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Abstract
The SARS-CoV-2 virus gains entry to cells by binding to angiotensin-converting enzyme 2 (ACE2). Since circumventricular 
organs and parts of the hypothalamus lack a blood–brain barrier, and immunohistochemical studies demonstrate that ACE2 
is highly expressed in circumventricular organs which are intimately connected to the hypothalamus, and the hypothalamus 
itself, these might be easy entry points for SARS-CoV-2 into the brain via the circulation. High ACE2 protein expression is 
found in the subfornical organ, area postrema, and the paraventricular nucleus of the hypothalamus (PVH). The subfornical 
organ and PVH are parts of a circuit to regulate osmolarity in the blood, through the secretion of anti-diuretic hormone into 
the posterior pituitary. The PVH is also the stress response centre in the brain. It controls not only pre-ganglionic sympathetic 
neurons, but is also a source of corticotropin-releasing hormone, that induces the secretion of adrenocorticotropic hormone 
from the anterior pituitary. It is proposed that the function of ACE2 in the circumventricular organs and the PVH could be 
diminished by binding with SARS-CoV-2, thus leading to a reduction in the ACE2/Ang (1–7)/Mas receptor (MasR) signalling 
axis, that modulates ACE/Ang II/AT1R signalling. This could result in increased presympathetic activity/neuroendocrine 
secretion from the PVH, and effects on the hypothalamic–pituitary–adrenal axis activity. Besides the bloodstream, the hypo-
thalamus might also be affected by SARS-CoV-2 via transneuronal spread along the olfactory/limbic pathways. Exploring 
potential therapeutic pathways to prevent or attenuate neurological symptoms of COVID-19, including drugs which modulate 
ACE signalling, remains an important area of unmet medical need.
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COVID‑19 and Brain Blood Vessels, Glial 
Cells, and Neurons

Although the main clinical manifestations of COVID-19 are 
associated with respiratory or intestinal symptoms, reports 
of neurological signs and symptoms are increasing. The 
primary neurologic symptoms include ‘brain fog’ (81%), 
headache (68%), numbness/tingling (60%), dysgeusia (59%), 
anosmia (55%), and myalgia (55%). Most patients (85%) also 

report fatigue (Graham et al., 2021). The virus could poten-
tially enter the brain through the circumventricular organs, 
disrupted blood–brain barrier, or retrograde transport via 
peripheral nerves (Kumar et al., 2021). Immune activation 
with astrocytosis, axonal damage, and blood–brain barrier 
leakage has been observed together with viral antigen and 
angiotensin-converting enzyme 2 (ACE2)-positive cells, at 
the blood–brain interface (Schwabenland et al., 2021). In 
addition, CSF levels of the chemokines CCL2 and CXCL8, 
and the blood vessel marker, vascular endothelium growth 
factor A are greater in severe COVID-19 cases than milder 
cases suggesting damage to the neurovascular unit (Bernard-
Valnet et al., 2021). SARS-CoV-2 can stimulate extracellular 
neutrophils traps (NETs) in a process called NETosis. This 
normally functions as a defence against pathogens, but in 
excess may lead to increased reactive oxygen species (ROS) 
production in neutrophils and thrombus formation (Arcanjo 
et al., 2020; Pramitasuri et al., 2021). The SARS-CoV-2 
spike protein reportedly binds to brain endothelial cells, 

 * Wei-Yi Ong 
 antongwy@nus.edu.sg

1 Department of Anatomy, National University of Singapore, 
Singapore 119260, Singapore

2 Neurobiology Research Programme, Life Sciences Institute, 
National University of Singapore, Singapore 119260, 
Singapore

3 Department of Pharmacology, National University 
of Singapore, Singapore 119260, Singapore

http://orcid.org/0000-0001-9756-7772
http://crossmark.crossref.org/dialog/?doi=10.1007/s12017-022-08706-1&domain=pdf


364 NeuroMolecular Medicine (2022) 24:363–373

1 3

resulting in inflammatory changes and loss of blood–brain 
barrier integrity (Buzhdygan et al., 2020). Increased num-
bers of microglia and astrocytes, and elevated levels of pro-
inflammatory markers are found in post-mortem specimens 
of the cerebral cortex in patients with COVID-19 (Boroujeni 
et al., 2021). Analysis of single-nucleus transcriptomes from 
the dorsolateral prefrontal cortex of patients with severe 
COVID-19 shows that transcriptional changes consistent 
with activated microglia are present, despite an absence of 
viral transcripts post-mortem (Fullard et al., 2021).

