.01), had wider 

necks (Nsize, p<0.01), larger shape distortion (CR, p<0.01, NSI, p<0.01) and more surface 

irregularity (UI, p<0.01) than aneurysms without blebs.

Variables Retained in the Model

After removing variables correlated to other variables and multicollinear variables, 25 

variables were used to build the models and select the optimal set of predictive features. The 

final model retained the following 18 predictive variables from the four different domains: 

1) hemodynamic: Q, ICI, corelen, MWSSnorm, OSImax, nCrPoints; 2) geometric: Asize, 

SR, GAA, AR, VOR, BF, NSI, CR; 3) aneurysm: location, multiplicity, morphology; and 4) 

patient: population. As illustrated in the Suppl. Fig. 4, accuracy reached the maximum level 

when 18 variables were retained in the model, without noticeable improvement beyond 18 

variables. See Suppl. Table 4 for the complete list of the variables considered and retained.

Predictive Models Internal Evaluation and Comparison

The ML model with the best performance during the internal cross-validation phase was the 

random forest (RF) with a mean AUC=0.80, TPR=0.80, FPR=0.33, and misclassification 

error=0.28 (see Suppl. Table 5 for internal evaluation metrics for all ML models considered, 

and Suppl. Fig. 5 to visualize the spread of their AUC, specificity, and sensitivity). The 

difference in performance between RF and the other ML models as measured by the AUC 

was statistically significant (p<0.01) (see Suppl. Table 6), confirming that RF was indeed the 

best classifier.

The optimal parameters for RF were determined after experimenting with different hyper-

parameters such as the number of decision trees in the forest and the number of features 

considered by each tree when splitting a node during the training process. AUC was used as 

a criterion for determining the best model. The optimal hyper-parameters were set to 1000 

trees in the forest, a maximum depth of 1 and 2 random variables used in each tree.

External Validation

The performance of the different ML classifiers when applied to the independent external 

testing dataset is presented in Table 2. It can be seen that the best performance was 

achieved by the RF classifier, with consistently the largest AUC=0.82 (Mean and 95% 

bootstrap confidence interval AUC, 0.8186 [0.7732, 0.8710]), TPR=0.91, PPV=0.58, 

NPV=0.92, F1=0.71, balanced accuracy=0.77, and the smallest misclassification error=0.27 
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and FPR=0.36. The performance of different ML models on the external dataset is 

graphically presented in Figure 1, which shows the ROC and the precision-recall (PR) 

curves.

In the external validation dataset, 35% of aneurysms had blebs, therefore the accuracy of a 

baseline (null) model, which corresponds to a non-informative model that always predicts 

the largest class (no blebs), is 65%. The results presented in Table 2 indicate that the 

performance of the RF model was better than this baseline accuracy, and Cohen’s Kappa 

statistics gave a value of 0.47, confirming that its accuracy was 47% better than random 

predictions.

The most important variables (n=18) for discriminating between aneurysms prone to bleb 

development and aneurysms less likely to develop blebs, as determined by the mean 

decrease in Gini measure (Suppl. Fig. 6), included geometric shape and size factors, 

hemodynamic inflow, flow complexity, and wall shear stress parameters, as well as 

aneurysm location and morphology type and patient population. As shown in Suppl. Fig. 

4, the accuracy of the RF model trained with the increasing number of variables (in order 

of importance) continues to improve until these 18 most important variables are included, 

indicating that in general multivariate ML models outperform individual metrics.

Examples of aneurysms from the external validation dataset that were correctly classified by 

the RF model are presented in Figure 2. Column 1 of this figure shows an ACOM aneurysm 

with two blebs and the corresponding hemodynamic environment prior to bleb formation, 

characterized by a strong inflow jet, elevated WSS, and a complex flow structure. The RF 

model assigned to this aneurysm a probability of 92% of developing blebs. Column 2 shows 

an ACOM aneurysm without blebs and its hemodynamics characterized by slow, smooth, 

and simple flow pattern with uniformly low WSS. This aneurysm was assigned a probability 

of 87% of not developing blebs. Column 3 shows an MCA aneurysm with a bleb and the 

corresponding hemodynamics prior to bleb formation, characterized by a strong inflow jet, 

elevated and heterogeneous WSS, and a complex flow structure. The RF model assigned 

to this aneurysm a probability of 80% of developing blebs. Column 4 shows an MCA 

aneurysm without blebs and its hemodynamics characterized by a simple flow pattern with 

fairly uniform WSS. This aneurysm was assigned a probability of 84% of not developing 

blebs.

