Table 2:
Performance measures for each ML model applied to the external testing dataset.
| Model | AUC | TPR | FPR | PPV | NPV | F1 Score | Balanced Accuracy | Misclassification Error |
|---|---|---|---|---|---|---|---|---|
| BG | 0.79 | 0.82 | 0.38 | 0.55 | 0.86 | 0.66 | 0.72 | 0.31 |
| RF | 0.82 | 0.91 | 0.36 | 0.58 | 0.92 | 0.71 | 0.77 | 0.27 |
| SVM | 0.78 | 0.87 | 0.52 | 0.48 | 0.87 | 0.62 | 0.68 | 0.38 |
| KNN | 0.76 | 0.89 | 0.53 | 0.49 | 0.91 | 0.63 | 0.69 | 0.37 |
| LR | 0.79 | 0.90 | 0.47 | 0.52 | 0.91 | 0.66 | 0.72 | 0.34 |
AUC=area under the ROC curve. TPR=true positive rate (sensitivity or recall = number of true positives divided by all positives). FPR=false positive rate (1-specificity = number of false positives divided by all negatives). PPV=positive predictive value (precision = number of true positives divided by number of true and false positives). NVP=negative predictive value (=number of true negatives divided by the number of true and false negatives). F1=2*PPV*TPR/(PPV+TPR)=harmonic mean of precision and recall. Balanced accuracy=accuracy accounting for class imbalance (=(sensitivity + specificity)/2). Misclassification error=number of incorrect classifications divided by sample size.