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Abstract

Objectives: Evaluation of hypernasality requires extensive perceptual training by clinicians 

and extending this training on a large scale internationally is untenable; this compounds the 

health disparities that already exist among children with cleft. In this work, we present the 

objective hypernasality measure (OHM), a speech-based algorithm that automatically measures 

hypernasality in speech, and validate it relative to a group of trained clinicians.

Methods: We trained a deep neural network (DNN) on approximately 100 hours of a publicly-

available healthy speech corpus to detect the presence of nasal acoustic cues generated through the 

production of nasal consonants and nasalized phonemes in speech. Importantly, this model does 

not require any clinical data for training. The posterior probabilities of the deep learning model 

were aggregated at the sentence and speaker-levels to compute the OHM.

Results: The results showed that the OHM was significantly correlated with perceptual 

hypernasality ratings from the Americleft database (r=0.797, p <0.001) and the New Mexico Cleft 

Palate Center (NMCPC) database (r=0.713, p<0.001). In addition, we evaluated the relationship 

between the OHM and articulation errors; the sensitivity of the OHM in detecting the presence 

of very mild hypernasality; and established the internal reliability of the metric. Further, the 

performance of the OHM was compared with a DNN regression algorithm directly trained on the 

hypernasal speech samples.

Significance: The results indicate that the OHM is able to measure the severity of hypernasality 

on par with Americleft-trained clinicians on this dataset.
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I. INTRODUCTION

Cleft palate (CP), with or without cleft lip, is a craniofacial anomaly and the most common 

birth disorder, with 1 in every 700 live births presenting with craniofacial clefts [1]. In 

healthy craniofacial development, the bilateral bony palatal shelves fuse horizontally at 

midline to create the roof of the mouth (hard palate) and provide points of muscular 

attachment for the soft palate (velum). These velar muscles, along with those in the 

upper pharynx, allow for modulation of the opening between the oral and nasal cavities 

(velopharyngeal port) during respiration, swallowing, and speaking. The failure of the 

palatal shelves to fuse at midline during embryological development (cleft) means there 

is no intact hard or soft palate and no separation between the oral and nasal cavities. The 

primary intervention involves surgical repair of the palatal cleft to produce anatomical 

closure and to create the ability to modulate the velopharyngeal port aperture. When 

velopharyngeal dysfunction (VPD) persists post primary palate surgery [2], different 

surgeries are available based on individual surgeon preference. In the presence of VPD, 

the velopharyngeal port fails to close off the nasal tract completely during speech production 

for non-nasal sounds, and air and acoustic energy escape through the nasal cavity, resulting 

in reduced speech intelligibility. Twenty to thirty percent of children with clefts require 

a secondary surgery to rectify VPD [3] for the exclusive purpose of improving speech 

outcomes.

The inability to achieve adequate velopharyngeal closure during speech results in the 

percept of hypernasality, characterized by excessive nasal resonance due to passage of the 

vibrating column of air through the nasal cavity1. The perception of hypernasality in speech, 

secondary to VPD, is considered a primary outcome measure in CP as it drives decisions 

related to secondary surgery, speech therapy, and is an important determinant of long-term 

educational and social outcomes [4], [5]. As a result, it is considered a primary outcome by 

the American Cleft Palate-Craniofacial Association and the Cleft Palate Committee of the 

International Association of Logopedics and Phoniatrics [6].

Instrumental methods such as videoendoscopy, vide-ofluorscopy, nasometry, magnetic 

resonance imaging, and aerodynamic techniques can be used to assess VPD and 

aerodynamics [7]. Most of these instruments require special training and expensive 

equipment. Nasometry is an exception but it only shows a moderate correlation with 

perceptual impressions of hypernasality [8] and it is not part of the standard battery in the 

Americleft rating protocol [9]. Instead, clinicians rely on their perception of hypernasality 

to assess VPD. Perception of hypernasality is a complex task that requires the clinician to 

infer, from the acoustic signal, the ratios of resonances across the pharyngeal, oral, and 

1 https://acpa-cpf.org/speech-samples/ 
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nasal cavities. The clinician then maps the perceived ratios to equal-interval or visual-analog 

scales of hypernasality. However, this percept is vulnerable to other co-modulating variables 

such as the words being spoken, the quality and loudness of the voice, audible turbulence 

and escape of air through the nose (nasal emission), the severity of other speech errors, 

and the idiosyncratic shape of an individual’s resonating cavities [10], [11]. This results in 

a highly nonlinear mapping between the percept and the actual acoustic nasal resonance 

and considerable inter-rater and intra-rater variability in the assessment. Fundamentally, this 

limits the reliability and validity of the ratings obtained from untrained clinicians [12]. The 

Americleft Speech Project was developed to address this dilemma by facilitating inter-center 

collaborations for speech outcomes research [9]. The first step included the development of 

a standardized protocol and calibration of craniofacial speech-language pathologists (SLPs) 

on perceptual ratings of hypernasality. Over the study period, recalibration was required to 

maintain high levels of inter-rater reliability. To date, only a small number of clinicians have 

participated in this program. While such programs may be able to be carried in the United 

States (US) and other developed countries, it is less tenable in countries without any or few 

craniofacial trained SLPs.

In this paper, we present the objective hypernasality measure (OHM) to assess hypernasality 

in CP speech and show that it tracks with the clinical perception of Americleft-trained SLPs. 

When clinicians make judgements of hypernasality, they focus on specific acoustic cues that 

are hallmarks of hypernasal speech. Similarly, we design an automatic assessment tool based 

on deep learning and demonstrate that the learned acoustic features from speech correlate 

with the clinical ratings of hypernasality.