SARS-CoV-2 infection of cells occurs through the bind-
ing with ACE2. Virus binding to ACE2 induces confor-
mational changes in the S1 subunit of its spike protein and 
exposes the S2’ cleavage site in the S2 subunit. The S2’ 
site is then cleaved by a protease (e.g. cathepsin or trans-
membrane protease serine 2 (TMPRSS2)) to expose a fusion 
peptide within the spike protein, that is able to attach to 
and induce fusion of the viral envelope with the host cell 
membrane, thus facilitating infection of the cell [for recent 
review, see (Jackson et al., 2022)]. Infection of neurons leads 
to activation of nicotinamide adenine dinucleotide phosphate 
oxidase 2 (NOX2), free radical formation, and release of 
ROS and inflammatory molecules (Sindona et al., 2021). 
Free radical attack alters the phospholipid composition of 
mitochondrial membranes (Clough et al., 2021). This could 
lead to a loss of mitochondrial membrane potential and acti-
vation of the NLRP3 inflammasome, resulting in increased 
expression of pro-inflammatory genes (Clough et al., 2021; 
Sita et al., 2021). Imaging mass spectrometry analysis indi-
cates astrocytosis, axonal damage and blood–brain bar-
rier leakage, together with the detection of viral antigen in 
ACE2-positive cells in vascular compartments in post-mor-
tem cases of COVID-19 (Schwabenland et al., 2021). Oli-
godendrocytes could also be affected by the SARS-CoV-2 
virus and/or activated microglia, and this might result in 
CNS demyelination (Pan et al., 2020).

It is possible that the same mechanisms of COVID-19-in-
duced damage in glial or endothelial cells described above 
could also occur in neurons. Increased levels of serum neuro-
filament light, indicating central and/or peripheral neuronal 
damage, are found in hospitalized patients with COVID-19, 
whereas no elevation is detected in milder cases (Paterson 
et al., 2021). Likewise, greater levels of CSF neurofila-
ment light are present in critical cases of COVID-19 cases, 
compared to less severe cases (Garcia et al., 2021). RNA 
sequencing analyses of the amygdala of severe COVID-
19 cases show increases in neuroinflammatory genes, but 
decreases in neuronal genes including those related to syn-
aptic function (Piras et al., 2021). In addition, network analy-
ses reveal a close relationship between COVID-19-induced 
neuroinflammation and pathways involved in Alzheimer’s 
disease (Zhou et al., 2021). Together, these findings indicate 
increased involvement of microglia, brain microvessels, and 

neurons with greater severity of COVID-19 (Stefano et al., 
2021).

The SARS-CoV-2 virus enters cells by binding to ACE2 
(Hoffmann et al., 2020). In this situation, ACE2 functions 
as a receptor for the spike protein of the SARS-CoV-2 and 
facilitates internalization of the virus and infection of the 
host cell (Jackson et al., 2022). It is also important to note 
that infection of cells by SARS viruses including SARS-
CoV-2 results in a decrease of ACE2 expression (Kuba 
et al., 2005; Triana et al., 2021) and loss of ACE2 activity 
(Glowacka et al., 2010; Haga et al., 2010). This could pre-
vent ACE2 from performing its normal function, to regulate 
or act as a ‘brake’ against ACE/Ang II/AT1R signalling (see 
below). Diminished effect on reducing angiotensin II (Ang 
II) signalling is suggested to contribute to injury in patients 
with COVID-19 (Sriram & Insel, 2020).