Discussion

The current study confirmed, with a large (n=2395), and independent dataset, previous 

associations between hemodynamic and geometric parameters and bleb development.6 

Specifically, blebs developed in aneurysms with stronger flow conditions characterized by 

larger and more concentrated inflow jets, faster, more complex, and unstable flow patterns, 

and higher, more concentrated, heterogeneous, and oscillatory wall shear stress distributions 

compared to aneurysms that did not develop blebs. Blebs also developed more frequently 

in larger aneurysms, with wider necks, more elongated, distorted, and irregular shapes. In 

addition, the current study found new significant associations between blebs and aneurysm 

location, morphology and multiplicity, and patient population; and confirmed, in agreement 

Salimi et al. Page 7

J Neurointerv Surg. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the previous study,5 that patient sex and age were not associated with the presence of 

blebs.

Secondly, our study showed that predictive models based on machine learning techniques 

are capable of identifying aneurysms prone to bleb development with good accuracy (91%). 

These models showed good predictive power in both internal (the same dataset using cross-

validation) and external (independent testing dataset) evaluations. It must be emphasized that 

during the model training phase it is important to account for class imbalance, which in this 

case it was accomplished with down-sampling without compromising the model accuracy 

since the training dataset was large enough. We found that the best ML model was the 

random forest and that this model retained several hemodynamic and geometry parameters, 

as well as aneurysm location, and patient population. This highlights the multi-factorial 

nature of aneurysm disease and suggests that perhaps additional parameters from other 

domains such as aneurysm wall characteristics could improve the predictive power of these 

models even further.

Previous studies have suggested that blebs form in regions of the aneurysm wall exposed 

to high WSS at or adjacent to the flow impingement points and aligned with the main flow 

stream within the aneurysm.18,19 Once a bleb develops, presumably under the influence 

of focalized flow impingement forces, the local flow conditions progress to a state of 

low WSS and high OSI, which has been speculated to increase its rupture risk.20 In 

contrast, another study found low WSS and high OSI in regions of focalized aneurysm 

growth, while aneurysms exhibiting a uniform growth pattern were exposed to higher 

WSS conditions in a short series of 6 IAs.21 As suggested in a recent study,22 blebs with 

different wall characteristics (e.g. translucent ultra-thin vs atherosclerotic thick) may develop 

under different hemodynamic conditions, which could explain these apparent disagreements. 

Nevertheless, our current study indicates that aneurysm flow conditions together with 

aneurysm shape characteristics and anatomical location can be used to identify aneurysms 

prone to bleb development which could be used clinically as an early indicator of future 

aneurysm instability.

The RF model was able to correctly identify 91% (TPR) of aneurysms that developed blebs. 

In our sample, these comprise about 35% of all aneurysms (a relatively rare event), so in 

a sample of 100 aneurysms, the model would correctly identify 32 of the 35 aneurysms 

likely to develop blebs. This is a clinically valuable result because it is important to 

identify early on and with good accuracy aneurysms likely to progress to a more vulnerable 

state and potentially rupture, and therefore recommend preventive treatment. This high 

accuracy for detecting “high risk” aneurysms comes at the cost of a relatively high 36% 

(FPR) misclassification of aneurysms less likely to develop blebs. In our sample, these 

comprise about 65% of all aneurysms, which implies that in a sample of 100 aneurysms 

the model would correctly classify 42 (and misclassify 23) out of the 65 aneurysms not 

likely to develop blebs. Thus, in this case, the model suggests conservative monitoring of 42 

stable aneurysms, and preventive treatment or more aggressive monitoring of 23 aneurysms 

that were not likely to progress to a more vulnerable state. Given a combined treatment 

complication rate of approximately 10%,23 the use of this model would result in about 2 

unnecessary complications (when treating the 23 misclassified stable aneurysms), which 
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would be lower than the approximately 6 complications expected if all 65 stable aneurysms 

are preventively treated.

To further analyze the impact of using a limited number of predictive variables, the model 

was re-trained using only the three most important variables (BF, NSI, and VOR). The 

results that are presented in Suppl. Table 7 show that TPR declined from 91% to 84%, 

indicating that this model would correctly identify 29 of the 35 aneurysms which developed 

blebs (compared to 32/35 of the full model). Additionally, the FPR increased from 36% to 

41% indicating that 27 stable aneurysms would be misclassified (compared to 23/65 with the 

full model), which could increase the number of treatment complications by one. Given that 

the effort of quantifying these 3 variables or the 18 variables of the full model is essentially 

the same, this comparison suggests that it may not be worth using predictions based on a 

reduced set of variables.