A. Related work

The development of a speech technology-based system involves the extraction of acoustic 

features which reflect abnormal nasal resonance present in the hypernasal speech. Spectral 

measures, such as addition of an extra nasal formant around 250 Hz, increased spectral 

flatness, reduced first formant amplitude, voice low-to-high tone ratio, and vowel space area 

have previously shown a correlation with the perceived hypernasality [13]–[19]. Acoustic 

features in combination with the machine learning algorithms have been used to develop 

automatic hypernasality assessment systems. Mel-frequency cepstral coefficients (MFCCs), 

jitter, shimmer, vowel space area, wavlet transform-based features have been used to train 

classifiers (e.g. support vector machine (SVM), Gaussian mixture model (GMM)) that 

detect hypernasal speech [17], [18], [20], [21]. Recently, convolutional neural networks and 

recurrent neural networks have also been used for the same purpose [22], [23].

Most of these automatic algorithms for detection of hypernasality were developed in a 

binary classification setting, i.e., healthy vs. hypernasal speech [17], [18], [20]–[23]. This 

is inconsistent with clinical practice, where clinicians require more fine-grained information 

(e.g. evaluation of hypernasality on a scale that ranges from normal to severe) for decision 

making. For example, a secondary surgery may only be required for treating moderate-

severe hypernasal cases [24]. There is a limited number of multi-class classification [25]–

[27] and regression-based approaches for predicting hypernasality severity [28], [29]. 

These approaches rely on analysis of sustained phonations or segmented phonemes from 
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utterances. This is limiting in two ways: (1) Sustained phonations don’t capture phonetic 

context and don’t provide a reliable percept of hypernasality. That is why clinicians 

prefer to use connected speech for reliable estimation of hypernasality severity [30]. (2) 

For approaches that rely on connected speech, the phonetic segmentation was achieved 

either by manual marking or forced-alignment using orthographic transcriptions. However, 

orthographic transcription is time consuming and the forced alignment procedure may be 

prone to errors for children’s speech [31].

Hypernasality estimation based on supervised machine learning requires large, labeled 

speech corpora. Most of the existing speech-based hypernasality evaluation methods use 

speech samples and corresponding perceptual ratings to train machine learning models, 

including k-nearest neighborhood classifier [27], GMMs [26], SVMs [20], [21], [25], [32], 

and deep neural networks (DNNs) [22], [23], [33]. The performance of these systems 

critically depends on the availability of clinical hypernasal speech databases that include 

speech samples from patients and corresponding hypernasality ratings from trained SLPs. 

However, development of a large hypernasal speech database is difficult in practice due 

to the limited availability of patients’ speech and the associated SLP clinical ratings. As a 

result, the models run the risk of overfitting to a particular database and rating scale.

B. The proposed approach

While large-scale databases of CP speech are untenable, healthy speech provides us with 

clues as to the acoustic manifestation of hypernasality. For example, the voiced sounds /m/ 

and /n/, and the sounds that precede and follow them, require opening of the velopharyngeal 

port to shunt the vibrating column of air through the nasal cavity. Thus, /m/ and /n/ are 

nasal consonants (NC). Because the velum is a relatively sluggish articulator in comparison 

with the tongue and lips, the velopharyngeal port opens and closes more slowly, creating 

nasalization of vowels adjacent to the NCs, or nasalized vowels (NV). For example, the 

vowel /æ/ is nasalized in the word “man”.

This is in contrast to production of the oral consonants (OC), which involves closure of 

the velopharyngeal port to impound oral air pressure that creates a burst upon release of 

the articulatory closure (plosive). The voiced stop consonants, /b/ and /d/, and unvoiced 

stop consonants, /p/ and /t/, share the exact same places of articulation as /m/ and /n/, 

respectively, but are completely orally produced. This means that vowels (oral vowels, OV) 

adjacent to these OCs are also not nasalized, as in the /æ/ in the word “cat”. Since, the effect 

of nasalization is evident in healthy speech, the acoustic manifestation of the velopharyngeal 

port opening can be modelled using a healthy speech corpus. Compared to CP speech, 

there are a large number of healthy speech corpora available in the public domain. In our 

algorithm, we make use of a publicly-available healthy speech corpus and train a nasality 

feature extraction model using only healthy speech. This results in an objective measure 

of hypernasality that can be computed frame-by-frame and aggregated at the level of an 

utterance or speaker.

An overview of the proposed algorithm for estimating the OHM is described in Fig. 1. To 

learn the acoustic manifestation of the velopharyngeal port opening, we utilize 100 hours 

of speech from a publicly-available Librispeech corpus to train a DNN model that classifies 
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among NC, OC, NV, and OV. Training the DNN to classify among these classes forces it to 

learn the acoustic manifestation of an open velopharyngeal port. As a result, we refer to this 

DNN as the nasality model and use the four DNN posteriors of this model as “features” for 

assessing the presence of nasalization in CP speech.

The input children’s speech was pre-processed and we extracted the four posterior features 

using the pre-trained DNN nasality model. These features were combined to derive the 

OHM for each speech utterance. The details of the algorithm can be found in the Methods 

section. We established the construct validity of the OHM through several experiments using 

cleft speech samples and gold-standard clinical ratings from the Americleft project; then we 

evaluated the external validity of the model using data from the New Mexico cleft palate 

center (NMCPC) database.

II. DATABASES

The details of the healthy speech corpus and the two CP speech databases are described 

below.

A. Healthy speech corpus

One hundred hours of healthy speech from the Librispeech database (train-clean-100) was 

used to train the DNN [34]. The database contains English read speech samples recorded 

from 251 healthy adult speakers (125 male and 126 female). In addition to the speech 

samples, the database also contains orthographic transcriptions for each read sentence. A 

separate test set (test-clean) consisting of 5.4 hours of speech was used as a validation set.