ACE2 and the Hypothalamus

ACE helps in the formation of Ang II from angioten-
sin I, and ACE2 cleaves angiotensin 1 and angiotensin II 
into angiotensin (1–9) and angiotensin (1–7) (Ang (1–7)), 
respectively. The metabolism of Ang II to the vasodilatory 
peptide Ang(1–7) by ACE2 is part of the ACE2/Ang (1–7)/
Mas receptor (MasR) axis which helps to reduce blood pres-
sure, as opposed to the ACE/Ang II/AT1 Receptor (AT1R) 
axis, which increases blood pressure (Fig. 1). Surface-
Enhanced Laser Desorption Ionization–Time of Flight mass 
spectroscopic analyses to study Ang processing in normal 
mice show that not only ACE2 activity is found in the brain 
and kidney but also that the hypothalamus is the part of 
the brain that contains the highest ACE2 activity. This is in 
contrast to ACE, which is most active in the plasma (Elased 
et al., 2008). Overexpression of ACE2 induced by injection 
of adenovirus encoding ACE2 in the paraventricular hypo-
thalamic nucleus results in attenuation of Ang II-induced 
hypertension in rats (Sriramula et al., 2011). On the other 
hand, selective knockdown of ACE2 in the subfornical organ 
and paraventricular hypothalamic nucleus in mice results in 
partial loss of the ability to regulate deoxycorticosterone 
acetate-salt induced neurogenic hypertension (Xia et al., 
2015). Studies also show lower protein expression of ACE2 
in spontaneously hypertensive rats, compared to normoten-
sive rats (Wang et al., 2017). Moreover, downregulation of 
components of the ACE2/Ang (1–7)/MasR axis is present 
in spontaneously hypertensive rats (Han et al., 2020). These 
findings highlight an important role of the hypothalamic 
ACE2/Ang (1–7)/MasR axis in regulation of blood pressure.

Overexpression of  ACE2 also s ignif icant ly 
decreases anxiety-like behaviour in paradigms 
dependent on approach-avoidance conflict and nov-
elty, but has no effect on basal and/or stress-induced 
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hypothalamic–pituitary–adrenal (HPA) axis (de Kloet 
et al., 2020). In another study, mice with overexpression 
of ACE2 in corticotropin-releasing hormone (CRH) neu-
rons of the hypothalamus show reduced plasma corticos-
terone level in response to restraint stress, and decreased 
anxiety-like behaviour in the elevated plus maze and open 
field test, compared to controls (Wang et al., 2018). The 
ACE2/Ang (1–7)/MasR axis attenuates stress-induced 
tachycardia, and this could contribute to reduced sympa-
thetic load to the heart during emotional stress (Martins 
Lima et al., 2013). Adenovirus-mediated overexpression of 
ACE2 in the paraventricular hypothalamic nucleus results 
in reduction of sympathetic outflow (Zheng et al., 2011). 
In addition, direct microinjection of Ang (1–7) to the 
paraventricular hypothalamic nucleus results in modula-
tion of sympathetic activity in renovascular hypertensive 

rats (Han et al., 2012). ACE2 is also known to have anti-
inflammatory and anti-oxidative effects (Sriramula et al., 
2011). This could occur via modulation of levels of ANG 
II which has both a pro-inflammatory effect via the pro-
duction of tumour necrosis factor alpha (TNFα); and a pro-
oxidative effect by increasing NADPH-oxidase expression 
and ROS production (Sriramula et al., 2013). Together, 
these findings indicate an important role of hypothalamic 
ACE2 in modulating the stress response.

ACE2 has an effect on regulating neuronal activity 
(Fig. 1). As noted above, ACE2 catalyses the breakdown 
of Ang II to Ang (1–7). The latter is an agonist of the 
Mas receptor (MasR), which has been colocalised with 
GABAergic neurons (in the amygdala) (Wang et al., 2016). 
Ang (1–7) causes inhibition of principal neurons by pro-
moting GABAergic transmission in a MasR-dependent 
manner (Wang et al., 2016). This could occur via facili-
tation of GABA release through a nitric oxide-mediated 
pathway (Stragier et al., 2005) and possibly supplemented 
by an increase in GABA production via upregulation of 
glutamate decarboxylase 67 (GAD67) expression (stud-
ied in the pancreas) (Ma et al., 2020). GABA binds to 
 GABAA receptors to produce inhibition of the postsynaptic 
neuron. ACE2 is shed from the cell membrane, resulting 
in loss of activity through the action of another enzyme, 
ADAM17 (Xia et al., 2013). The latter is mostly expressed 
in glutamatergic projection neurons (Xu et al., 2019). In 
this manner, ACE2 and ADAM17 exert opposite effects 
on neuronal excitability (studied in presympathetic pro-
jection neurons of the paraventricular hypothalamic 
nucleus) (Mukerjee et al., 2019). ADAM17 activity itself 
could be affected by oxidative stress. Mice that received 
an antioxidant, alpha-lipoic acid, showed modulation of 
oxidative stress-induced increased ADAM17 activity and 
decreased ACE2 activity in the hypothalamus (de Queiroz 
et al., 2015). It is possible that the above schema could 
also apply to neurons in other parts of the brain includ-
ing those in the cerebral cortex and hippocampus, which 
express lower levels of ACE2 (Doobay et al., 2007).