The current study has several limitations. In addition to the usual limitations of the CFD 

modeling approach (Newtonian flow, rigid walls, estimated flow rates, etc.), as mentioned 

before, the flow conditions and geometric characteristics prior to bleb development were 

approximated by virtually removing the blebs, therefore the results of this study are 

conditional to the validity of this assumption. Additionally, the internal and external 

validations were carried out using retrospective cross-sectional datasets, and image data 

included two modalities, 3DRA and CTA. Thus, further evaluation and validation with 

longitudinal datasets are needed and will be the focus of future studies. Moreover, factors 

characterizing the aneurysm wall structure and biology, genetic factors, and disease status 

were not included and could substantially improve the predictive power of models of 

aneurysm instability.

Conclusions

Predictive bleb formation models based on aneurysm hemodynamic and geometric 

characteristics as well as aneurysm location and patient population are capable of identifying 

aneurysms prone to develop blebs. This may prove to be important for early assessment of 

the risk of future aneurysm instability and rupture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Performance of different ML models on independent external validation dataset: A) ROC 

curves, B) precision/recall curves. The best performance is achieved by the RF model (red 

curves).
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Figure 2: 
Examples of flow visualizations (at peak systole) in MCA (left two columns) and ACOM 

(right two columns) aneurysms with and without blebs that were correctly classified by the 

RF model. Columns from left to right: MCA aneurysm with bleb (removed as indicated in 

insert), MCA aneurysm without bleb, ACOM aneurysm with bleb (removed), and ACOM 

aneurysm without blebs. Rows top to bottom: vascular geometry, inflow jet (velocity iso-

surfaces), wall shear stress magnitude, flow pattern (streamlines). Stronger inflow jets and 

flow impingement, higher and more heterogeneous WSS, and more complex flow structures 

can be observed in aneurysms that developed blebs.
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Table 1:

Patient and aneurysm characteristics associated with blebs.

Characteristics Values Aneurysms with blebs Aneurysms without blebs p-value Adjusted p-value

Patient characteristics

Age Mean ± SD 56.7 ± 13.8 y 57.2 ± 14.2 y 0.50 1

Sex

Female 364 (35%) 673 (65%)

0.86 1Male 141 (36%) 255 (64%)

Unknown 98 83

Population

US 451 (38%) 741 (62%)

<0.01* <0.01*

EU 84 (43%) 113 (57%)

SA 2 (15%) 11 (85%)

FIN 30 (42%) 41 (58%)

JAP 36 (26%) 105 (74%)

Aneurysm characteristics

Rupture Status

Ruptured 341 (53%) 307 (47%)

<0.01* <0.01*Unruptured 375 (22%) 1304 (78%)

Unknown 19 49

Multiplicity
Multiple 283 (23%) 936 (77%)

<0.01* <0.01*
Single 452 (38%) 724 (62%)

Morphology
Bifurcation 603 (37%) 1025 (63%)

<0.01* <0.01*
Lateral 132 (17%) 635 (83%)

Location

ACA 24 (29%) 60 (71%)

<0.01* <0.01*

ACOM 175 (48%) 192 (52%)

BA 40 (31%) 88 (69%)

ICA 161 (18%) 723 (82%)

MCA 168 (32%) 352 (68%)

PCOM 164 (41%) 239 (59%)

PICA 3 (33%) 6 (67%)

ACA, anterior cerebral artery; ACOM, anterior communicating artery; BA, basilar artery; ICA, internal carotid artery; MCA, middle cerebral 
artery; PCOM, posterior communicating artery; PICA, posterior inferior cerebellar artery. The ‘Adjusted p-value’ column lists the p-values after 
adjustment for multiple testing using the Bonferroni method.
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Table 2:

Performance measures for each ML model applied to the external testing dataset.

Model AUC TPR FPR PPV NPV F1 Score Balanced Accuracy Misclassification Error

BG 0.79 0.82 0.38 0.55 0.86 0.66 0.72 0.31

RF 0.82 0.91 0.36 0.58 0.92 0.71 0.77 0.27

SVM 0.78 0.87 0.52 0.48 0.87 0.62 0.68 0.38

KNN 0.76 0.89 0.53 0.49 0.91 0.63 0.69 0.37

LR 0.79 0.90 0.47 0.52 0.91 0.66 0.72 0.34

AUC=area under the ROC curve. TPR=true positive rate (sensitivity or recall = number of true positives divided by all positives). FPR=false 
positive rate (1-specificity = number of false positives divided by all negatives). PPV=positive predictive value (precision = number of true positives 
divided by number of true and false positives). NVP=negative predictive value (=number of true negatives divided by the number of true and false 
negatives). F1=2*PPV*TPR/(PPV+TPR)=harmonic mean of precision and recall. Balanced accuracy=accuracy accounting for class imbalance 
(=(sensitivity + specificity)/2). Misclassification error=number of incorrect classifications divided by sample size.
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