B. Americleft database

The Americleft database was collected as a part of the Americleft Speech Project at 

the University of Utah. The database consists of 60 children with CP (37 boys and 23 

girls) of average age 6.276 ± 0.676 years. The control group consisted of 10 typically 

developing children (6 boys and 4 girls) with typically-developing speech characteristics (as 

determined by an SLP) having an average age of 5.912±0.593 years. The recorded stimuli 

was comprised of 24 sentences containing different target consonants [9]. The Americleft 

database was used with an approval from Institutional Review Board (IRB) with IRB ID: 

STUDY00008224 and written consent was obtained from all participants.

The hypernasality of the recorded speech samples was perceptually evaluated by 4 SLPs 

from the Americleft speech outcomes group (ASOG) according to a standardized protocol 

[9]. The speaker-level hypernasality was rated on the Americleft Speech Protocol scale 

on a 5-point scale (0-normal, 1-borderline, 2-mild, 3-moderate, 4-severe) [9]. The Pearson 

correlation coefficient was computed between different pairs of raters to evaluate the inter-

rater reliability. The average inter-rater correlation coefficient was found to be 0.797 ± 

0.079. The ratings for all 4 SLPs were averaged to obtain a single “ground-truth” rating per 

speaker [35]. The histogram in Fig. 2(a) shows the distribution of hypernasality ratings for 

the 70 speakers from the Americleft database. It is clear from the figure that the database 

is skewed towards the normal (‘0’) end of the scale. We balance the original Americleft 

data by randomly removing a subset of speakers rated with normal nasality. The balanced 
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Americleft database, Americleft(38), is comprised of 38 speakers and the histogram of 

the ground-truth ratings is shown in Fig. 2(b). The average inter-rater correlation for 

Americleft(38) was 0.776 ± 0.068.

In addition to hypernasality, the Americleft samples were evaluated for consonant 

production errors and audible nasal emission (ANE). To assess consonant production 

errors, the Americleft sentences were phonetically transcribed by the four Americleft 

raters using the International Phonetic Alphabet. Based on the transcriptions, the consonant 

production errors are grouped into 4 groups as per the Americleft speech protocol [9]. These 

groups are anterior oral (dentalization, lateralization, palatalization), posterior oral (double 

articulation, backed to velar/uvular), non-oral (pharyngeal articulation, glottal articulation, 

nasal fricatives, double articulation), and passive (weak and/or nasalized consonants, and 

nasal realization of plosives) articulation errors. The consonant production errors were 

evaluated for 24 Americleft sentences, and the percentage of anterior oral, posterior oral, 

non-oral, and passive articulation errors are computed at a speaker-level. The ANE was rated 

on a 3-point rating scale (0-normal, 1-occasionally/seldom noted, and 2-frequently noted) 

by 4 SLPs and the average inter-rater correlation for Americleft(38) was found equal to be 

0.694 ± 0.164.

C. The NMCPC database

The NMCPC database is described in [32]. The database is comprised of speech samples 

from 10 controls (8 boys and 2 girls) and 41 children with CP (22 boys and 19 girls) with 

an average age of 9.2±3.3 years. All participants spoke American English. Each child was 

asked to repeat a random subset of sentences selected from a larger set of 76 sentences. 

The number of sentences per participant ranged from 7 to 69. The recorded samples were 

perceptually evaluated by 5 listeners on a continuous scale ranging from 0 to 3, where 

0 stands for normal and 3 for severe hypernasality. The raters were not speech language 

pathologists, but they were speech processing experts. Initially, a few NMCPC samples 

were evaluated by expert SLPs and used as reference exemplars by the speech processing 

experts. By listening to these examples, the researchers were self-trained to evaluate the 

complete NCMPC database. The average inter-rater correlation of this database was 0.872 

± 0.078. The ratings of 5 raters were averaged to obtain a single “ground-truth” rating 

per speaker [35]. A histogram of average ratings is shown in Fig. 2(c). This database is 

nicely balanced across the different hypernasality levels. The NMCPC database is a publicly 

available database that can be acquired upon request to Dr. Luis Cuadros, New Mexico Cleft 

Palate Center.

III. METHODS

A. DNN Nasality Model

Below we describe the development of the DNN nasality model, including its architecture 

and the training procedure.

DNN model architecture: The architecture of the DNN nasality model is shown in Fig. 

3. The model has an input layer with 39-nodes, corresponding to the 39-dimensional MFCCs 
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input speech feature. The model is comprised of 3-hidden layers, where each layer has 1024 

hidden neurons with rectified linear unit (ReLU) activation. The output layer consists of 4 

softmax nodes, each interpreted as a posterior probability corresponding to NC, OC, NV, 

and OV classes.

Training the DNN: First, the 100 hours of healthy speech recordings from the Librispeech 

corpus and the corresponding orthographic transcriptions were passed through the Montreal 

forced-aligner [36] to align the speech acoustics to the transcript at the phoneme level. The 

segmented phonemes were grouped into the four classes of interest: nasal consonants (NC), 

oral consonants (OC), nasalized vowels (NV), and oral vowels (OV). The NC group was 

formed by combining across nasal consonants (/n/, /m/, and /ng/); the OC group was formed 

by combining across oral consonants, including plosives (/b/, /d/, /g/, /p/, /t/, /k/), fricatives 

(/z/, /v/, /s/, / ʃ /, /f/, /h/, /θ/, /ð/ ), affricates (/ʧ/, /ʤ/), glides and liquids (/l/, /ɹ/, /w/). The 

NV group was formed by combining thirty percent of the vowel segments that follow and 

precede a nasal consonant. The OV group was formed by combining across the remaining 

vowels segments, which were not surrounded by nasal consonants. An example grouping 

of phonemes in a healthy speech sample is illustrated in Fig. 4. The speech waveform 

corresponding to the phrase “no one who had ever seen” and its spectrogram are shown in 

Fig. 4(a) and (b), respectively. Fig. 4(a) shows the time boundaries for each phoneme in 

ARPABET form. Based on the velopharyngeal activity, the phonemes are grouped into NC, 

OC, NV, and OV categories. In the example shown in Fig. 4, the nasal consonant (/n/) and 

the vowels (/o/, /ɐ/, /i/) surrounding it are grouped into NC and NV classes, respectively. 