In contrast to Ang (1–7), Ang II has an excitatory effect 
on neurons (Fig. 2). Both in vivo and in vitro studies show 
that Ang II stimulates PVN neuronal activity (Bains et al., 
1992; Cato & Toney, 2005; Li et al., 2003). This is likely 
through a direct effect on AT1 receptors (AT1R) which has 
been localized to neurons in the PVH and the circumven-
tricular organs, including the organum vasculosum of the 
lamina terminalis, subfornical organ, area postrema, and 
median eminence (Sumners et al., 2020). An indirect effect 
involving inhibition of the astrocyte glutamate transporter 
has also been proposed (Stern et al., 2016).

Nucleus

Decreased GABAergic 
inputs / decreased 
inhibitory
postsynap�c currents

Increased neuronal ac�vity

Proposed Func�on of ACE2 in Neurons

Inhibi�on

Neuron

Fig. 1  Proposed general functions of ACE2 in neurons. ACE2 catal-
yses the breakdown of Ang II to Ang (1–7). The latter is an ago-
nist of the Mas receptor (MasR), which has been colocalised with 
GABAergic neurons (in the amygdala) (Wang et al., 2016). Ang (1–7) 
causes inhibition of principal neurons by promoting GABAergic 
transmission in a MasR-dependent manner (Wang et al., 2016). This 
could occur via facilitation of GABA release through a nitric oxide-
mediated pathway (Stragier et  al., 2005) and possibly supplemented 
by an increase in GABA production via upregulation of glutamate 
decarboxylase 67 (GAD67) expression (studied in the pancreas) (Ma 
et al., 2020). GABA binds to  GABAA receptors to produce inhibition 
of the postsynaptic neuron. ACE2 is shed from the cell membrane, 
resulting in loss of activity through the action of another enzyme, 
ADAM17 (Xia et al., 2013). The latter is mostly expressed in gluta-
matergic projection neurons (Xu et al., 2019). In this manner, ACE2 
and ADAM17 exert opposite effects on neuronal excitability (studied 
in presympathetic projection neurons of the paraventricular hypotha-
lamic nucleus) (Mukerjee et  al., 2019). It is possible that the above 
schema could also apply to neurons in other parts of the brain includ-
ing those in the cerebral cortex and hippocampus, which express 
lower levels of ACE2 (Doobay et al., 2007)
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ACE2 and Circumventricular Organs that are 
Intimately Connected to the Hypothalamus

The seven circumventricular organs are the organum 
vasculosum of the lamina terminalis (OVLT), subforni-
cal organ, area postrema, pineal gland, subcommissural 
organ, median eminence, and neurohypophysis. Previous 
studies have shown high level of ACE2 expression in cir-
cumventricular organs (Doobay et al., 2007) and nuclei 
that are connected to the circumventricular organs. The 
latter includes the nucleus of the tractus solitarius, ros-
tral ventrolateral medulla, and paraventricular nucleus of 
the hypothalamus (Doobay et al., 2007; Kar et al., 2010; 
Zucker et al., 2014). ACE2 is localised in neurons of the 
above nuclei (Doobay et al., 2007; Kar et al., 2010). The 
OVLT, subfornical organ, and area postrema are impor-
tant in regulation of osmotic thirst, anti-diuretic hormone 
release, and blood pressure (Johnson et al., 1996; McKin-
ley et al., 1992b). Their constituent neurons project not 
only to the paraventricular hypothalamic nucleus, but 
also the brainstem. Axons send collateral branches to the 
nucleus of the tractus solitarius, and rostral ventrolateral 
medulla, before terminating on pre-ganglionic sympathetic 
neurons in the intermediolateral horn of the spinal cord to 

increase sympathetic activity (Duan et al., 2020; Gu, 2021; 
Thomas, 2011).