The oral consonants (/w/, /h/, /d/, /v/, /s/) and the vowels (/u/, /æ/, /ɚ/) adjacent to them are 

grouped as OC and OV classes, respectively.

The input speech to the DNN was sampled at a 16 kHz sampling rate, and short-time 

processed using a 20 ms Hamming window with 10 ms overlap. From each frame, 13 

dimensional MFCCs, velocity (∆) and acceleration (∆∆) coefficients were computed. This 

39-dimensional feature vector was the input to the DNN nasality model; the label for 

each 20 ms frame corresponded to the category to which that frame belonged to. The 

classifier was trained to classify between the four phoneme categories described above. The 

error between the predicted and ground truth labels was computed using a categorical cross-

entropy loss function. The ADAM optimizer was used to estimate the optimum parameters 

of the network. The network was trained for 25 epochs with a learning rate of 0.001. The 

MFCC features were computed using the Librosa package in Python and the DNN was 

implemented using the Keras 2.2.4 toolkit with a TensorFlow 1.13.1 backend.

DNN posteriors as nasality features: For the given input speech frame, the DNN 

results in 4 posterior probabilities corresponding to the NC, OC, NV, and OV classes. 

As described in Fig. 5, increased values of P(NC) and P(NV ) indicate the presence of 

nasalization in consonants and vowels, respectively. Hence, we consider these posteriors as 

the nasality features and use them to compute an objective measure of hypernasality.

Evaluating the OHM: Evaluating the OHM requires the pre-trained DNN nasality model 

described above. The DNN was trained on adult speech, however we aim to use it to 

evaluate hypernasality in children’s speech. To compensate for the acoustic mismatch 
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between children and adult speech, we used the pitch modification algorithm proposed 

by [37]. The pitch modification pre-processing step lowers the pitch and speaking rate 

of children per the details in the paper. This same approach was used to improve the 

performance of speech recognition algorithms trained on adult speech and evaluated on 

children speech [37].

The pitch-modified speech signal was resampled at 16 kHz and short-time processed using 

a 20 ms Hamming window with 10 ms overlap. The frame-size and frame-shift were 

consistent with the parameters used during DNN nasality model training. As before, a 

39-dimensional MFCC feature vector was computed and provided as input to the pre-trained 

DNN nasality model. The 4 DNN posterior probabilities were computed for each frame 

of children’s speech. The DNN posteriors obtained for the pre-processed children’s speech 

were used to compute the OHM. Let, xi be the feature vector corresponding to the MFCC 

input features for the ith frame; the DNN outputs probabilities corresponding to NC, OC, 

NV, and OV classes for that frame, i.e., P(NC|xi), P(OC|xi), P(NV |xi), and P(OV |xi), 

respectively. Then the objective hypernasality measure OHM(xi) for ith frame is computed as

OHM xi = max log P NC ∣ xi
P OC ∣ xi

, log P NV ∣ xi
P OV ∣ xi

. (1)

In equation 1, we compute the ratios of posterior probabilities of nasal to oral consonants 

and nasalized to oral vowels. The frame-level OHM, OHM(xi), is built by logarithmically 

transforming each ratio and taking the maximum across the two.

For clarity, it is useful to demonstrate the OHM with two examples. The speech waveform, 

frame-wise DNN nasality posterior features, and the OHM contours from a control sample 

and a CP sample are plotted in Fig. 5(a)–(h). The target sentence is “buy baby a bib”. Since 

the sentence does not contain any nasal consonants, no nasal cues are expected in the speech 

from the control group; this is consistent with panels (b) and (c) where P(OC) > P(NC) 

and P(OV ) > P(NV ) for the speech from the control group. For the case of hypernasal 

speech from the CP group in panels (f) and (g), we see that P(NC) > P(OC) and P(NV ) 

> P(OV).Although the target text does not contain any nasal consonants, large P(NC) and 

P(NV) values indicate the presence of abnormal nasal resonances in CP speech indicative 

of hypernasality. As expected, the OHM measure obtained by combining P(NC), P(OC), 
P(NV ), and P(OV ) indicates relatively higher values for hypernasal speech (Fig. 5(h) than 

for healthy speech (Fig. 5(d)).

The frame-level OHM scores (OHM(xi)) were averaged over all frames of a given utterance 

to obtain sentence-level OHM scores. Similarly, sentence-level OHM scores were averaged 

over all utterances spoken by the same speaker to obtain speaker-level OHM scores.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using the Americleft database to evaluate the sentence 

and speaker-level performance of the OHM, the robustness of OHM to co-existing speech 

production errors, the sensitivity of OHM, and the internal reliability of OHM. The external 
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validity of the OHM was evaluated using the NMCPC database. Further, a comparison of 

the OHM with a representative supervised learning method based on DNN regression was 

also conducted. The details of the experiments and the results are presented in the following 

subsections.

A. Validation of sentence-level OHM scores

The frame-level results in Fig. 5 are averaged over the entire duration of the utterance to 

generate a sentence-level OHM score. The correlation between the sentence-level OHM 

and the speaker-level perceptual ratings, the ground-truth rating obtained from Americleft-

trained SLPs, was evaluated using Pearson’s correlation coefficient (r). In Table I we 

list the sentences from the Americleft database, grouped by target consonant category; 

for each sentence, we also list the correlation between the sentence-level OHM and the 

perceptual hypernasality level. As expected, oral sentences, i.e., the sentences containing 

oral consonants (plosives, fricatives, affricates, liquids, and glides) showed a high correlation 

with the perceptual ratings; whereas the OHM calculated from nasal sentences shows a low 

correlation. This makes sense as the OHM demonstrates a ceiling effect for nasal sentences 

since it is expected that they are nasalized.

B. Validation of speaker-level OHM scores

We compute the speaker-level OHM scores by averaging across all oral sentences produced 

by a speaker. The average Pearson correlation between the speaker-level OHM with each 

rater’s perceptual ratings and the average inter-rater Pearson correlation are shown in Table 

II.

For finer-grained analysis, we compare the OHM with the ground-truth rating obtained by 

averaging the clinical ratings from the 4 raters. Fig. 6 shows the relationship between the 

speaker-level OHM and perceptual ratings for the Americleft database. The OHM shows 

a significant correlation (r = 0.797, p < 0.001) with the ground truth perceptual ratings. A 

scatter plot of sample-level data is shown in Fig. 6.

C. Robustness to co-existing speech production errors

In addition to hypernasality, CP speech is also characterized by the presence of consonant 

production errors and ANE; therefore, we also analyzed the relationship of OHM with these 

co-existing speech production errors.

The bar plot in Fig. 7 shows the correlation of the perceptual hypernasality ratings and 

OHM with respect to 4 categories of consonant production errors, namely, anterior oral, 

posterior oral, non-oral, and passive errors. The perceptual hypernasality showed a moderate 

correlation (r = 0.460, p < 0.05) with respect to passive errors. Passive errors include 

nasalized consonants, which carry nasal cues, therefore, it is expected that the presence 

of passive errors increases with increased hypernasality severity. In fact, the perception of 

nasalized consonants was considered an important criterion in developing the hypernasality 

rating scale in [30]. Nasal resonances are not evident in anterior, posterior and non-oral 

errors. Hence, the perceptual hypernasality ratings showed a low correlation with the 
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Americleft ratings for anterior (r = 0.166, p = 0.201), posterior (r = 0.151, p = 0.211) 

and non-oral errors (r = 0.169, p = 0.191).

Similar to the perceptual hypernasality ratings, the OHM scores also showed a moderate 

correlation (r = 0.478, p < 0.05) with passive errors and a very low correlation with the 

posterior (r = −0.097, p = 0.559) and anterior errors (r = −0.060, p = 0.718). However, when 

compared to perceptual ratings, the OHM showed a relatively lower correlation for posterior 

and anterior and higher for passive errors. The OHM showed a slightly higher correlation for 

non-oral errors (r = 0.268, p = 0.102).

The perceptual ANE ratings showed a low correlation (r = 0.393, p < 0.05) with the 

perceptual hypernasality ratings. The OHM scores also resulted in a low correlation with the 

perceptual ANE ratings (r = 0.287, p = 0.081). These results provide additional evidence that 

the OHM captures hypernasality as it correlates with the passive errors carrying nasal cues 

and is largely robust to co-existing anterior and posterior consonant production errors.

D. Evaluating the sensitivity of the OHM

In our analysis, we considered a balanced set of 38 speakers in the Americleft database to 

evaluate the sentence-level and speaker-level OHM scores relative to the perceptual ratings. 

Additionally, we analyzed the OHM for the remaining 32 ‘CP speakers rated as normal’ (no 

hypernasality) and compared them with the control group. Here, the ‘CP rated as normal’ 

corresponds to speakers whose SLP hypernasality rating was considered normal. Fig. 8 

shows the range of the OHM for the two groups. The OHM scores of speakers with CP rated 

‘0’ were greater than that of controls. A t-test reveals a statistically significant difference 

between the two groups (t = −2.899, p < 0.05). This result may indicate the presence of very 

mild hypernasality in the CP group not detected by the SLPs.

E. Assessing the internal reliability of the OHM

To evaluate the internal reliability of OHM scores, we grouped the 20 oral sentences from 

the Americleft database into set-1 and set-2, where set-1 contains the first 10 sentences and 

the remaining 10 formed set-2. We computed speaker-level OHM scores for set-1 and set-2 

data. Fig. 9 shows the scatter plot of OHM scores for set-1 vs. set-2. The OHM scores of 

set-1 are significantly correlated (r = 0.898, p < 0.001) with that of set-2.

F. Assessing the external validity of the OHM

We also evaluated the performance of the OHM on the NMCPC database in order to 

evaluate how well the OHM generalizes to data collected in other studies. The hypernasality 

level of the NMCPC speech samples was evaluated by 5 raters. The correlation of the OHM 

with respect to each rater and the inter-rater correlation are shown in Table III. The average 

correlation of the OHM vs. individual raters was found equal to r = 0.695, p < 0.001 whereas 

the inter-rater correlation was r = 0.872, p < 0.001.

The scatter plot of the speaker-level OHM vs. the average of the 5 clinical ratings is shown 

in Fig. 10. The OHM showed a significant correlation (r = 0.713, p < 0.001) with the 

average hypernasality ratings provided by the SLPs.
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G. Comparison with a fully supervised approach

Conventionally, automatic evaluation of hypernasality involves the supervised training of 

models like SVMs [20], [21], artificial neural networks [23], and recurrent neural networks 

[22] for the binary classification of healthy and hypernasal speech samples. In all of 

these existing approaches, the supervised training of models was carried out by using a 

perceptually labeled CP speech database. In the proposed approach, the OHM was computed 

using the nasality DNN, whose parameters were estimated by using only the healthy 

speech samples. Most of the existing deep learning-based implementations [22], [23] were 

developed for binary classification from segmented vowels. We found only one DNN-based 

method in the literature [33] which predicts hypernasality severity from connected speech 

samples. In this work [33], the DNN was trained directly on a labeled CP speech database. 