Organum Vasculosum of the Lamina Terminalis 
(OVLT)

The OVLT is located in the anterior wall of the third 
ventricle, approximately midway between the optic 
chiasm and the anterior commissure (McKinley et al., 
2004). Unlike other species, fenestrations in the capillary 
endothelial cells have not been observed in the human 
OVLT. Nevertheless, reports of imbibed silver suggest 
altered blood–brain barrier characteristics of the human 
OVLE (Landas et al., 1985). The major afferent inputs 
to the OVLE appear to come from several hypothalamic 
nuclei (median preoptic, lateral preoptic, anterior, lateral, 
dorsomedial, and ventromedial nuclei) and extrahypotha-
lamic regions (subfornical organ, locus coeruleus, central 
grey) (Camacho & Phillips, 1981). Studies in the rat indi-
cate that the OVLE project to the median preoptic nucleus 
immediately dorsal to the OVLT, the supraoptic nucleus 
(Camacho & Phillips, 1981), and the paraventricular hypo-
thalamic nucleus (Sunn et al., 2001). The OVLT has a role 
as an osmoreceptor, a mediator of the febrile response, and 
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Fig. 2  Proposed functions of ACE and ACE2 in neurons of the para-
ventricular hypothalamic nucleus. ACE catalyses the breakdown of 
Ang I to Ang II. The latter is further cleaved by ACE2 to the pep-
tide Ang (1–7). In contrast to Ang (1–7) (see Fig. 1), Ang II has an 
excitatory effect on neurons. Both in vivo and in vitro studies show 
that Ang II stimulates PVN neuronal activity (Bains et al., 1992; Cato 
& Toney, 2005; Li et al., 2003). This is likely through a direct effect 
on AT1 receptors (AT1R) which has been localized to neurons in the 
PVH and the circumventricular organs, including the organum vascu-
losum of the lamina terminalis, subfornical organ, area postrema, and 
median eminence (Sumners et al., 2020). An indirect effect involving 

inhibition of the astrocyte glutamate transporter has also been pro-
posed (Stern et al., 2016). SARS-CoV-2 binds to the ACE2 enzyme 
and is internalized into the neuron. Infection of cells by SARS viruses 
including SARS-Cov-2 results in a decrease of ACE2 expression 
(Kuba et  al., 2005; Triana et  al., 2021) and loss of ACE2 activity 
(Glowacka et al., 2010; Haga et al., 2010). This is postulated to pro-
duce an increase in neuronal excitation over neuronal inhibition, with 
resultant increased neuronal activity (including presympathetic neu-
ronal activity), neuroendocrine secretion, and hormone release. These 
and other downstream effects are listed in the figure
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a receptor for blood-borne Ang II and relaxin to stimulate 
the CNS [Reviewed in (McKinley et al., 2004)]. It is part 
of a neural network that is involved in the regulation of 
fluid balance. Dense binding of radioiodinated analogs of 
Ang II have been observed in the human OVLT, median 
preoptic nucleus, subfornical organ, median eminence, 
arcuate nucleus, and paraventricular nucleus (McKinley 
et al., 1987). This is consistent with the observation in ani-
mals of high concentrations of angiotensin AT1 receptors 
in the OVLT (McKinley et al., 1986; Mendelsohn et al., 
1984). These findings support the notion that OVLT is 
one of the sites at which blood-borne Ang II may act on 
the CNS to affect fluid balance and arterial blood pressure 
(Camacho & Phillips, 1981).