To compare the OHM with conventional supervised approaches, we implemented a DNN 

regressor, which was directly trained on the MFCC features extracted from the speech 

samples and the perceptual ratings of the Americleft database.

We used only oral sentences to train and test the DNN regressor using leave-one-speaker-out 

(LOSO) cross-validation. The sample size of the Americleft database (20 oral sentences 

x 38 speakers=760) is very small to train a DNN. To address this issue, we used data 

augmentation using (a) addition of noise: white, babble, and factory noise with 5, 10, 15, 

and 20 dB SNRs, (b) speaking rate modification using the factors 0.8, 0.9, 1.1, and 1.2, (c) 

vocal tract length perturbation (VTLP) using the perturbation factors 0.9, 0.95, 1.05, and 1.1 

[38]. After the data augmentation, the sample-size of the database was increased from 760 to 

9120 sentence-level recordings.

The 39-dimensional MFCC features extracted using 20 ms Hamming windowed speech 

frames with a shift of 10 ms were fed to a feed-forward DNN regressor. The architecture 

details of DNN regression are as follows: 39 input nodes, three hidden layers with 512 

neurons with ReLU activation, and 1 output node with a linear activation function. The 

error between the predicted outputs and ground truth labels was estimated using the mean 

squared error (MSE) loss function. The ADAM optimizer was used to estimate the optimum 

parameters of the network. The network was trained for 25 epochs, with a learning rate of 

0.001.

The MFCCs were computed at the frame-level, but the ground truth was available at the 

speaker-level. During training we assigned the speaker-level hypernasality ratings to every 

frame-level feature vector belonging to that particular speaker. In the testing phase, speaker-

wise averaging of DNN outputs was carried out to obtain a single score per speaker. The 

performance of the DNN regressor was evaluated using the LOSO cross-validation criteria. 

In LOSO cross-validation, the samples of all speakers except one speaker were used to 

train DNN and the remaining one’s sample was considered for the testing. Note that the 

augmented samples were used only during the training phase, while for testing we only used 

the original samples.

The correlation coefficient computed between predicted scores and the perceptual ratings is 

shown in Table IV. The correlation was found to be statistically significant (r = 0.524, p < 
0.05), but it is well below that of the OHM. The DNN regressor trained on the Americleft 
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samples was also used to evaluate hypernasality using the NMCPC samples and the results 

are presented in Table IV. The predicted scores for the NMCPC database showed a weak 

correlation (r = 0.301, p = 0.032) with the perceptual ratings. These results indicate possible 

overfitting. The OHM scores were more strongly correlated for both databases and the 

results empirically show that the OHM was robust to a variety of recording conditions, 

sentence contexts, and perceptual rating scales.

V. DISCUSSION

In this work, we introduced an objective measure of hypernasality based on a DNN nasality 

model trained on healthy speakers with no clinical labels. First, we modeled the acoustic 

cues related to an open velum (nasalized) from healthy speech by training a DNN classifier 

to classify between NC, OC, NV, and OV classes. This pre-trained DNN on healthy speech 

samples was used to characterize the presence of abnormal nasal resonances in the speech 

of children with CP. The OHM was computed at the level of a speech frame and aggregated 

into sentence-level and speaker-level scores.

Comparison with existing hypernasality evaluation approaches:

Most of the existing approaches for the automatic hypernasality evaluation in children 

with CP were developed to classify between normal and hypernasal speech [20], [23] 

or multi-class classification (normal, mild, moderate, and severe) [25], [32]. Since these 

supervised machine learning models were directly trained on CP speech samples and 

perceptual hypernasality ratings, their performance critically depends on the availability 

of labeled hypernasality speech databases. To compare to the OHM, we trained a regressor 

directly on the speech samples and ratings from the Americleft database. Even though we 

increased the database size via data augmentation, the DNN regressor’s performance was 

well below that of the OHM. The availability of a perceptually labeled database became a 

practical limitation in clinical speech research due to the limited number of subjects and 

Americleft SLPs. The OHM bypasses the need for clinical labels as the scores are estimated 

from a DNN trained on a publicly available large healthy speech corpus.

We recognize that this is only a proxy for hypernasality as the manifestation of nasalization 

in healthy speech does not perfectly translate into the same pattern as clinical hypernasality 

(which refers to the perception of excessive nasal resonance during vowels and voiced 

sounds). Nevertheless, our results indicate that this seems to be a more robust measure of 

hypernasality when compared to methods based on supervised learning.

Another important advantage of OHM is that the approach does not require phonetic 

segmentation. Most of the automated hypernasality evaluation methods rely on the phonetic 

segmentation, where segmentation is performed either by manual labeling or forced-

alignment using orthographic transcriptions. The OHM is computed directly on connected 

speech samples and this makes the evaluation process faster as manual labeling and speech 

transcription are time-consuming processes.
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The role of the speech stimuli in estimating hypernasality:

The choice of stimuli or target sentence plays an important role in the assessment of clinical 

hypernasality. In the case of healthy speakers, nasal resonance is inherently present during 

the production of nasal sentences and completely absent in the case of oral sentences. 

The presence of non-negligible nasal resonance during the production of oral sentences 

is considered to be abnormal, which indicates the presence of hypernasality [30]. Sentence-

wise correlation values listed in Table I revealed that the proposed measure yields a good 

correlation for the oral sentences and poor correlation for nasal sentences. Since, for both 

CP subjects and controls, the acoustic energy passes through the nasal tract while producing 

nasal sentence, it is difficult to evaluate hypernasality using these sentences. These results 

indicate that to reliably compute the speaker-level OHM, the target speech samples should 

only contain oral consonants. These results closely match with the perceptual assessment 

guidelines mentioned in [30], where only sentences with oral consonants were suggested for 

assessing hypernasality.

High-pressure and low-pressure consonants play an important role in clinical 

evaluation of hypernasality [24], [30]. Pressure-sensitive or high-pressure consonants 

(plosives: /t/, /k/, /k/, /b/, /d/, /g/, fricatives: /h/, /f/, /ʃ/, /z/, /θ/, /ð/, and affricates: /ʧ/, /ʤ/ ) 

require generation adequate intra-oral pressure, which is developed by the closure or 

significant constriction of oral tract and closure of the velopharyngeal port. Whereas, 

low-pressure consonants (glides: /y/, /w/ and liquids: /ɹ/, /l/) do not require high intra-oral 

pressure. Since the loss of airflow in patients with CP and VPD affects the ability to 

build up and maintain intra-oral air pressure, the production of high pressure consonants is 

severely affected. The substitution of nasal consonants for target high pressure consonants 

is most commonly reported in speakers with CP because of the escape of air through 

the incompletely closed VP port . Therefore, in clinical settings, target speech containing 

high-pressure oral consonants is highly recommended for the perceptual assessment of 

hypernasality [24], [30]. Our results are consistent with this as the OHM shows higher 

correlation for sentences containing high-pressure consonants (plosives, fricatives, and 

affricates) than those with low-pressure consonants.

Co-existing speech production errors in assessment of hypernasality:

Articulation errors in speakers with CP are broadly divided into active and passive errors. 

In the case of passive articulation errors, the speaker tries to retain the place of articulation 

of the target phoneme but the air escapes through the velopharyngeal port. Hence, the 

consonant is perceived to be weak or nasalized. In the case of severe VPD, the target 

consonant is completely replaced by a nasal consonant (/t/, /d/→/n/ and /p/, /b/→/m/) [30].

Active articulation errors can be further divided into different subgroups. In the case of 

non-oral (also known as compensatory errors), a speaker attempts to compensate for the 

effect of reduced oral air pressure by shifting the location of articulatory constriction. The 

shift in the place of articulation may be within the oral or non-oral cavity. In many cases, 

the presence of VPD leads to a shift towards glottal and pharyngeal regions [30]. Although 

the consonant production errors and ANE are produced as a consequence of VPD, their 

contribution in the perception of hypernasality is different. The passive errors contain nasal 
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cues and hence, their presence contributes to the perception of hypernasality. In contrast, 

the anterior, posterior, non-oral substitutions (glottal and/or pharyngeal substitutions), and 

ANE do not carry nasal cues; therefore their contribution is relatively low to the perception 

of hypernasality. However, the presence of active errors can create variability in perceptual 

evaluation as it is difficult to perceptually decouple co-existing errors from the presence of 

hypernasality. As shown in Fig. 7, the OHM scores do not have this bias for anterior and 

posterior oral errors. However, the OHM showed some relationship with non-oral errors and 

ANE. This result provides evidence that OHM scores capture the nasal cues present in the 

speech signal and is robust to most co-existing active errors in CP speech.

Differences in OHM performance on Americleft and NM-CPC databases:

For the Americleft database, the inter-rater reliabilities are on average a little higher than 

the OHM-torater reliabilities, but they are within 1 standard deviation of each other. For 

the NMCPC database, inter-rater reliabilities are significantly greater than the OHM-to-rater 

reliabilities. Also, the OHM scores showed relatively higher correlation with the averaged 

perceptual ratings (r = 0.797), when compared to the NMCPC database (r = 0.713). The 

reasons for this difference in the OHM’s performance are multifold. The NMCPC database 

is not balanced in terms of the number of sentences per speaker. This imbalanced nature of 

the NMCPC database affects the estimation of speaker-level OHM, where the speaker-level 

OHM was computed by averaging the sentence-level scores. The average signal-tonoise 

ratio (SNR) of the Americleft samples was found equal to 23.88±9.10 dB. Whereas the 

speech samples of NMCPC database are noisier with an SNR of 15.95±8.10 dB. The 

raters of the Americleft database were trained under the Americleft speech project and 

followed the same protocol [9]. In the Americleft speech project, a group of SLPs with 

extensive expertise in the evaluation and treatment of children with CP developed a standard 

hypernasality rating scale and protocols for speech evaluation. The OHM showed good 

agreement with ratings that followed these guidelines, but a lower agreement with the 

NMCPC raters who were not trained in the Americleft standard protocols. Moreover, the 

NMCPC raters were speech researchers and not SLPs with clinical expertise in the domain 

of CP speech assessment. However, it is interesting that the NMCPC raters have a much 

higher inter-rater reliability than the Americleft ratings, well above what has been reported 

in the literature previously [9]. We posit that this is because the raters discussed their ratings 

while evaluating the speech samples, reaching consensus in some cases. Another possible 

reason for reduced inter-rater reliability in the Americleft database may be the use of a 

different rating scale. The NMCPC speech samples were rated on a 4-point rating scale, 

whereas a 5-point rating scale was used in the Americleft database. This may impact the 

inter-rater reliability.

VI. SUMMARY AND FUTURE WORK

In this work, we introduced an objective measure of hypernasality based on a DNN 

nasality model trained on healthy speakers with no clinical labels. First, we modeled the 

acoustic cues related to an open velum (nasalized) from healthy speech by training a DNN 

classifier to classify among NC, OC, NV, and OV classes. This pre-trained DNN on healthy 

speech samples was used to characterize the presence of abnormal nasal resonances in the 
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speech of children with CP. The OHM was computed at the level of a speech frame and 

aggregated into sentence-level and speaker-level scores. After optimizing the algorithm, a 

user-friendly interface will be developed for in-clinic use. The nasality DNN was trained 

for the acoustic difference between nasal and oral sounds and there were no language 

specific features used while training. Hence, we expect that the model is not sensitive to 

different languages. However, the robustness of the system to different languages needs to be 

evaluated prospectively.