Subfornical Organ

The subfornical organ is located in the midline anterior wall 
of the third ventricle at the level of the superior border of 
the interventricular foramen (McKinley et al., 2004) Capil-
laries in some regions of the subfornical organ are fenes-
trated and lack a blood–brain barrier (Shaver et al., 1990). 
Such permeability of the vasculature to circulating agents 
provides the basis for its function as a site of receptors for 
circulating angiotensin II (Giles et al., 1999). High-affinity 
binding of radiolabelled Ang II (McKinley et al., 1987; 
Mendelsohn et al., 1984; Speth et al., 1985), together with 
high expression of angiotensin AT1R (Giles et al., 1999) 
have been found in the subfornical organ. Efferents from 
the subfornical organ to the paraventricular hypothalamic 
nucleus and supraoptic nucleus change the excitability of 
anti-diuretic hormone and oxytocin neurons projecting to 
the posterior pituitary (Ferguson et al., 1984a); as well as 
that of anti-diuretic hormone containing neurons projecting 
to the dorsolateral medulla (Ferguson et al., 1984b). Studies 
using a combination of Fos staining and tract tracing show 
that neurons in the subfornical organ which project to the 
supraoptic and paraventricular nucleus, can be activated by 
hypertonicity or by circulating levels of Ang II or relaxin 
(Larsen & Mikkelsen, 1995; Oldfield et al., 1994; Sunn 
et al., 2001). Reduction in blood flow to the renal artery or 
increased sympathetic activity via renal nerves results in 
secretion of renin from juxtaglomerular cells in the tunica 
media of the renal arterioles as they enter the glomeruli. 
Renin converts angiotensinogen to angiotensin 1. Most of 
the angiotensin-converting enzyme is located in endothe-
lial cells [Reviewed in (Barrett et al., 2016)], but some of 
the blood-borne angiotensin I reaches the subfornical organ 
where it is converted to Ang II. This leads to activation of 
neurons in the subfornical organ, induction of water drink-
ing, anti-diuretic hormone secretion, and a central pressor 
response (McKinley et al., 1992a, 1997; Simpson, 1981).

Pineal Gland

The pineal gland in humans is a solid organ located in the 
midline roof of the third ventricle. It contains astrocytes and 
pinealocytes, which secrete melatonin. The central part of 
the gland highly vascularized by large sinusoid capillaries 
and its peripheral part poorly vascularized by small and fine 
blood vessels (Duvernoy et al., 2000). The major neural to 
the pineal gland is from the peripheral nervous system, i.e. 
sympathetic innervation from the superior cervical ganglion 
(Kappers, 1965). Signals from the retina are transmitted via 
the retinohypothalamic tract to the suprachiasmatic nucleus 
of the hypothalamus; from here, information is relayed via 
the paraventricular hypothalamic nucleus to the interme-
diolateral cell column of the spinal cord. The latter sends 
axons to synapse in the superior cervical ganglion; there-
after, postganglionic axons travel along the great cerebral 
vein of Galen to enter the pineal gland and innervate pin-
ealocytes (Larsen et al., 1998; Teclemariam-Mesbah et al., 
1999). It is through this pathway that information regarding 
changes in the day-night cycle and seasonal alterations in 
illumination is transmitted to the pineal gland to regulate 
melatonin secretion (Tamarkin et al., 1985). mRNA for angi-
otensinogen, angiotensin receptor type 1A (AT1aR) and 1B 
(AT1bR), and ACE have been detected in the pineal glands 
of rats. The presence of angiotensin receptors points to a role 
for renin-angiotensin system in the physiology of the pineal 
gland (Baltatu et al., 1998).

Area Postrema

The area postrema is located in the dorsomedial medulla 
oblongata as two prominences bulging into the most caudal 
aspect of the fourth ventricle (McKinley et al., 2004). This 
nucleus and the specialized region of the adjacent nucleus of 
the tractus solitarius have permeable capillaries (Gross et al., 
1990). Ablation of the area postrema in animals interferes 
with taste aversion, due to nausea-inducing stimuli (Berger 
et al., 1973). The area postrema is long thought to be the 
‘chemoreceptor trigger zone’ for vomiting. This nucleus 
receives afferents from the lateral parabrachial nucleus, the 
adjacent nucleus of the tractus solitarius (Shapiro & Miselis, 
1985; van der Kooy & Koda, 1983), and the paraventricular 
hypothalamic nucleus (Shapiro & Miselis, 1985). In turn, 
it projects to the nucleus of the tractus solitarius, nucleus 
ambiguus, and noradrenergic neurons of the caudal ventro-
lateral medulla (McKinley et al., 2004). The unique posi-
tion of the area postrema at the point of entry of visceral 
sensory information, as well as lack of a blood–brain barrier 
that exposes it to the circulation, enables it to integrate and 
modulate homeostatic responses in the body (Gross et al., 
1990; Miselis et al., 1987; Shaver et al., 1991).
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Median Eminence

The median eminence and arcuate nucleus of the hypo-
thalamus have a deficient blood–brain barrier [Reviewed in 
(Haddad-Tovolli et al., 2017)]. Moreover, dense binding of 
radioiodinated analogs of Ang II have been observed in the 
human median eminence and arcuate nucleus (McKinley 
et al., 1987).