In the current implementation of the OHM, the model is completely tuned and implemented 

using only the healthy speech database. Future work can focus on further refinement of 

the implementation by using a corpus of cleft speech to tune model parameters, or perhaps 

to change it to a supervised model by using linear regression across different sentences 

to produce speaker-level hypernasality scores. The present work uses a pitch modification 

algorithm to compensate for the difference between adult and children’s speech. However, 

the pitch modification algorithm does not address all possible differences between adult and 

children’s speech. For example, differences in co-articulation or duration are not accounted 

for. Hence, future work could focus on better speaker adaptation methods such as identity 

vector (i-vector) and transfer learning approaches. Another limitation of the current work 

is that the algorithm assumes the presence of information related to nasality over the entire 

duration of utterance and simply averages the frame-level OHM scores over an entire 

utterance. However, depending on the severity level, the hypernasality information may 

be distributed unevenly over different phonemes. Therefore, instead of a simple averaging 

operation, recurrent neural networks and attention models can be used to capture unevenly 

distributed nasality information.

Furthermore, hypernasality is not only specific to CP speech. It is also present in speech 

from individuals with neurological disorders, such as Huntington’s and Parkinson’s disease. 

Therefore, future work can focus on extending the validation of this model for evaluating 

hypernasality in dysarthric speech.
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Fig. 1. 
Overview of the proposed approach for the hypernasality prediction. First, the input 

children’s speech is pre-processed and passed through the pre-trained DNN nasality model. 

The DNN model posteriors are combined to form the objective hypernasality measure.
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Fig. 2. 
The distribution of the number of speakers over different ground-truth hypernasality levels. 

Histograms of weighted averaged ratings for (a) Americleft (70 speakers), (b) balanced 

Americleft (38 speakers) and (c) NMCLP (51 speakers) databases.
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Fig. 3. 
The architecture of the DNN nasality model. The model is a feed forward neural network 

consisting of a 39-dimensional input layer, three hidden layers with 1024 hidden neurons in 

each layer, and a 4-dimensional softmax output layer. The output layer yields posterior 

probabilities corresponding to nasal consonants (NC), oral consonants (OC), nasalized 

vowels (NV), and oral vowels (OV).

Mathad et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
An illustration of the phoneme mapping procedure used for DNN training. (a) The speech 

waveform corresponding to the text ‘no one who had ever seen’ and (b) its spectrogram. 

Overlaid on the waveform, we show the transcription in English ARPABET format and the 

mappings to the four classes of interest, i,e. nasal consonant (NC), oral consonant (OC), 

nasalized vowel (NC), and oral vowel (OV). ARPABET to IPA mapping: N→/n/, OW→/o/, 

W→/w/, AH→/ɐ/, HH→/h/, UW→/u/, AE→/æ/, D→/d/, EH→/e/, V→/v/, ER→/ɚ/, 

S→/s/,IY→/i/.
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Fig. 5. 
The four frame-wise DNN posteriors and corresponding frame-wise OHM for healthy and 

hypernasal speech: (a) the waveform of a control speech sample (“buy baby a bib”), (b) 

P(NC) and P(OC), (c) P(NV) and P(OV), and (d) the OHM for the target sentence produced 

by a child from the control group; (e) the waveform of a CP speech sample (“buy baby a 

bib”), (f) P(NC) and P(OC), (g) P(NV) and P(OV), and (h) OHM for target oral sentence 

produced by a participant with CP.
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Fig. 6. 
A scatter plot of speaker-level OHM scores vs. ground-truth perceptual ratings for the 

Americleft database. The linear regression equation for mapping between the OHM and 

perceptual ratings (PR) is PR = 1.339(O H M) + 2.867.
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Fig. 7. 
Correlation of OHM scores and perceptual hypernasality ratings with co-existing 

speech production errors. AO-Anterior oral, PO-Posterior oral, NO-Non oral, PA-Passive 

articulation, and ANE-Audible nasal emission (∗p < 0.05).
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Fig. 8. 
OHM scores for the control group and for children with CP rated as having normal nasality 

in the Americleft database.
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Fig. 9. 
Analysis of internal reliability. A scatter plot of speaker-level OHM scores computed for two 

independent sets of sentences.
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Fig. 10. 
A scatter plot of speaker-level OHM scores vs. ground-truth perceptual ratings for 

the NMCPC database. The linear regression equation for mapping between OHM and 

perceptual ratings (PR) is PR = 0.874(O H M) + 2.267.
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TABLE II

A COMPARISON OF THE AVERAGE PAIRWISE CORRELATION BETWEEN AMERICLEFT-TRAINED 

RATERS AND THE AVERAGE CORRELATION BETWEEN THE OHM AND EACH RATER.

Mean±std.

Inter-rater correlation 0.776±0.068

OHM-rater correlation 0.733±0.051
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TABLE III

A COMPARISON OF THE AVERAGE PAIRWISE CORRELATION BETWEEN NMCPC RATERS AND 

THE AVERAGE CORRELATION BETWEEN THE OHM AND EACH RATER.

Mean±std.

Inter-rater correlation 0.872±0.078

OHM-rater correlation 0.695±0.016
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TABLE IV

COMPARISON BETWEEN OHM AND DNN REGRESSOR.

Database
Approach

OHM DNN Regressor

Americleft r = 0.797, p < 0.001 r = 0.524, p < 0.05

NMCPC r = 0.713, p < 0.001 r = 0.301, p = 0.032
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