Subcommissural Organ

Unlike other mammals, the human subcommissural organ 
is only clearly evident in the foetus and new-born. In the 
adult it has almost completely disappeared (McKinley et al., 
2004).

The Hypothalamus and COVID‑19 (Fig. 2)

There has been increasing attention to the role of the hypo-
thalamus and brainstem autonomic centres in the patho-
physiology of COVID-19 (Chigr et al., 2020). The fact 
that circumventricular organs lack a blood–brain barrier 
(Haddad-Tovolli et al., 2017), together with the high levels 
of ACE2 expression in circumventricular organs and hypo-
thalamus (Doobay et al., 2007), suggests that they could be 
easy entry points for SARS-CoV-2 into the brain via the 
circulation. On the corollary, the observation that some of 
the ACE2-positive regions of the brain lack a blood–brain 
barrier, could imply that they are amenable to treatment with 
antiviral agents/other therapeutic agents, that otherwise have 
difficulty crossing the barrier. Hypothalamic pathology is 
found in a case of COVID-19 (Pascual-Goni et al., 2020), 
and involvement of the hypothalamus/pituitary gland as well 
as other endocrine glands has been suggested to result in 
an ‘endocrine phenotype’ of the disease (Frara et al., 2021; 
Mussa et al., 2021; Puig-Domingo et al., 2021).

The paraventricular nucleus of the hypothalamus receives 
abundant connections from the circumventricular organs 
which contain high level of ACE2 expression, and itself 
expresses ACE2 protein (Doobay et al., 2007), as mentioned 
above. These are part of a circuit to regulate osmolarity in 
the blood through secretion of anti-diuretic hormone (ADH) 
from the paraventricular hypothalamic nucleus. It is inter-
esting that hyponatremia has been found in a relatively high 
proportion of COVID-19 patients. The Health Outcome Pre-
dictive Evaluation for COVID-19 (HOPE) study found that 
20.5% of COVID-19 patients had hyponatremia at admission 
(Ruiz-Sanchez et al., 2020), and greater morbidity and mor-
tality are reported in hospitalized patients with hyponatremia 
(Tzoulis et al., 2021). Many of the cases of hyponatremia 
likely occur in the setting of Syndrome of Inappropriate 
Secretion of Antidiuretic Hormone (SIADH) (Frara et al., 

2021; Habib et al., 2020; Yousaf et al., 2020). The latter is 
a disorder of impaired water excretion caused by the inabil-
ity to suppress the secretion of anti-diuretic hormone. If 
water intake exceeds the reduced urine output, the ensuing 
water retention leads to the development of hyponatremia. 
This could be due to loss of function of ACE2 as a result of 
binding to SARS-CoV-2, and consequent increase in ACE 
signalling. Changes in the subfornical organ neurons likely 
affect its output to the paraventricular hypothalamic nucleus. 
Interference with ADH release into the posterior pituitary 
via an effect on the subfornical organ and paraventricular 
hypothalamic nucleus has been postulated to lead to hydro-
electrolytic imbalance in some patients with COVID-19 (de 
Melo et al., 2021).

The paraventricular hypothalamic nucleus is also the 
stress response centre in the brain. Neurons in this nucleus 
coordinate this response through their neuronal connections, 
and via their neuroendocrine secretion of CRH (Kim et al., 
2019). The latter has several actions, but its main role is the 
central driver of the HPA axis. It is proposed that inflamma-
tory mediators released at the site of COVID-19 infection 
are transmitted as stress signals to cause dysfunction to the 
complex neurological circuit of the paraventricular hypotha-
lamic nucleus, and result in interference with the modula-
tion of stress (Mackay, 2021). Higher levels of cortisol have 
been detected in patients with severe COVID-19 compared 
to less severe cases (Guven & Gultekin, 2021; Tan et al., 
2020). These findings are consistent with the findings of pre-
clinical studies, that mice with overexpression of ACE2 in 
the hypothalamus show reduced plasma corticosterone level 
in response to restraint stress. These animals also exhibit 
decreased anxiety-like behaviour in the “elevated-plus 
maze” and open field test (Wang et al., 2018). High level 
of stress might induce downstream effects on hippocam-
pal neurogenesis in the dentate gyrus, leading to deficits 
in the formation of new memories (McEwen, 1999). It is 
proposed that the function of ACE2-positive neurons in the 
paraventricular hypothalamic nucleus is affected by bind-
ing with the SARS-CoV-2 virus, resulting in interference 
with modulation of Ang II function and reduced modulation 
of stress/anxiety, in patients with COVID-19. Some of the 
other psychiatric consequences of COVID-19 patients such 
as post-viral fatigue states, aberrant daytime oscillation in 
alertness, disturbed sleep cycles, and significant fluctuating 
anxiety have also been postulated to be due to altered func-
tion of the paraventricular hypothalamic nucleus (Rosenz-
weig et al., 2020).

The paraventricular hypothalamic nucleus and sev-
eral other hypothalamic nuclei are the source of releas-
ing and inhibiting hormones, which control the secretion 
of hormones from the anterior pituitary. Gonadotropic-
releasing hormone neurons are located primarily in 
the medial preoptic area; growth-hormone-inhibiting 
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hormone (= somatostatin) secreting neurons are found 
in the periventricular nucleus; thyrotropin-releasing 
hormone (TRH) and corticotropin-releasing hormone 
(CRH) secreting neurons are located in the paraventricu-
lar nucleus; while growth hormone releasing (GRH) 
neurons are located in the arcuate nucleus [Reviewed 
in (Barrett et al., 2016)]. These hormones are released 
from nerve terminals in the median eminence of the hypo-
thalamus and carried via the bloodstream to the anterior 
pituitary, where they cause secretion of anterior pituitary 
hormones. The median eminence and arcuate nucleus of 
the hypothalamus have a deficient blood–brain barrier 
[Reviewed in (Haddad-Tovolli et al., 2017)] and could 
be readily affected by circulating SARS-CoV-2. Damage 
to the hypothalamus and/or pituitary gland as a result of 
COVID-19 has been suggested to result in anomalies of 
the hypothalamus–pituitary–thyroid axis (Caron, 2020; 
Malik et al., 2021). This could result in a central hypothy-
roidism (Sandru et al., 2021), besides potential damage 
from the virus to the thyroid gland itself (Croce et al., 
2021). COVID-19 injury of the hypothalamus is also pro-
posed to lead to malfunction of the hypothalamic–pitui-
tary–testicular axis (Ardestani Zadeh & Arab, 2021; 
Selvaraj et al., 2021) with possible effects on testicular 
function (Selvaraj et al., 2021).

Besides potential infection from the bloodstream, the 
hypothalamus might also be affected by transneuronal 
spread of SARS-CoV-2, through its neuronal connections 
with the olfactory and limbic systems. These pathways 
have been postulated to be a potential route of spread 
of SARS-CoV-2 from the olfactory epithelium (Baig & 
Sanders, 2020; Bougakov et al., 2021; Jiao et al., 2021; 
Mussa et al., 2021). After receiving inputs from the olfac-
tory epithelium in the nasal cavity, the olfactory bulb pro-
jects via the medial olfactory stria to the septal nuclei, 
which in turn projects to the hypothalamus [Reviewed in 
(Getz, 2007)]. The olfactory bulb also projects via the lat-
eral olfactory stria to the amygdala, which projects to the 
hypothalamus via the stria terminalis. Other parts of the 
lateral olfactory stria terminate in the entorhinal cortex, 
which projects to the hippocampus, and the latter projects 
to the mammillary bodies of the hypothalamus via the 
fornix [Reviewed in (Getz, 2007)]. Previous studies have 
shown the ability of SARS-CoV to induce neuronal death 
in mice by invading the brain via the olfactory epithelium 
(Netland et al., 2008). Direct infection of neurons in orga-
noids by SARS-CoV-2 has also been demonstrated (Song 
et al., 2021). Decreased 18F-FDG PET metabolism in 
olfactory/limbic regions and the hypothalamus has been 
found in a pilot study of COVID-19 patients (Guedj et al., 
2021), suggesting that olfactory and limbic regions are 
affected by the virus.

Conclusion

A better understanding of the role of ACE2 in circumven-
tricular organs and the hypothalamus may help in appreciat-
ing the effects of neurological symptoms of COVID and its 
underlying mechanisms. Given the socio-economic impact 
and drain on healthcare resources from COVID and the scale 
and persistence of the pandemic, exploring potential thera-
peutic pathways to prevent or attenuate these long-lasting 
neurological symptoms, including drugs which modulate 
ACE signalling, remains an important area of unmet medi-
cal need.
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